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Abstract

Machine learning, with its advances in deep learning has shown great potential in analyzing time series. In many scenarios,
however, additional information that can potentially improve the predictions is available. This is crucial for data that arise
from e. g., sensor networks that contain information about sensor locations. Then, such spatial information can be exploited
by modeling it via graph structures, along with the sequential (time series) information. Recent advances in adapting deep
learning to graphs have shown potential in various tasks. However, these methods have not been adapted for time series tasks
to a great extent. Most attempts have essentially consolidated around time series forecasting with small sequence lengths.
Generally, these architectures are not well suited for regression or classification tasks where the value to be predicted is not
strictly depending on the most recent values, but rather on the whole length of the time series. We propose TISER-GCN,
a novel graph neural network architecture for processing, in particular, these long time series in a multivariate regression
task. Our proposed model is tested on two seismic datasets containing earthquake waveforms, where the goal is to predict
maximum intensity measurements of ground shaking at each seismic station. Our findings demonstrate promising results
of our approach—with an average MSE reduction of 16.3%—compared to the best performing baselines. In addition, our
approach matches the baseline scores by needing only half the input size. The results are discussed in depth with an additional
ablation study.

Keywords Graph neural networks - Time series - Convolutional neural networks - Sensors - Regression - Earthquake ground
motion - Seismic network

1 Introduction

Stefan Bloemheuvel and Jurgen van den Hoogen have contributed

equally to this work. In today’s world, advances in hardware and wireless net-

work technology have opened the path for energy-efficient,

X Stefan Bloemheuvel multifunctional and low-cost sensors [1]. Spread across a
s.d.bloemheuvel @jads.nl large geographical region, a set of sensors can then form
Jurgen van den Hoogen a sensor network used for data collection and analysis [2],
j.o.d.hoogen@jads.nl in particular considering large-scale time series data. Exam-
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include, e. g., traffic [3], weather [4] and seismology [5], in
particular regarding time series regression and classification,
e.g.,[6,7].

Recently, there have been considerable advances in deep
learning methods, in particular regarding CNNs, with respect
to their ability to automatically find structure and meaningful
features in the data. This leads to powerful (implicit) fea-
ture construction and computationally efficient models, e. g.,
[8,9] for time series. However, if only the time series data
are examined, then some aspects of the sensor data are left
unseen, i.e., the spatial relations of sensors in datasets that
are geographically grounded.

Consequently, researchers have developed deep learning
techniques to perform time series analysis like forecasting
[10], anomaly detection [11] and imputation [12], with data
arising from networks (i. e., graphs), called graph neural net-
works (now referred to as GNNs), which we also focus on in
this paper. However, if the predicted value does not rely more
on recent values from the input than early values (known as
Time Series Extrinsic Regression (TSER) [7]), the aforemen-
tioned models are not adequate for the task.

Therefore, in this paper we tackle the problem of multi-
variate time series regression, for which we present a novel
GNN-based architecture named TISER-GCN. Our evalu-
ation applies high-frequency network-based seismic data
demonstrating the efficacy of our proposed approach.

Previous attempts for tackling similar time series prob-
lems with graph-based methods have been made by [5,13,14],
yet each has some shortcomings. van den Ende and Ampuero
[5] mention that they designed a GNN for the localization
of earthquakes from waveform data. However, they only
append the (latitude, longitude) information to the time series
being handled by a CNN. Therefore, while prediction scores
improved, no actual GNN layers were used. Second, [13]
proposed a graph partitioning algorithm that works together
with a CNN. However, they make use of classical graph the-
ory techniques and a GNN method is not applied. Lastly, [14]
recently suggested a method that uses CNNs and GNNs for
seismic event classification. However, (1) no spatial infor-
mation is used at all, i.e., each edge has a weight of 1, nor
(2) meta information about the stations is added, and (3) only
three nodes are examined for each observation, which could
be difficult to interpret as a full-fledged/complex network.

Therefore, we propose a larger scale GNN architecture
that can process multivariate time series for such a regression
task. By combining the capabilities of convolutional layers
(feature extraction) and graph convolutional layers (spatial
information), our model can manage the feature sizes that
are common in high-frequency time series data arising from
multiple sensors.

We test our proposed model on network-based seismic
data, which serve as an intuitive domain where GNN models
could be operated due to the naturally geographical grounded
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sensors. The model is inspired by the work presented in [15]
and [16], which functions as our most prominent baseline. In
their work, the maximum ground shaking at a set of seismic
stations is predicted by tackling this as a regression problem.
Their model used convolutional layers to extract useful fea-
tures from a given time series. We start from their work as a
departure point and illustrate how to design the deep learning
model structure using GNNss for such a task.

Our contributions are summarized as follows:

1. We propose a method to perform multivariate regression
on time series originating from graph-structured data. For
this, we present an architecture utilizing convolutional and
graph convolutional layers that is also adjustable for other
use cases or datasets, e. g., time series classification tasks.

2. We evaluate our model thoroughly on two seismolog-
ical datasets that differ significantly from one another
evidencing the generality and potential of the proposed
GNN-based architecture in this task. We discuss our
results in detail and perform a comparison against sev-
eral baseline models (in particular [15], but also [14,17])
and traditional machine learning methods.

3. Finally, we systematically analyze the capabilities of our
model in detail by comprehensive experimentation adjust-
ing several hyperparameters in our proposed workflow.

The article is further structured as follows: we discuss
related work in Sect. 2, which provides the necessary back-
ground on deep learning, graphs and GNNs. Next, Sect. 3
introduces the dataset, our method and training settings. After
that, Sect. 4 presents our results and discusses these in the
context of a model-based comparison. Finally, Sect. 5 con-
cludes with a summary and outlines interesting directions for
future work.

2 Background and related work

This section briefly outlines the background and related work
on graphs and deep learning in general, CNNs, GNNs and
its utilization in time series, as well as the implementation of
deep learning for seismic analysis.

2.1 Deep learning on complex data

Traditional machine learning often requires considerable
effort from the user to construct meaningful features, which
usually is rather time-consuming and error-prone [8]. Deep
Learning provides a way for automatic feature extraction
with help of multiple layers that can utilise nonlinear process-
ing. In particular, this also relates to complex representations
such as multivariate time series and graphs. Therefore, deep
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learning offers strong processing and learning on complex
data.

Initially, the multilayer perceptron (MLP) was developed
in which all network layers are fully linked [18]. While being
powerful, due to its high computation time the depth of the
network is limited. Therefore, researchers have found ways
to create more advanced architectures for specific tasks. One
of the most prominent and successful outcomes of this effort
is the CNN.

A CNN is a regularized MLP that is specialized in han-
dling data structures with multiple dimensions (e. g., pictures
with color channels). It uses a feed-forward structure with
convolutions instead of more general matrix multiplications.
CNNs have been widely adopted in natural language pro-
cessing and computer vision. A CNN has an advantage over
MLPs due to its use of weight sharing, sampling and local
receptive fields [19].

For creating output, the convolutional layers convolve the
input using filters and activation functions. A convolution
operation is defined as

Gy =k MGy + b, (1)

where yHl

. (Jj) denotes the input of the j-th neuron in the
feature map i of layer [ + 1, kf the weights of the i-th filter
kernel in layer /, M!(j) the j-th local region in layer / and
bf the respective bias. An activation function is applied after

each convolutional layer to retrieve the nonlinear features.
2.2 Graphs

Before discussing the extension of deep learning models to
graphs, we first introduce some background and basic nota-
tion. We define a graph G as G = (V, E) where V is the set
of nodes and E the set of edges (see Fig. 1b for an example).
An edge ¢;; = (v;, v;) connects two nodes v;,v; € V. A
common way to represent a graph is with an adjacency matrix
A € RV*N where N = |V|, which is a square matrix such
A;j = 1if there is an edge from node v; to node v;, and 0
otherwise. The number of neighbors of a node v is known as
the degree of v and is denoted by D;; = Y f Ajj, where D is
then the diagonal degree matrix. Edges can be undirected and
directed. Undirected edges contain no notion of source and
destination, e. g., the absolute distance between two nodes is
always equal no matter from which node the measurement
starts. Directed edges do contain direction information, e. g.,
whether somebody follows someone else on a social network
or not.

In addition, nodes and edges (as well as entire graphs)
can have features as well, such that a feature vector a =
(ai, ay, ..., ay) of individual features a; € 24 out of a fea-
ture domain €2 4 is assigned to the nodes (and/or edges). GNN
problems therefore mostly consist of node-level, edge-level
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Fig. 1 Examples: a matrix-based convolution on an image/time series
or b a graph, for which a convolution is a lot harder to define than in (a)

and graph-level tasks, utilizing the aforementioned feature
types.

However, standard convolutional layers (e.g., CNNs)
are not applicable to graph-structured data due to its non-
euclidean nature. In particular, one cannot convolve an n x n
grid over a graph the same way as with an image. Figure 1
shows an example: both the red and blue boxes convolve over
the same grid with 3 x 3 numbers (Fig. 1a). The red box con-
volves three nodes, while the blue box convolves over two
nodes as shown in Fig. 1b. Thus, extensive effort was put into
finding ways to define convolutions over graphs.

2.3 Graph neural networks

GNNS are deep learning-based methods that are adapted for
the graph domain. In general, the history of creating deep
learning models for graphs is surprisingly long. For exam-
ple, recursive neural networks were already adapted to work
on directed acyclic graphs in the 1990s [20]. However, one
recent paper revamped the interest in using deep learning
on graphs [21]. They propose two ways that use hierarchical
clustering and the spectrum of the graph Laplacian to perform
convolutions on low-dimensional graphs. The approach from
[21] falls into one of the two historical main methods to per-
form convolutions with graphs: (1) spectral methods and (2)
spatial methods.

Spectral methods use the eigenvectors and eigenvalues of
amatrix with eigendecomposition, and perform convolutions
using the graph Fourier transformation and the inverse graph
Fourier transform, respectively. These transformations of the
signal x are defined as F(x) = UTx and F~1(x) = Ux,

@ Springer
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where U represents the matrix of eigenvectors of the nor-
malized graph Laplacian L = I — D~'/2AD~1/2, D is the
degree matrix of the adjacency matrix A and I refers to the
identity matrix of length | V| [22].

Spatial methods use message passing techniques, which
consider the local neighborhood of nodes and perform
calculations on their top-k neighbors. With a node aggre-
gation/update function f, an updated node representation Z
could then be defined as Z = f(G)X where G refers to the
adjacency or Laplacian matrix, and X to the node features of
the nodes contained in G [23]. However, a serious issue with
spatial methods is in determining the convolution procedure
with differently sized node neighborhoods [22].

To conclude, there are two typical operations when design-
ing GNNs: Spatial methods focus more on the connectivity
of the graph, while Spectral methods focus on its eigenvalues
and eigenvectors [23]. Both approaches were then simplified
by Kipf and Welling [24] into the so-called graph convolu-
tional networks (GCNs), which are also used in this paper.
They define their propagation rule (convolution in a graph)
as follows:

HD — & (D—%A[)—%H(”W(”) )

where H® e RN*P is the matrix of activations of the
Ith layer, o denotes the selected activation function, D =
3 j Ai ;j refers to the degree matrix; matrix A=A+1 N is the
adjacency matrix of the undirected graph G with the added
self-connections I to include a node’s own node features,
H©® = X where X are the node features and W is the
trainable weight matrix for a specific layer.

A different method was proposed by [17] (graph atten-
tion networks, now referred to as GAT), where the structural
information of A is dropped and is more implicitly defined by
using self-attention over the node features. The authors moti-
vate this by referencing previous work (e.g., transformers
[25]) that showed that self-attention is sufficient. Still, both
techniques (GCNs and GAT's) can produce node-specific out-
puts of N x F features, where F is the number of desired
output features for each node N. Based on this, we will dis-
cuss extensions for time series analysis below.

2.4 Graph neural networks for time series analysis

Considering the connection between GNNs and classical
time series analysis, most effort is visible in time series fore-
casting [10,26]. These approaches adapt existing neural net-
work architectures to use operators from the graph domain.
Examples are gated recurrent GNNs that utilise the spec-
tral convolutions from [27]. Also, Diffusion-Convolutional
Networks are introduced that take into account the in and
out-degree of nodes to capture the spatial dependencies of
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nodes better, which is beneficial in e.g., traffic prediction
[28]. Later on, spatiotemporal graph convolutional neural
networks are introduced that interchange the convolution
procedure between the temporal and spatial dimensions [29].
In addition, GNNs have been used to perform anomaly detec-
tion in time series data. [11] propose an attention-based
GNN that used the results of a forecast to classify deviat-
ing predictions as anomalies. In addition, [12] propose GRIL
(graph recurrent imputation layer), a spatial-temporal GNN
that reconstructs missing data by learning spatial-temporal
representations.

To conclude, a lot of progress has been made in combining
GNNs with classical time series-related tasks. However, time
series regression (and classification) tasks have not received
the same amount of attention yet. Especially when the target
value does not rely on more recent values from the input, but
rather on the whole length of the time series, other model
architectures are needed. As discussed below, seismic data
are a typical domain where these data characteristics natu-
rally arise.

2.5 Deep learning for seismic analysis

Over the past decades, huge volumes of continuous seismic
datahave been collected [30,31]. With the availability of large
datasets and advances in machine learning, the seismological
community has also seen arise in the use of machine and deep
learning. Exemplary use cases are magnitude estimation [32]
and earthquake detection [33]. Specifically for waveform
analysis, the CNN has been applied several times. For exam-
ple, [34] developed a CNN for single-station localization,
magnitude and depth estimation. In addition, CNNs were
developed for P- and S-wave arrival times picking [33,35].
Others used multistation waveforms which were analyzed
for the estimation of the earthquakes’ location [5,36] or early
warning [37].

The work of [5,13,14] comes most close to the goals of
our work. Each of these papers tried to use time series-related
data in combination with graphs to improve predictions. [5]
used classical CNNs that attached the (latitude, longitude)
locations of the sensors to the waveforms to improve pre-
dictions, which differs from our goal to use GNN layers.
In other words, metadata was used to enhance their CNN
model with spatial-information, except no graph layers were
applied. [13] propose a technique that combines CNNs with
graph partitioning to group time series together based on
spatial information. This procedure increases the quality of
the within-group features, and improves predictions, but no
GNNs were utilised. Another recently proposed method for
handling seismic data with GNNs is from [38]. Here, the loca-
tion and magnitude of earthquakes is predicted. However,
their input are pre-calculated characteristics of the earth-
quakes for each station, which differs from our goal to use raw
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waveform data. Lastly, [14] present a method that uses CNNs
and GNN:ss for seismic event classification. However, no spa-
tial information is provided to the model (i.e., adjacency
matrices only containing 1’s are created), no meta informa-
tion of the nodes is added, only three stations are examined
simultaneously, and their method focuses on time series clas-
sification instead of regression.

In this paper, we specifically propose a technique that will
use the full power of GNNs to perform time series analysis.
To the best of our knowledge, no GNN-based method was
used to perform such a time series regression task before.

3 Method

In this section, we first introduce the datasets used in the
experiments. With this as context information, we then define
our problem formally. After that, we describe how to generate
networks given the datasets. Next, we present the framework
of our proposed model for multivariate time series regression
(TISER-GCN). We first provide an intuition on an abstracted
level, followed by a detailed discussion of the full architecture
shown in Fig. 5, and its implementation. Finally, we discuss
model training and the applied baseline models which are
used for our evaluation.

3.1 Dataset

We perform regression on two datasets recorded by the Italian
national seismic network [39,40], described fully in [15,16].
GNNss are an ideal candidate for the analysis of seismic data,
since seismic measurements contain (1) an enormous amount
of data and (2) sensors that are geographically grounded.
Each sensor (i.e., seismometer or accelerometers) in the
dataset continuously records the amplitudes of the seismic
waves resulting from earthquake occurrences along three
components of ground motion (i.e., 3 dimensions): up-down,
north-south, and east-west. The input maximum (i.e., the
greatest amplitude detected across all stations during the
time window) is used to normalize the data, as performed
by [15]. The data recorded by the sensors located at the sta-
tions are crucial for seismologists to understand the nature
of the recorded earthquakes (e.g., magnitude, location, focal
mechanism, etc.).

Because information (via telecommunication) can be
transmitted faster than the seismic waves travel, seismol-
ogists have developed algorithms to predict the maximum
intensity measurements (IMs) of ground shaking at a set
of far-away stations, caused by an earthquake, using only
the very first stations that recorded the earthquake already.
In the seismological literature, this objective is known as
“earthquake early warning”. The IMs used here include peak
ground acceleration (PGA), peak ground velocity (PGV) and

spectral acceleration (SA) at 0.3, 1 and 3 s periods and rep-
resent the labeled data of our model.

Therefore, the task with these datasets is as follows: by
using the earthquake recordings from the stations nearby the
epicenter, recorded within 10 s from the origin time of the
earthquake, we make predictions of the IMs at all stations
within the network. A large majority of the stations have
not yet recorded the maximum earthquake-related ground
motion or ground motion at all. Therefore, we hypothesize
that GNNs are highly suited for this time series regression
task to predict IMs.

An example of an earthquake (red solid star) drawn from
our dataset is shown in the left of Fig. 2. After the initial
earthquake waves start to spread, only one station (called
FEMA) has started recording part of the earthquake, while
the other stations farther to the northwest have not recorded
the first waves.

The CI dataset consists of 915 earthquakes recorded on a
set of 39 stations (CI network) in central Italy. The earthquake
epicenters and station locations are within the area that con-
sists of latitude [42°,42.75°] and longitude [12.3°, 14°], with
earthquakes happening from 01/01/2016 until 29/11/2016.
It contains many spatially concentrated earthquakes and a
dense network of stations. Earthquakes have a depth between
1.6 km < z < 28.9 km and magnitudes in the range 2.9 <M
<6.5.

The CW dataset consists of 266 earthquakes recorded on a
setof 39 other stations (CW network) in central-western Italy.
The earthquake epicenters and station locations are within the
area bounded by latitudes [41.13°, 46.13°] and longitudes
[8.5°, 13.1°], with earthquakes spanning the time period
between 01/01/2013 and 20/11/2017. All the earthquakes are
in the depth between 3.3 and 64.7 km, with magnitudes in the
range 2.9 < M < 5.1. Therefore, the CW dataset clearly cov-
ers a larger area than the CI dataset, and as Fig. 3 illustrates,
the earthquakes of the CW dataset are scattered across a large
part of central and northern Italy, whereas the CI dataset has
earthquakes concentrated in one small area.

3.2 Problem definition

The goal in this work is to regress various values from multi-
variate time series sensor data. We test our models on seismic
data, where the maximum intensity measurements of shak-
ing at each station should be predicted. We calculate values
that are external to the input and do not depend necessarily on
recent values, but rather on the whole length of the time series
(see Fig. 2). Let L be a symmetrically normalized laplacian
matrix L € RV*N where N refers to the number of nodes
in the graph, and Z be a node feature matrix Z € R2*¥ that
holds the latitude and longitude location of each node. Given
the input time series X € REXN>*T*C where E is the num-
ber of earthquakes, N the number of stations, 7 the length

@ Springer
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Fig. 2 Overview of the task tackled in this paper. An example earth-
quake (P (green) and S(orange) wavefronts after 10 s from the origin
time) is shown on the left as red star. By taking the initial input length
(10 s) of X, we predict the Y values that characterize the earthquake
at each node (representing a seismic station). Y has to be inferred by
exploiting waveform patterns in X, since Y mostly reveals itself later on

of the time series and C the amount of channels, our goal is
to predict ¥ € RV | which refers to the 5 target parame-
ters of the time series called PGV, PGA, SA(1 s), SA(0.3 s)
and SA(3 s) for each node in the graph. The task is iteratively
complicated (see Fig. 2) by reducing the input length 7" given
to X in Sect. 4.1.1.

Our final regression problem can then be formulated as
follows:

fiLxXxZ—>Y (3)

where f denotes the learning function, L the graph, X the
time series input, Z the node features and Y the regression
targets.

3.3 Network creation

Both undirected sensor networks were created by making
use of the geographical locations of the seismic sensors. The
adjacency matrix A; ; was calculated by taking all the pair-
wise geodesic (the shortest path between two points on a
sphere) distances in km between each station (latitude, lon-
gitude), and taking the 1 — (min,max) scaled distance as the
edge weight, since edges with a low distance should have
a higher weight. Afterward, the resulting adjacency matrix
can be filtered on the threshold k to adjust the sparsity in
the graph, e. g., the higher the parameter & is set, the fewer
edges will retain in the graph (k has a range between 0 and 1).
Experimentation showed that in the CI network a threshold
of 0.3 was most optimal, and 0.6 in the CW network (see
Sect. 4.2.1).
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in the hidden part of the data (and do not necessarily occur at peaks). In
addition, there could be e. g., noise or sensor malfunctioning hindering
information. We reduce the 10 s window length progressively by 1 s
(each red block) at the time, to further complicate the task in Sect. 4.1.1

The adjacency matrix, however, still has to undergo some
more changes to make it more suitable for GNNs (especially
GCNs). Therefore, we transform the adjacency matrix A
into the symmetrically normalized Laplacian matrix L =
I — D7'2AD™1/2 where D refers to the Degree matrix
containing the neighbors of each node and [ refers to the
identity matrix of length n nodes in a graph. A typical Lapla-
cian would only consist of L = D — A, however, if nodes
have a wide range of varying connectivity, vanishing gradi-
ent problems can occur [24]. Therefore, the degree matrix is
symmetrically normalized. Lastly, the addition of the iden-
tity matrix helps with the GNN to also involve each node’s
own node features [24].

Figure 3 visualizes the resulting graphs; the nodes result-
ing from the seismic stations of the CI and CW datasets are
shown in panels a) and b), respectively. As mentioned before,
looking at the geographical maps and the coordinates (lati-
tude and longitude) on the axis of the plots, it is clear that
the CW network covers a larger land area. In addition, the
thickness of the edges in the figure is determined by the dis-
tance between two stations. The less distance between two
stations, the higher the edge weight. A higher weight will help
the GNN with determining which stations will most likely
inhibit similar behavior in their sensor readings, improving
the IMs’ prediction.

3.4 Abstracted framework

Figure 4 presents an abstracted overview of the building
blocks of our proposed architecture, which can therefore also
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Fig. 3 Overview of the source-receiver geometries of the CI (a) and
CW (b) seismic datasets. The blue solid dots correspond to the seismic
stations (nodes) and the orange dots refer to the earthquake epicenters.
Notice the larger geographical area and the sparseness of the epicenters

Input Data

| Reshape into (Nodes,Features) |

Fig.4 Abstract overview of our GNN implementation for multivariate
time series processing

be instantiated for other tasks, such as time series classifica-
tion. In summary, our proposed architecture of a GNN for
time series regression (TISER-GCN) contains the following
main contributions compared to previous work, as we will
detail below:

1. To obtain node features, we apply a 1D convolutional
layer for feature extraction on the individual nodes using
a wide kernel [8,41] on the input data as in [15].

9°E 10°E 11°E 12°E

45°N

44°N

43°N

42°N

= 100 km
9°E 10°E L1I5E

(b) Network 2 (CW).

12°E 15°E

of the CW dataset when compared to CI (visible in the map scale at
the bottom of both figures). The thickness of the lines connecting the
stations (i.e., the edges) are inversely proportional to the distance of the
connecting nodes as from the values of the adjacency matrix

2. To obtain the graph, the set of stations in the seismic area
are considered as nodes, with the distance between them
as edges.

3. A GNN (utilizing GCN layers from [24]) of n layers is
implemented for processing these feature vectors calcu-
lated by the convolutional layers as node features. While
in other GNN papers the node features each measure a
unique aspect about a node (e. g., the age and friend count
in a social network), we demonstrate that GCNs can also
learn from features that are sequential in time.

4. In our case, as described below, we focus on a regres-
sion task on seismic data, focusing on predicting ground
shaking at a set of seismic stations.

3.5 Model implementation

This section introduces the version of our abstracted imple-
mentation applied to a regression task on seismic data. For
providing a complete picture of the model, the source code
is available.!

The first block of our proposed model uses as input 10 s
of 3-channel seismic waveform data sampled at 100 Hz,
i.e., a time series from each station of each earthquake. See
Fig. 5 and Sect. 3.1 for a full overview of the model and the
dataset. After that, convolutional, graph-convolutional and
post-processing layers are applied.

1 https://github.com/StefanBloemheuvel/ GCNTimeseriesRegression.
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Fig. 5 Overview of the proposed architecture. The features from two
convolutional layers are used as node features in the GCNs. After the
two GCN layers (which are used for inter-station-related feature extrac-
tion), the data are flattened to retain as much information as possible.
Afterward, the output is fed to fully connected layers

3.5.1 CNN for feature extraction

In the second block of our model, two 1D convolutional lay-
ers act as feature extractors by using wide kernel sizes, small
strides, increasing filters, kernel regularization and a ReLU
activation function, which has proven to be useful for 1D
time series data [15,41]. The purpose of these convolutional
layers is to learn the temporal patterns of each station. After-
ward, the output of the second convolutional layer, which has
shape (N, T, F) where N refers to the number of nodes, T
the remaining length of the time series and F the number
of filters, is reshaped to make the dimensions fitted for the
graph convolutional layers. These layers typically need an
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input of (N, F) where F now refers to a one-dimensional
vector [x1, x2 ... x,] for each node in the graph.

To this reshaped feature vector, features (latitude, longi-
tude) of each node are added as node meta data. Therefore,
the feature vector of each node now consists of time series
features from the convolutional layers and classical node fea-
tures. This addition of this node metadata has showed to
improve performance in [16].

3.5.2 GCN processing

Next follows the graph convolutional layers used from [24].
While in [15] the third convolutional layer gathers the cross-
station information, here the graph convolutional layers take
this role, since they use the features from the convolutional
layer as node features for each node. More concretely, each
node N receives one of the feature vectors of dimension
(N, F) as node features where F' is the length of the fea-
ture vector (see Fig. 4). The two graph convolutional layers
use these features of the nodes by reducing them to (N,64) by
both containing 64 filters. Considering the hyperparameters,
experimentation revealed that starting with a ReLU activa-
tion function followed by a TanH works best. In addition,
bias was set to false (as suggested by [24]) and the same
kernel regularizer was used as in the convolutional layers.

3.5.3 Postprocessing

A common practice in the graph literature is using global
graph pooling operators such as max or average-pooling [27,
42,43]. These pooling techniques take the embeddings of
all the nodes in a graph and globally pool these together
by an aggregation function (max, sum, mean ...) However,
this procedure reduces the feature vector from (N, F) into a
single vector F' regarding the number of nodes and filters used
in the previous layer. This means that the graph is reduced
to essentially one node, which is not desirable in our task,
because this is defined as a node-level regression task for all
the nodes in the graph, in contrast to a graph-level task [42].
Therefore, the output of the final graph convolutional layer
is directly flattened and then fed to the fully connected layer.

The output of this layer is then given to five fully connected
regression layers. These layers represent the regression target
variables called PGV, PGA, SA(0.3 s), SA(1 s) and SA(3 s)
for each of the nodes.

3.6 Software and computer

Python was used in combination with Tensorflow” and
Keras? to develop the proposed models. The GCN layer is

2 https://www.tensorflow.org/.
3 https://keras.io/.
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derived from Spektral.* Calculations are done with support
of Numpy? and table formatting with Pandas.® Furthermore,
to reduce the overall training time, the models are trained
on a dedicated server with two Intel Xeon CPUs (3.2 GHz),
256 GB RAM and a Nvidia Quadro RTX3956000 (24 GB)
GPU. After training, the models are fairly small (around
6 MB) and are deployable, e.g., on standard PC hardware
as well as edge computing platforms.

3.7 Model training

Regarding model training, 80% of each dataset was used for
training and 20% for testing. The train set was then randomly
split by k-fold cross-validation with k& = 5. The average
MAE, MSE and RMSE scores on the test set were taken as
the results. This entire procedure was repeated 5 times with
different seeds, which generates 5 distinct train-test splits
to generalize the results (i.e., the large amplitudes from the
less frequent large earthquakes in a test set can influence the
scores if more of them are assigned to a test set).

The model used a batch size of 20 and 100 training epochs
with early stopping—patience of 10. The same optimizer as
in our baseline [15] was used, namely RMSprop with mostly
standard settings [44]. Lastly, MSE (mean squared error) was
used as the loss function when training the models:

n

1
MSE = - Z (vi — 5’1‘)2 , )

i=1

where y; are the actual values and y; the predictions, since it
penalizes larger errors more than e. g., Mean Absolute Error

3.8 Baseline models

We compare our work to the model presented by [15]. This
baseline model was given the exact same input data except
for the graph, i.e., both models received the time series per
station for every earthquake combined with the latitude and
longitude node features of every station, as proven to be effec-
tive in [16]. In addition, we also examine the performance of
GAT [17] layers and an adjusted version of [14] for our task.
The GAT layers are set with 8 channels and 8 attention heads
in order to match the number of parameters of our model, all
other hyperparameters were unchanged. To adapt the model
of [14] to our task, the last layers used for classification were
altered for regression, a weighted initial adjacency matrix
was supplied, and node features were added.

4 https://graphneural .network/.
3 https:/numpy.org/.
© https://pandas.pydata.org/.

Table 1 Overview of possible parameter settings used for the grid
search optimization of the ML models

Model Parameter Option range
K-NN K 1-20 (1 per step)
Weight options Uniform or distance
SVM C 10-40 (5 per step)
Gamma [0.0001,0.001]
Kernel Linear or radial basis function
XGBoost N Estimators 100-1000 (100 per step)
Max depth 5-15 (5 per step)
Gamma [0.0,0.1,0.2,0.3,0.4]
RF N estimators 100-1000 (100 per step)

Max features Square root or Log2

In addition, our proposed model is also compared with
traditional machine learning (ML) algorithms: k-nearest
neighbors (K-NN), extreme gradient boosting (XGBoost),
random forest (RF) and support vector machines (SVM).
Since these models are not designed to process multidimen-
sional data, features were calculated from both the time and
frequency domain. These features are derived from several
studies [45,46]. From the time domain, the mean, stan-
dard deviation, variance, median, minimum, maximum and
range (maximum-minimum) are used. From the frequency
domain, the signal energy E = Y _(fft x;)? and signal power
P =) (mz_x;)Z were used. For each of the ML models,

grid search opltimization in combination with fivefold cross-
validation was used to assess which models performed best.
Table 1 describes all the options of the grid search optimiza-
tion.

Lastly, we also compare the best performing deep learning
models for each network without node features added, to
examine their effect on the performance. These results are
visible in the Ablation study in Sect. 4.2. Here, the impact of
the spatial information can be observed.

4 Results

In this section, the results from the multivariate regression
task are shown. In addition, our model is tested on different
input window lengths to further complicate the task (Fig. 6).

4.1 IM prediction

The results of the IM prediction are visible in Table 2 and
Figs. 7 and 8. All the algorithms perform better on the CI
network than on the CW network. Such behavior is expected
since the CW dataset contains fewer earthquakes (266 against
915) than the CI dataset and, in contrast with the CI, their spa-
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Fig. 6 MSE at different input window lengths for each model in both
networks. Read the figure from left (initial 10 s window from Sect. 4.1)
to right. Our model is capable of achieving approximately the same
MSE scores when given half the input, highlighting the power of GCNs
with processing spatial information

tial distribution is sparse. In addition, the CW network covers
a larger area, with greater distances between the stations, a
larger depth range of the hypocenters and a larger variabil-
ity in the geological settings. As an extra test, 266 samples
were taken from the 915 earthquakes in the CI dataset to
mimic the conditions of the CW dataset while preserving the
densely located earthquakes characteristic of the CI dataset.
In general, this resulted in an increase in MSE of 30% for
our model (TISER-GCN) and 42% for the CNN model from
[15], showing the importance of having enough samples for
learning.

When examining the individual performance of the mod-
els, TISER-GCN outperforms the best performing baselines
(the model from [14] on the CI network and the CNN model
from [15] on the CW network, respectively) by a large margin
on each of the five metrics of ground motion. Especially in
the PGA and SA(1 s) metrics this performance gain is visible.
Our model improves an average of 7% on MAE, 16.1% on
MSE and 8.3% on RMSE compared to the best baseline for
the CI network. Considering the CW network, an improve-
ment of 9.1% on MAE, 16.5% on MSE and 8.4% on RMSE
is achieved.

Lastly, it is interesting to see the relatively weak perfor-
mance of the GAT-based model. A possible explanation could
be that the explicitly defined spatial information in the graphs
(the distances between the stations) is crucial to make sense
of the time series data, which the GAT layers infer them-
selves via self-attention. Therefore, perhaps the time series
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features are too complex for the GAT layers to learn such
representations, especially in the CW network.

Considering the results of the models on each individual
earthquake and each IM metric, Fig. 7 shows the observed
versus the predicted IM values of the CW network for both
[15] and TISER-GCN as residual plots. The blue lines (and
residuals) reveal the performance of the CNN model [15] and
the green lines (and residuals) TISER-GCN. The lines were
calculated with an ordinary least squares to better visualize
the difference in prediction bias between the two models. We
observe, that better performance of our model comes also in
slight reduction of the bias for large IM values (less underes-
timation), which is also of great value for the seismological
applications (for more information, see the original CNN
model [15]).

Lastly, the characteristics of almost all the deep learning
models are highly similar. The models do not deviate con-
cerning Ms/step per epoch. However, there is a small decrease
in the number of parameters, since our TISER-GCN model
has 6.7% fewer parameters than the CNN model from [15].
The GAT model has an equal amount of parameters as our
model, and the adapted GCN model from [14] originally
already has fewer parameters.

4.1.1 Variation in different window lengths

Section 4.1 shows the results based on a 10 s input window
length. However, it is interesting to investigate the results of
both the CNN and the best performing GNN-based models
when this window length is reduced, since smaller win-
dow lengths could translate in earlier responses. However,
a smaller input length creates a more difficult setting, since
fewer stations have received enough information to predict
the IMs at further away stations. Therefore, all the window
lengths between 10 and 4 s (it is not reasonable to reduce the
input window further with this specific application) and their
corresponding MSE scores are displayed in Fig. 6.

We find that we can half the entire input window, while
still achieve similar performance as the best performing
baselines. This reduction also results in a reduction of the
model parameter size of 1.26 million to around 700 thou-
sand (—44%).

Overall, these results highlight the power of the GCN lay-
ers and our implementation. Since GCN layers are designed
to perform node feature sharing in its convolution procedure,
it is still possible to transfer plenty of information between
the nodes in a situation where half the input is provided. In
the context of analyzing streaming time series data, these
benefits are crucial [47] since requiring less input translates
to earlier responses.



International Journal of Data Science and Analytics

(s10) NDO-YISLL [epow Surutiojiad Jsaq ay) 0) 10JaI SMOI P[oq Y,

950 €€°0 €0 vso 1€°0 wo (44l 6C0 (UA] vso 0€°0 o vso 0€°0 o NOO-JHISIL
850 9¢0 Sv'o 290 0¥°0 870 860 Se0 144\ 650 LEO 90 860 Se0 0 [ST] 'Te 19 S1A0UIZOf
09°0 LEO 9%°0 850 Seo0 Sv'0 09°0 8¢0 90 w0 0¥'0 870 650 Se0 Sv'0 (1] ‘T8 10 wry
90 6£0 9%°0 IL0 050 Sso SLO 9¢°0 850 89°0 LY'0 ¥$°0 £9°0 0¥'0 6v°0 g4
290 6£°0 90 Lo 1$°0 §s0 SLo LSO 650 690 870 S0 §9°0 w0 050 1500gDX
¥9°0 Iv'0 8¥°0 €L’0 £5°0 LSO 8L°0 090 19°0 1.0 IS0 LSO L9°0 Sv'0 0 NN
£9°0 0¥°0 Ly'0 Lo 10 9¢0 LLO 850 090 1.0 10 9¢°0 990 £v'0 1S°0 WAS
Lo 9¢°0 860 890 6v'0 €50 0L°0 0 §s0 0L°0 0 9¢°0 89°0 6¥°0 S0 IvD
FLOMIAU D)

S A 1o wo €0 00 €0 €0 61°0 €0 Y0 1o w0 o 00 1€°0 NOO-JHSIL
87°0 ¥T0 €€0 8¥°0 <o €e’0 Ly'0 €0 €€0 Ly'0 €0 €€0 6v°0 9C°0 ceo (1] T2 39 wry
6v°0 AV 9¢0 6¥°0 9C0 Se0 8¥°0 Yo 9¢'0 (0] 9C0 Se0 90 o ¥¢0 [ST] 'Te 19 S1aoutzof
0 8C0 LEO 40 8C°0 8¢0 6¥°0 9C0 9¢0 6¥°0 9C0 9¢0 S0 0¢0 6¢0 LVD
LSO €€0 70 9¢0 €0 170 LSO £€0 wo LSO 0 170 £6°0 8C°0 8¢0 44
860 €€0 170 9¢0 1c0 170 LSO €€0 wo LSO o 10 €50 8C°0 8¢0 1s00gDX
90 8¢0 70 650 ge0 £v'0 190 LEO S¥0 19°0 LEO l24Y 9¢0 0 170 NN
€90 010 S¥'0 19°0 LEO 70 ¥9°0 0 Ly0 $9°0 £v0 Y0 090 9¢0 ev’o INAS
ylompau [

dJSINY SN dVIN HSINY dSIN HVIN dSINI HSIN HVIN dSINY HSIN HVIN dSINY dSIN JVIN
£VSd IVSd €0VSd ADd vVDd

(NDD-YASLL) [opow pasodoid mo pue [4] jo uonejuauwradurr
paisnlpe ‘s1oke] LvO ‘[S1] woy [opowr NND U3 ‘() 15210J wopuel )soogD¥X ‘(NND]) s10qu3rau 1sareau-3 ‘(JNAS) duIyoew 103994 oddns ay) 10y o1now JA[ YoBd JO SI[NSAI [eNPIAIPU] g 3d|qel

pringer

As



International Journal of Data Science and Analytics

TISER-GCN

TISER-GCN

TISER-GCN

Predicted

Predicted
Predicted

-6-5-4-3-2-10 -6-5-4-3-2-10 ~6-5-4-3-2-10
Observed Observed Observed
(a) PGV (b) PGA (c) SA (0.3 s)
TISER-GCN CNN TISER-GCN CNN

Predicted
Predicted

-6-5-4-3-2-10 -6-5-4-3-2-10
Observed Observed
(d) SA (1 s) (e) SA (3s)

Fig.7 Residual plots of the predicted against the true 5 IMs of the CW
dataset (displayed in logarithmic (log;) form). The blue line and points
display the results of [15] CNN, the green line and points of TISER-

GCN. The dotted black line resembles a perfect prediction score. The
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4.2 Experimentation: ablation study
4.2.1 Tuning hyperparameter k

The graph creation algorithm mentioned in Sect. 3, used the
hyperparameter k to cutoff connections between stations that
are too far away. k falls between 0 and 1, where 0 means that
no edges are filtered, and 1 means that all edges are filtered.
Table 3 presents the results of our model when tuning this
parameter on both networks and at what distance the cutoff
will be. If the MSE scores of two values of k would be highly
similar, one would choose a higher k over a lower &, due to
the computational advantages of sparser graphs.

While in the CI network the results for k& are more promis-
ing with lower values of k, different results are visible in the
CW network. An explanation can be found in the very differ-
ent characteristics (see Sect. 3.1) of the two networks. That s,
a too low cutoff has bigger effect applied to a widely spaced
network (i.e., CW) than on a more concentrated network
(i.e., CI). In practice, having more edges than necessary in
a largely spread network (CW network) apparently confuses
the GCN layers in this experiment, perhaps since stations in
less dense networks show different behavior sooner than in
more densely networks (e. g., the CI network). These results
highlight the importance of this preprocessing step when
designing graphs. However, it is an easily interpretable hyper-
parameter that once determined can help GCNs achieve great
performance.

4.2.2 Effect of node metadata

The impact of the node features can be examined by inspect-
ing the results if no features (latitude, longitude) were
supplied. Without node features, which have proven to be
crucial in our difficult prediction task [16], the CNN from
[15] and TISER-GCN score approximately equal. Both have

an MSE of 0.26 on the CI network, and the GCN from [14]
achieves a promising 0.24 MSE. On the CW network, [15]
scores 0.50, TISER-GCN 0.51, and the GCN from [14] scores
a 0.37. These scores show how difficult this task is without
including the spatial information from the stations, which
shows to be crucial for this task, confirming the insights from
[16]. In addition, they show the promising results from [14]
model with no metadata added.

However, once the features are added, changes in perfor-
mance become visible. The model from [15] improves 5%
on the CI network and 26% on the CW network, whereas
our model improves 24% on the CI network and 41% on
the CW network. In contrast, the GCN from [14] does not
improve at all, staying at 0.24 and 0.37 MSE, respectively.
Therefore, our TISER-GCN appears to be more capable of
using this spatial information to improve the learned fea-
ture representation, by combining the graph information with
the time series data while exceptionally well exploiting the
information contained in the spatial metadata in the graph
convolutional layers. However, we want to emphasize that
the model from [14] was not originally optimized for this
task, but for earthquake classification.

5 Conclusions

In this work, the use of multivariate time series regres-
sion with graph neural networks was presented. Our method
(TISER-GCN) proposed a unique way to leverage features
from convolutional layers as node features in a GCN. The
proposed model is tested on two seismic datasets with dif-
ferent characteristics, demonstrating the generalizability of
the model. Our model outperforms the best performing base-
lines by 16.1% on average on the CI dataset and 16.5% on the
CW dataset in terms of MSE. Therefore, besides the original
baseline of [15], the adjusted version of [14] and GAT lay-

Table 3 Ablation results of the

minimum distance cutoff Network k Cutoff (km) Edges Avg. degree centrality MSE

hyperparameter k for both cl 0.6 92 497 0.67 0.224
networks

0.5 115 609 0.82 0.209

04 138 687 0.92 0.191

0.3 159 722 0.97 0.189

0.2 177 729 0.98 0.188

0.1 204 733 0.99 0.191

CW 0.6 217 493 0.67 0.307

0.5 271 601 0.81 0314

0.4 325 660 0.89 0.310

0.3 377 705 0.95 0.322

0.2 429 731 0.99 0.360

0.1 485 739 0.99 0.368
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ers [17] also showed weaker performance compared to our
model. The experiments demonstrate the impressive power of
TISER-GCN, i.e., of our proposed GCN model when pro-
cessing spatial information, since the tested deep learning
models were provided with the same input. More crucially,
especially when taking into account the use case of early
warning systems, our model can match the performance of
the baselines by using half of the input window length on both
datasets. Such a reduction can help with faster earthquake
early warnings (half the input means a faster response).

One important message which we want to emphasize is
that the architecture of the original CNN model by [15] could
also be improved from an only CNN perspective. However, to
make the comparison more fair, and to observe more directly
the actual effect of the GCN layers on the prediction results,
we decided to alter the model architecture as little as possi-
ble to demonstrate the difference in performance between a
classical CNN approach compared to our proposed model.

For future research, other methods of creating the initial
adjacency matrix will be investigated, because the results of
the cutoff parameter experiments in the ablation study reveal
the effect the graph creation steps have on the performance in
the CW network. Examples include; to keep the top-k edges
for each node or using exponential decaying functions as
in [48]. Furthermore, other node features could be added to
the node feature vector to improve predictions. For example,
the angle between two stations could be added as an edge
feature, or the absolute distance between two stations can be
used. Here, also explanation techniques [49,50] could yield
interesting insights, in order to lead feature construction and
modeling.

In addition, we plan to test our model on other (types
of) datasets. For example, both networks now consisted of
39 nodes. It would be interesting how our architecture would
scale to datasets featuring 200 or more nodes. Also, to test the
transfer learning capabilities of our model, perhaps adding
the spatial information to a pre-trained model on one dataset
could make it more adaptable for other networks with differ-
ent data characteristics.

Lastly, our architecture was built to be easily adaptable
for other tasks (involving regression or classification). Inspi-
ration can be taken from the examples of [7], however, there
could be as well many other types of datasets where scalar or
vector value quantities, either associated to a single node or to
the entire graph are to be predicted. Therefore, we encourage
readers to take Fig. 4 as a departure point for other analysis
tasks.
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