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Abstract: In this paper, we deal with the problem of estimating the reproduction number Rt during
an epidemic, as it represents one of the most used indicators to study and control this phenomenon.
In particular, we focus on two issues. First, to estimate Rt, we consider the use of positive test case
data as an alternative to the first symptoms data, which are typically used. We both theoretically
and empirically study the relationship between the two approaches. Second, we modify a method
for estimating Rt during an epidemic that is widely used by public institutions in several countries
worldwide. Our procedure is not affected by the problems deriving from the hypothesis of Rt local
constancy, which is assumed in the standard approach. We illustrate the results obtained by applying
the proposed methodologies to real and simulated SARS-CoV-2 datasets. In both cases, we also apply
some specific methods to reduce systematic and random errors affecting the data. Our results show
that the Rt during an epidemic can be estimated by using the positive test data, and that our estimator
outperforms the standard estimator that makes use of the first symptoms data. It is hoped that the
techniques proposed here could help in the study and control of epidemics, particularly the current
SARS-CoV-2 pandemic.

Keywords: reproduction number; epidemic evolution; SARS-CoV-2; estimation techniques;
mathematical analysis

1. Introduction

To study and control an epidemic such as the current SARS-CoV-2 pandemic, positive
test case data (Ypt) and first symptoms data (Yf s) sequences are commonly used. These
data are independently gathered and respectively describe the number of positive tests
officially registered each day and the number of patients exhibiting symptoms on the first
day. The data of the first kind are commonly communicated by the media, while those
of the second kind are elaborated to compute the instantaneous reproduction number Rt
during the evolution of an epidemic [1,2].

Both kinds of data are affected by errors. Positive test data have an intrinsic problem:
the result of a test is typically associated with the day of its official registration with the
authorities. It would be more appropriate to consider the day of the test. In addition,
tests have false negative and false positive outcomes. However, molecular tests are more
commonly used, with a typical sensitivity of 90%; these tests are different from the rapid
antigenic tests, whose sensitivity largely varies and can be much lower. First symptoms
data have two main problems. First, not all positive patients are able to contextualize
their symptoms into a time frame, which reduces the sample size. Second, these data are
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continuously reported to the medical authorities, and the number of first symptoms on
each day is updated until a certain time, after which it stabilizes.

The study and estimation of the reproduction numbers during an epidemic is an active
field of research. A large number of different methodologies, approaches, and practical
applications have been developed.

Fraser [3] proposed to use a slight modification of the classical Kermack–McKendrick
transmission model to estimate the Rt [4] based on factors that influence susceptibility
and infectiousness. In addition, Fraser [3] specifically focused on households as they
are considered a fundamental unit of transmission for several infections that are directly
transmitted. He then analysed a model of transmission within and between households
and developed a method to estimate their reproduction number.

Specific to the SARS-CoV-2 pandemic are in-host disease models, which have largely
been analysed due to the relevant role played by co-morbidities and co-treatments (e.g., [5,6]),
as well as methodologies which tackle the issue of asymptomatic cases. For example, Zhao
et al. [7] performed a combined estimation of the generation interval and incubation period,
and then inferred a pre-symptomatic transmission proportion and latent period.

Several proposed methodologies are based on simple or generalized compartmental
models that combine deterministic and stochastic components, thus allowing for a consid-
eration of various external variables such as quarantine, self-isolation, social distancing, or
infection profiles [8–11]. Nevertheless, public institutions such as the Istituto Superiore di
Sanità (ISS) in Italy do not use such models to estimate Rt. They instead use a far simpler
data-driven approach that is based on the simple statistics of first symptoms onset data [12],
on which we have focused part of our work. This approach is preferred as it does not
formulate any hypothesis on the mechanisms of virus transmission. One main problem
with compartment models is the assumption of homogeneity: it is very unrealistic, even at
the minimum geographical level used in Italy, to assume that each individual can infect
every other person. In addition, there are problems related to the number of parameters
and their estimation.

The method described by Cori et al. [12] was implemented for the computation of Rt,
both in the R software [13] and as a Microsoft Excel spreadsheet ([14] and documentation
in SI of [12]), which was named EpiEstim. In [15], an extensive review was performed
on articles that used EpiEstim to describe modified approaches. It was reported that the
method of [12], possibly modified, had been used to compute Rt in more than 280 papers,
most of which were for SARS-CoV-2. Even if the data used were concerned with the
incidence of first symptoms and not of infection, the Rt computed from them by the
method in [12] could provide useful quantitative information about the evolution of the
SARS-CoV-2 pandemic.

First symptoms data satisfy an equation involving a convolution integral [12]:

Y(t) = Rt(t)(Y ∗ f )(t) = Rt(t)
∫ t

0
Y(s) f (t− s) ds, (1)

where Y(·) = Yf s(·), the symbol ∗ indicates the convolution, and f (·) is a proper kernel
function representing the probability density function (PDF) of the serial interval, which is
the time between the onset of the first symptoms and the infection that had caused them
(e.g., [16]). Equation (1) is the basis for the estimation of the instantaneous reproduction
number, but we point out that it can be rigorously derived only when Rt is constant along
time and there are no asymptomatic individuals. Nevertheless, it is commonly used in real
applications, either as a definition of Rt or as a basic equation to derive an estimator for it.

We stress that in practice, the convolution integral in Equation (1) is numerically
approximated by a linear combination of data, and this is also performed here in the
applications. However, in some theoretical calculations, we will consider the convolution
as an integral. For simplicity, we will use the same symbol.

In an ideal condition, first symptoms data are replaced by the infection data [17].
However, it is obvious that data on the last type of events are hard to collect. In fact, the
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time of first symptoms can be quantified, although with errors, while it is very often not
possible to identify the infection time. We notice that Equation (1) becomes an eigenfunction
problem if Rt is assumed to be constant over time. In principle, the eigenfunctions could be
used as a base of functions to describe the Rt sequence.

Usually, in the literature, the kernel function f is modelled by a Gamma PDF:

f (y) := fC(y) =
1

Γ(k)θκ
yk− 1e−y/θ ,

where k and θ are the shape and the scale (positive) parameters, respectively, and Γ indicates
the Gamma function. Based on a limited set of epidemic data, these parameters were
estimated for the SARS-Cov-2 pandemic in Italy by [18] to be 1.87 (shape) and 3.57 (scale),
and this is indeed the model currently adopted by the dedicated Italian Governmental
Institution to estimate the reproduction number (see https://www.iss.it/coronavirus;
for the theoretical specifications, see https://www.iss.it/coronavirus/-/asset_publisher/
1SRKHcCJJQ7E/content/faq-sul-calcolo-del-rt). We stress that other parameter values are
used in different countries (e.g., [19,20]).

In this paper, we focus on one of the most widely used methods to estimate Rt during
an epidemic [12]. It is developed within a Bayesian statistical framework [21], which uses
both the likelihood of the data Y(t) = Yf s(t) for t = 1, . . . , T and a prior model for the
temporal Rt sequence. As it will be seen in the next section, by following this approach, we
can derive the expression for an estimator R̂t(t) in a closed form, that is:

R̂t(t) =

a + ∑
s∈It

Y(s)

1
b
+ ∑

s∈It

(Y ∗ fC)(s)
, (2)

where Y ∗ fC denotes the convolution discretized by a linear combination of data, and
It is a temporal interval containing time t. Intuition suggests that the choice of It to be
symmetrically centred in t can be adopted to minimize a possible bias of the estimator. To
obtain this formula, it is assumed that the instantaneous reproduction number is constant
within It. This hypothesis allows for a reduction of the influence of random errors in
measurements during the estimation of Rt. Mathematically, this is obtained by the two
“averaging” terms appearing both in the numerator and the denominator of Equation (2).
However, we stress that this procedure may induce systematic errors. In fact, the slope of
the estimated Rt is often reduced (in absolute value) with respect to that of the underlying
“true” curve. Finally, the constancy over It is independently assumed from time to time
without any guarantee of consistency. The strategy adopted here aims to overcome the
problem induced by the “averaging” procedure of the standard approach to estimate Rt.
Hence, we do not assume Rt to be constant over the interval It.

This paper first describes a new procedure that is closely related to the one in [12],
which is currently used in Italy to estimate Rt. The method is simple, both to understand
and to implement, and it has been applied to both simulated and real SARS-CoV-2 Italian
data at different time intervals. However, it could be easily adapted to other contexts
worldwide. Secondly, we illustrate the theoretical and empirical results we found on the
relationship between the Rt estimation based on first symptoms and that based on positive
test data. In Section 2, we first give some details of the method in [12], and we describe
the methodologies developed in our work. In Section 3, we illustrate the results obtained
by applying the proposed methodologies to both synthetic and real SARS-CoV-2 Italian
data. For comparison, the estimates from the standard method in [12] are included as well.
Finally, the results are discussed in Section 4.

https://www.iss.it/coronavirus
https://www.iss.it/coronavirus/-/asset_publisher/1SRKHcCJJQ7E/content/faq-sul-calcolo-del-rt
https://www.iss.it/coronavirus/-/asset_publisher/1SRKHcCJJQ7E/content/faq-sul-calcolo-del-rt
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2. Mathematical Models and Methods

In this section, we first provide some details about the method in [12] to derive
Equation (2). Secondly, we illustrate how it is possible to reduce the errors of the data, both
for first symptoms and positive test sequences. Then, we focus on the estimation of Rt
based on positive test data as a valid alternative to the currently used first symptoms data.
At the end of this section, we describe the proposed modification to the method in [12] to
estimate the instantaneous reproduction number Rt during an epidemic.

2.1. A Standard Method to Estimate Rt

In the method by [12], the data Y(t) = Yf s(t) for t = 1, . . . , T are assumed to be
independent and identically distributed (i.i.d.) as a Poisson distribution, and therefore the
expression for their likelihood in terms of the parameter vector Rt is as follows:

LY(Rt) =
T

∏
s=1

[Rt(s) · (Y ∗ fC)(s)]
Y(s) e−Rt(s)·(Y∗ fC)(s)

Y(s)!
, (3)

where we used Equation (1) to approximate the expected value of Y(s). The prior model
on the instantaneous reproduction number in the days of the time interval considered is
assumed to be the product of the PDFs, which are all equal to a Gamma distribution with
shape a = 1 and scale b = 5 (see [12]). Those two probabilistic models are then combined
by means of the Bayes theorem to obtain the posterior PDF, that is:

P(Rt | Y) ∝
T

∏
s=1

[Rt(s) · (Y ∗ fC)(s)]
Y(s) e−Rt(s)·(Y∗ fC)(s) Rt(s)a−1e−Rt(s)/b. (4)

Equation (3) factorizes because of the independence of the different components of
Rt; therefore, the inference can be performed independently component by component.
To do that, we consider the posterior marginal distribution density function of the variable
Q = Rt(t) given by the following equation:

PQ(q) ∝ qY(t)+a−1 exp
{
−q
[

1
b
+ (Y ∗ fC)(t)

]}
, (5)

which is a Gamma distribution with shape Y(t) + a and scale
[

1
b
+ (Y ∗ fC)(t)

]−1
as

parameters. The mean estimator is then adopted. We recall that the mean of a Gamma-
distributed random variable is the product between the shape and the scale. Then, in our
case, we obtain the following equation:

R̂t(t) =
a + Y(t)

1
b
+ (Y ∗ fC)(t)

t=1,. . . ,T. (6)

When the order of magnitude of the measured data is at least in the hundreds, the
prior parameters (a, b) in Equation (6) can be neglected. In fact, this situation typically
happens in the case of a very large population studied in an active phase of the pandemic,
long after its beginning.

The above estimator R̂t(t) is, however, affected by random errors induced by those of
the first symptoms sequence. The contribution of the denominator in (6) to the errors is
lower than that of the numerator because of the presence of the convolution, discretized
by a linear combination of data. To further reduce the influence of the errors on Rt(t), it is
assumed that the instantaneous reproduction number is constant within an interval It. Then,
the marginal distribution density of Rt becomes a Gamma PDF with shape a + ∑

s∈It

Y(s) and
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scale

[
1
b
+ ∑

s∈It

(Y ∗ fC)(s)

]−1

. With abuse of notation, the corresponding estimator R̂t(t)

is, in this case, given by the right-hand side of Equation (2). Since summation now also
appears in the numerator and twice in the denominator, the influence of random errors is
further reduced, which is reflected in a smoother Rt curve. However, as pointed out in the
Introduction, systematic errors may appear.

2.2. Data Error Reduction

Often, in an epidemic such as the current SARS-CoV-2 pandemic, both positive test
and first symptoms sequences, besides random fluctuations, contain variations that are
approximately described by a weekly oscillating component, with a local minimum on
Mondays and a local maximum on Wednesdays/Thursdays. This is more evident for
positive test data, as some steps involved to produce them are dependent on the day of the
week. Therefore, we process the measured sequences to produce a version of them with
reduced periodic and random distortions, as often performed in the literature (e.g., [22,23]).
To do that, we model the data as the sum of two components. The first consists of a
non-parametric Nadaraya–Watson linear combination of data [24,25]:

Ỹ(t) =
1
F

T

∑
s=1

Y(s)K
(

t− s
γ

)
, F =

T

∑
s=1

K
(

t− s
γ

)
. (7)

where Y(1), . . . , Y(T) are the measurements. In the above formulas, K(·) is the kernel
function, and the positive parameter γ is the bandwidth [26]. The kernel is typically modelled
by a standard Gaussian PDF:

K(x) = 1/
√

2π e−
x2
2 ,

and this is also performed here. The second component of the model that we propose for
the data is parametric: it consists of a sinusoidal function with a period of 7 days, which
is multiplied for each time by an “envelope” function. The specific choice of the latter
depends on the data considered (see Section 3.1).

The whole set of model parameters consists of the bandwidth of the non-parametric
component and the coefficients of the second one. To select the optimal values for all
the parameters, we proceed as follows. For each element of the bandwidth in a finite set
of selected values, we initially compute the first component directly from the data with
Equation (7). Then, correspondingly, we estimate the parameters of the periodic component
by optimizing the fit of the complete model to the data. Among the estimated models,
we finally select the one which gives the best fit to the data. At the end of this procedure,
when dealing with the standard estimator for Rt, we use the data obtained by subtracting
the optimal periodic component from the measured data. For simplicity, we hereafter use
the same notation Y(1), . . . , Y(T) for this “filtered” sequence. In contrast, to estimate Rt
through the proposed method, we use the non-parametric component Ỹ(1), . . . , Ỹ(T) of
the best model.

2.3. Estimation of Rt from Positive Test Data

As intuition suggests, there exists a relationship between the positive test and the
first symptoms sequences. In fact, a contribution to the incidence Ypt(t) of a positive test

registered at time t is given by the integral
∫ t

0
Yf s(τ) P[Yp t(t) | Yf s(τ)] dτ of the incidence

Yf s(τ) of the first symptoms outcomes that occur at any time τ < t, weighted by the
conditional probability density P[Yp t(t) | Yf s(τ)]. Of course, we also have to take into
account the contribution to the incidence Ypt(t) of the subjects that are not able to localize



Vaccines 2022, 10, 1788 6 of 21

their first symptoms outcomes. Assuming that this last contribution is approximately
proportional to the total incidence Ypt(t), it follows that

Yp t(t) ∝
∫ t

0
Yf s(τ) P[Yp t(t) | Yf s(τ)] dτ.

By assuming that the mechanisms for sampling, executing tests, and registering the re-
sults remain the same along time, the above conditional probability only depends on the
temporal difference t− τ. Therefore, the sequence of the positive test is obtained by the
convolution of the first symptoms sequence with an appropriate kernel function g(·):

Yp t(t) =
∫ t

0
Yf s(τ)g(t− τ) dτ. (8)

We notice that the function g(·) no longer integrates to 1, as it incorporates a constant
larger than 1 due to the presence of the subjects that cannot identify the day of their first
symptoms.

Let us now replace the expression for the first symptoms sequence in the previous
Equation (8) with a convolution integral given in (1), where we explicitly set f := fC, which
is the kernel introduced by [18]:

Yp t(t) =
∫ t

0

[
Rt(τ)

∫ τ

0
Yf s(x) fC(τ − x) dx

]
g(t− τ) dτ.

Since, in practice, the support of the kernel g(·) is 14 days, we can write the following
equation:

Yp t(t) =
∫ t

t−14

[
Rt(τ)

∫ τ

0
Yf s(x) fC(τ − x) dx

]
g(t− τ) dτ

= Rt( t̄ )
∫ t

t−14

∫ τ

0
Yf s(x) fC(τ − x) dx g(t− τ) dτ

= Rt( t̄ )
∫ t

0
(Yf s ∗ fC)(τ) · g(t− τ) dτ = Rt( t̄ ) · [(Yf s ∗ fC) ∗ g](t)

= Rt( t̄ ) · [(Yf s ∗ g) ∗ fC](t) = Rt( t̄ ) · (Ypt ∗ fC)(t),

where we have applied the general version of the mean value theorem, and t̄ is a certain
time in the interval (t− 14, t). In general, t̄ is an unknown function t̄(t) of time t. However,
we can assume that the mechanisms producing the first symptoms outcomes in a subset of
infected subjects, and all those that involve testing in this subpopulation, remain identical
during a reasonably limited time period. Of course, this is not true in the very first stages of
the pandemic. Therefore, in a limited temporal interval, the whole composite phenomenon
is “homogeneous” along time. For such kinds of phenomena, given a generic time t, the
point t̄(t) where Rt is calculated in the final expression of Yp t(t) above, must have the same
distance from t independently of the absolute location of time t along the temporal axis. It
then follows that t̄(t) = t− δ, where δ is a constant, and we have the equation below:

Yp t(t) = Rt(t− δ) (Ypt ∗ fC)(t) = Rt(t− δ)
∫ t

0
Ypt(s) fC(t− s) ds. (9)

We notice that Equation (9) is identical to Equation (1), but the Rt is shifted by the
constant quantity δ. This is intuitive, as the process of the positive test sequence ideally
resembles that of the first symptoms, with a delay. The same is true between the latter and
the infection sequence. However, we recall that the infection sequence is unknown, and
that in fact, the kernel in [18] was estimated by using a very limited sample of primary
infection data (in tens or hundreds).
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We also want to empirically verify Equations (8) and (9). We then come back to the
kernel function g in Equation (8). It is usually modelled by a Gamma distribution density
function with shape k and scale θ parameters. However, to verify Equation (8), we have to
re-parametrize this model by replacing the scale parameter θ with the mean value µ = k · θ,
which has a direct interpretation. We also consider an additional multiplicative parameter
in the kernel, which allows us to account for the fact that the day of the first symptoms is
only known for a fraction of all the patients that tested positive. The explicit formulation
we consider for the kernel function is then given by the following equation:

g(t) = A(t− t0)
k−1 exp

{
− (t− t0)k

µ

}
. (10)

The components of the parameter vector (A, k, µ, t0) of this model are estimated by
minimizing the discrepancy between the measured sequence of the positive test incidence
and its theoretical expression, which we recall is given by the discrete version of the
convolution integral in (8). For the minimization, we use the simulated annealing algorithm
with a geometric temperature schedule [27]. The initial value for the temperature is chosen
as the empirical mean of an initial random exploration of the parameters state space. The
value for the exponent of the geometric law is 0.999.

2.4. A New Estimator for the Reproduction Number Sequence

Similar to the standard method in [12], the method proposed here to estimate Rt
during an epidemic is also based on Equation (1). As we explained before, in the standard
approach, when estimating Rt on day t, one assumes that its value is constant within an
interval It centred on t. In this way, the estimator R̂t on day t will depend on the data in
the whole It (see Equation (2)). This is done in order to increase the regularity of the R̂t
curve. However, in order to reach the same goal with our approach, we first compute the
sequence of the non-parametric component Ỹ(1), . . . , Ỹ(T) from the data, as described in
Section 2.2. After that, we estimate the Rt on day t by using Equation (6), thus obtaining
the following equation:

R̂t(t) =
a + Ỹ(t)

1
b
+ (Ỹ ∗ fC)(t)

. (11)

We recall that the convolution in the denominator above is a discrete approximation
of the convolution integral given by a linear combination of the sequence Ỹ(1), . . . , Ỹ(T).
Of course, we are aware that Equation (6) is theoretically derived under the assumption of
the data’s independence at different times. However, this assumption is not valid here as
we perform the first step in reducing the errors in the data.

3. Results
3.1. Real SARS-CoV-2 Italian Data

We start by considering a first set of SARS-CoV-2 Italian data for the first symptoms
and a positive test, measured from 21 September until 20 November 2020. We notice that the
date 14 September 2020 corresponds to the beginning of school activity in Italy; this induced
a fast growth in the disease incidence, which started about two weeks later [28]. In Figure 1,
we show both the first symptoms and the positive test measured data as well as the results
of the methods to reduce their errors. As shown in this figure, the processed data are less
affected by the presence of a one-week periodicity. The reduction of the errors is stronger
for the positive test sequence. This is an expected result, firstly because the corresponding
values are typically larger than those of the first symptoms. More importantly, the latter
data have fewer factors that induce periodicity in the measurements. For the positive
test sequence, the envelope chosen for the periodic component modelling the data (see
Section 2.2) is proportional to the first component. This assumption is reasonable as the
within-week variation is expected to be proportional to the mean value. This hypothesis is
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also supported by the empirical evidence given in Figure 2, where the standard deviation
of the local fluctuations of the positive test sequence is shown as a function of the estimated
first component of the model for Ypt(·). To compute the standard deviation, we use the
discrepancies between the measured positive test data and the estimated non-parametric
component of their model, in slicing windows of 14 days centred on each point of the time
interval. A degree 2 polynomial has been adopted. The optimal values for the parameters
are obtained through an iterative least square procedure. We notice that in this case, we end
up, in practice, with a linear relationship, which justifies the above choice for the envelope.
However, this does not happen for data in another time interval, as we are going to see
later on. The same procedure for computing the standard deviation and the same type of
quadratic model are also adopted in the case of the first symptoms data (see Figure 3). In
general, a quadratic model is adopted for the envelope in terms of the first component of
the data model. Since the periodic distortions only appear in a sub-window of the time
interval considered, we only applied the correction at that point. In Figure 1, the estimated
first component of the data model is shown for both types of data. In addition to systematic
errors, those that are random are also strongly reduced.
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Figure 1. Real SARS-CoV-2 Italian incidence (number of new cases per day) from 21 September to 20
November 2020. In panels (a,b), the first symptoms and positive test data are respectively plotted.
Measured data (thin continuous lines) are shown together with their corrected version from the
one-week periodic component (thick dashed lines) and the non-parametric component of the model
(thick continuous lines). See Section 2.2 for details.
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As explained before, the sequences of the first symptoms and positive test data can
be linked to each other through a convolution relationship based on a suitable kernel (see
Equation (8)). This is empirically verified by the results in Figure 4. We stress that this
convolution link is a crucial element at the basis of the theoretical relationship between the
estimate of the Rt from the first symptoms sequence and the sequence corresponding to the
positive test curve. In particular, the calculations in Section 2.3 show that the Rt sequence,
which is based on positive test data, can be obtained from analogous data based on the first
symptoms by a translation of a suitable time δ.
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Figure 2. Standard deviation of the local fluctuations of a real SARS-CoV-2 Italian positive test
sequence from 21 September to 20 November 2020, illustrated in Figure 1, as a function of their
expected value. The continuous line represents the best fit with a degree 2 polynomial model, which
in this case is reduced to a straight line.
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Figure 3. Standard deviation of the real SARS-CoV-2 Italian first symptoms sequence from 21 Septem-
ber to 20 November 2020, illustrated in Figure 1, as a function of their expected value. The continuous
line represents the best fit with a degree 2 polynomial model.
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Figure 4. Relationship between the sequences of the positive test (continuous line) and the first
symptoms (dotted line) relative to the real SARS-CoV-2 Italian data from 21 September to 20 Novem-
ber 2020, illustrated in Figure 1. The curves were obtained by correcting the data from a one-week
periodic component (see Section 2.2). The dashed line shows the results of the convolution between
the first symptoms sequence and the optimal kernel (see Section 2.3).

This theoretical result is empirically verified on the real SARS-CoV-2 data considered
here. By means of the standard approach, we estimated Rt, f s from the first symptoms
sequence and Rt,pt from the positive test sequence. In both cases, we used the data obtained
by subtracting the optimal periodic component from the raw measurements (see Section 2.2).
We stress that by following the method used to compute and publicly diffuse the official Rt
values from the Italian ISS, the estimation temporal interval It was 14 days long, centred
on t: {t− 7, . . . , t + 6}. To find the optimal value for δ, we focused on the mean absolute
difference between the Rt,pt and Rt, f s sequences in the time interval considered, which was
performed after shifting backward the first sequence of a variable number of days, from 1
to 10. We then selected the δ that could minimize this difference, and we found an optimal
value of 6 days. This choice corresponds to a good agreement between the two sequences
after shifting, as shown in Figure 5. The value of the mean absolute difference in the time
interval considered is 0.02.

We also applied the same analysis to a similar dataset in a different temporal interval,
i.e., the period of one month starting on 7 December 2021, when the highly contagious
Omicron variant of SARS-CoV-2 largely spread in Italy for the first time [29]. In addition
to the differences due to the virus variant, the testing conditions were then quite different.
The results we obtained are illustrated in Figure 6, from which we can draw the same
conclusion as for the previous dataset considered. The optimal value we found for the shift
δ was 4 days. This shorter delay is expected, since we are now considering a period in
which the possibility for a person to be tested with reliable results is far easier than before.
There is also the possibility of self-testing by means of easily purchasable antigenic tests,
and a new, more reliable antigenic test (COI) that gives rapid results. For completeness,
in Figure 7, we show the standard deviation of the local fluctuations of the positive test
sequence as a function of the estimated first component of the model for Ypt(·).
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Figure 5. Sequence of the reproduction number Rt estimated by the standard method for real SARS-
CoV-2 Italian data from 21 September to 20 November 2020, illustrated in Figure 1. The continuous
and dashed lines refer to the first symptoms and the shifted positive test sequences, respectively. The
estimated optimal shift is 6 days. The dotted line represents the threshold for the epidemic to spread
or die out.
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Figure 6. Sequence of the reproduction number Rt estimated by the standard method for real SARS-
CoV-2 Italian data from 7 December 2021 to 6 January 2022. The continuous and dashed lines refer to
the first symptoms and the shifted positive test sequences, respectively. The estimated optimal shift
is 4 days.
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Figure 7. Standard deviation of the local fluctuations of the real SARS-CoV-2 Italian positive test
sequence from 7 December 2021 to 6 January 2022, as a function of their expected value. The
continuous line represents the best fit with a degree 2 polynomial model.

We now turn to the results obtained by the proposed method to evaluate the reproduc-
tion number Rt during an epidemic for the first real dataset considered. They are illustrated
in Figure 8, which also contains the results from the standard approach for comparison. As
we can see, the Rt curve from the proposed method is more regular than the curve from
the standard approach. Around day 30, the differences between the two curves are small.
This is not true for the first part of the interval, where the slope of the Rt curve is high
(until about day 15), because a systematic deviation appears: the estimate of the Rt with
the proposed approach shows a higher slope than that estimated in the standard case. In
contrast to this latter approach, in the proposed one, we first reduced both the systematic
and random errors in the data, and then we applied the estimator in (6). As an alternative,
one could first apply the same formula to the data after reducing the systematic errors
and then perform an arithmetic averaging of Rt in the interval It. The result is shown in
Figure 9, where it can be noticed that the proposed method outperforms this last procedure.

Confidence Intervals (CIs) for Rt from both the proposed and standard methods are
computed as follows. After estimating the two model components from the data, we
generated a sample of n simulated signals first by adding these two sequences to each
other, and then summing the resulting i.i.d. Gaussian noise with time-varying standard
deviation, as shown in Figure 3. For each element of the data sample, we estimated the
Rt with the use of both the proposed and the standard methods. We stress that in order to
make a fair comparison, the data processed by the standard approach were obtained from
the simulated signals following a procedure the same as that used for the real data. For
each of the two methods, we computed the 95% CI at each time t in the temporal interval
considered. Using a sample of (n = 100) independent replications, the maximum and
mean values for the semi-amplitude of the CIt were respectively (0.07, 0.1) for the proposed
method, and (0.04, 0.07) for the standard one. Since the posterior of Rt for the standard
method is a Gamma model, we used it to compute CIt. However, in this specific case, the
values of the CIt became substantially smaller than those above, and we therefore did not
follow this procedure.
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Figure 8. Sequence of the reproduction number Rt for real SARS-CoV-2 Italian data from 21 September
to 20 November 2020, illustrated in Figure 1. The continuous line corresponds to the proposed method,
while the dashed line corresponds to the standard approach.
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Figure 9. The same as in Figure 8, but the modified standard Rt curve is now obtained by first
applying estimator (6) to the data reduced by the systematic error, and then performing arithmetic
averaging in time intervals It.

Similarly to what had been done before, we further validated the results of the compar-
ison with the standard method by analysing the data in the second time interval, as above.
In fact, due to the large spread of the Omicron variant, this period is also characterized by a
high slope of the curve, thus allowing us to highlight the differences between the standard
approach and our proposed method. The two estimated Rt curves are shown in Figure 10.
We can see that the Rt from our method shows a slightly higher slope and higher peak,



Vaccines 2022, 10, 1788 14 of 21

correctly retracing the result from the raw first symptoms data, represented in the figure by
a dotted line.

0 5 10 15 20 25 30
Days since 7 December 2021
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2.0

2.5

R
t

Proposed
Standard
1-day "Standard" from raw data

Figure 10. Sequence of the reproduction number Rt for real SARS-CoV-2 Italian data from 7 December
2021 to 6 January 2022. The continuous line corresponds to the proposed method, the dashed line to
the standard approach, while the dotted line is relative to the estimation by (6) from the raw data.

Finally, the same results as those above have also been obtained from data in different
countries. An example is given in Figure 11, where we consider SARS-CoV-2 data in New
York City (NYC), measured from 26 October to 25 November 2020. We can also see that
in this case, the Rt from our proposed method shows a higher slope and a higher peak,
occurring after the first two weeks of October. The peak could be due to the fact that at the
beginning of October, NYC elementary, middle, and high schools began in-person learning.

0 5 10 15 20 25 30

Days since 26 October 2020

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

R
t

Proposed
Standard

Figure 11. Sequence of the reproduction number Rt for real SARS-CoV-2 data in New York city, from
26 October to 25 November 2020. The continuous line corresponds to the proposed method, while
the dashed line corresponds to the standard approach.
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3.2. Synthetic Epidemic Data

As anticipated before, to further validate the effectiveness of the proposed method
from a quantitative/objective point of view, we generated synthetic epidemic data. We
first obtained the synthetic data by modelling the incidence of first symptoms events by
means of a pseudo-Gamma PDF (see (10)), with parameter vector (13289, 22, 83, 0) plus an
extra additive parameter C = 551. This choice was made to obtain a “realistic” synthetic
dataset, resembling the real data illustrated in panel a) of Figure 1. Given the regularity
of the generated first symptoms events, we computed the “true” Rt sequence by using
Equation (6). We stress that in general, since the kernel by [18] has, in practice, a support of
28 days, in order to get the value of Rt at any time, we need the data relative to the 28 days
before it. An i.i.d. sample of the n signal was then simulated by adding an i.i.d. zero mean
Gaussian noise to the standard deviation, growing as the same degree 2 polynomial model
used for the first set of the real data.

Figure 12 shows the mean of the Rt curves and its 95% CI estimated by the proposed
method (n = 100). The CIt is computed first by following the same procedure as that used
for the real data, and then applying the Law of Large Numbers. The same figure shows
the “true” Rt curve, which is almost always contained in the 95% CI band. Analogously,
Figure 13 contains the same result for the standard method. In this case, the “true” Rt is
not included in the 95% CI. Therefore, this provides additional evidences in favour of our
procedure.
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2.0

R
t
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Figure 12. Mean of the Rt curve estimated by the proposed method from a realistic SARS-CoV-2 first
symptoms synthetic data sample (n = 100). The relative 95% CI is shown as a grey shadow. The
“true” Rt sequence is given as a dotted line.
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Figure 13. Mean of the Rt curve estimated by the standard method from a realistic SARS-CoV-2 first
symptoms synthetic data sample (n = 100). The relative 95% CI is shown as a grey shadow. The
“true” Rt sequence is given as a dotted line. The mean is obtained from 100 independent realizations
of the synthetic data.

In addition to the simulated results just described, we compared the performances of
the standard and the proposed methods by using another synthetic dataset. In this case,
we started directly from the Rt sequence. More precisely, we considered an Rt that was
constantly equal to 1 until a certain time t = 0, after which it increased linearly with a
slope α (ramp). Correspondingly, the sequence of the first symptoms data was explicitly
derived by imposing that Equation (1) be fulfilled for the times in the interval considered
(−∞, T], with T > 0. Since Rt(t) = 1 for t ≤ 0, it is easy to verify that this implies that
{Y(t)}t=−∞,...,−1 ≡ Y(0). We then set Y(0) = 1. For any time t = 1, . . . , T, we obtain the
following equation (see Supplementary Material):

Y(t) =

Rt(t)
t−1

∑
k=1

fC(t− k)Y(k)

1− Rt(t) fC(0)
+

Rt(t)

[
1−

t−1

∑
x=0

fC(x)

]
1− Rt(t) fC(0)

. (12)

Equation (12) can then be used recursively to compute the values of {Y(t)}t=1,...,T . In
panel (a) of Figure 14, the “true” Rt sequence is shown. In panel (b) of the same figure, we
plot instead the corresponding first symptoms sequence obtained by recursively applying

Equation (12). Considering the noiseless case, from Equation (2) with a =
1
b
= 0, we can

explicitly compute the estimate of Rt in the standard case. By looking at the results of both
the real SARS-CoV-2 and the synthetic epidemic data of the first type, we notice that the
bias is larger at the beginning of the interval where the Rt has a high slope. Therefore, we
focus on the bias R̂t(0)− Rt(0) at time t = 0. As shown in the Supplementary Material, the
standard estimator R̂t(0) is given by the following equation:

R̂t(0) = Rt(0) +

6

∑
i=1

[Rt(i)− Rt(0)](Y ∗ fC)(i)

6

∑
i=−7

(Y ∗ fC)(i)

= Rt(0) +

6

∑
i=1

[Rt(i)− Rt(0)]
Y(i)
Rt(i)

6

∑
i=−7

Y(i)
Rt(i)

, (13)
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where we used the basic Equation (1), and where Rt(t) ≡ Rt(0) for t ≤ 0. By inserting in
Equation (13) the known values of the Rt sequence and those of Y(·) calculated from the
system Equation (12), the considered bias is obtained.
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Figure 14. Synthetic epidemic data of the second type (see Section 3.2). In panel (a), we show the Rt

sequence along time. The value of the slope α of the linear growing phase is 0.2 (days−1). In panel
(b), we show the corresponding incidence data recursively obtained from Equation (12).

The corresponding bias for the proposed method is instead derived as follows:

Biasproposed =
Ỹ(0)

(Ỹ ∗ fC)(0)
− Rt(0), (14)

where the sequence Ỹ(·) is obtained by applying the Nadaraya–Watson estimator (7) to
the sequence Y(·), calculated from the system Equation (12). In Figure 15, we plotted the
bias as a function of the slope α for both the standard and the proposed methods at day 21
(t = 0). For the proposed method, we used three different (fixed) values of the bandwidth
γ appearing in (7). The highest value of γ was close to the one (2.7) estimated from the
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real SARS-CoV-2 first symptoms Italian data. By looking at the figure, we notice that all
the bias curves increase with α. The curve of the bias from the standard approach is above
all the curves from the proposed method. Furthermore, by increasing the value of the
fixed bandwidth γ, the curve of the proposed method gets closer to that of the standard
approach.
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Figure 15. Bias of the Rt estimated from the synthetic epidemic data, illustrated in Figure 14. The bias
is plotted against the slope α. The dashed line corresponds to the estimate from the standard method.
The other lines correspond to the proposed method, with three fixed values for the bandwidth γ

in Equations (7), as indicated in the legend. The last value chosen is close to the one (2.7) found by
the proposed method for the real SARS-CoV-2 Italian data from 21 September to 20 November 2020,
illustrated in Figure 1.

4. Discussion and Conclusions

In this paper, we dealt with estimating the reproduction number Rt during an epi-
demic. We first analysed, both theoretically and empirically, the relationship between the
Rt estimated from the first symptoms and the positive test data. Second, we modified
the standard method by [12], which is widely used to estimate Rt in several countries
worldwide, including Italy: we did not rely on the hypothesis of the local constancy of Rt.
To perform both tasks, we also developed a specific method to reduce errors in both the
first symptoms and the positive test data.

We have proved, both theoretically and empirically, that the Rt curve estimated from
the positive test sequence is equal to the curve estimated from the first symptoms after
shifting the last one forward by a temporal quantity δ. After a certain time, the value of δ
may change, depending on some specific factors. For example, the average time between
the first symptoms and a positive test may change under some conditions, e.g., the season.
In addition, δ may change with the spatial location. In any case, the value of δ is a-priori
unknown, and it must be estimated. Several approaches can be used. One could use a
combined set of first symptoms and positive test data. After estimating Rt from each of
the two kinds of data, δ can be found by minimizing the discrepancy of the two Rt curves
(after shifting). Alternatively, one could rely on the meaning of this shift, interpreting it as
the time delay ∆t between the occurrence of the first symptoms and the positive results
of the test. More precisely, from a dataset of patients where this delay is known for each
individual, δ can be estimated as the median value of ∆t. For example, in the case of
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the SARS-CoV-2 data for the Veneto region (Italy) during the first epidemic wave, the
median value of the temporal delay is 6 days [30]. This value is equal to the one obtained
by applying the first approach to the first real dataset used. We point out that instead of
aiming at replacing the first symptoms data with the positive test data, one could use both
of them to get two estimates of Rt, which would likely enhance the reliability of the results.
In addition, estimating Rt from positive test data has the advantage of being based on a far
larger sample.

We notice that by the standard method, we cannot estimate Rt closer than 6 days from
the last measurement. This is also true when using positive test data. However, as we
have seen, the estimated Rt at any day is equal to the Rt from the first symptoms process
corresponding to δ days before it. For the value of δ estimated here (6 days), it follows
that the last day in which we can estimate Rt is 12 days before the last measurement. On
the other hand, we notice that Rt estimates based on first symptoms data are reliable until
16 days before the last measurement. In fact, these data are stable only approximately
10 days before the last measurement. Therefore, by using positive test data, we also gain
4 days, which increase to 6 for the second real dataset, as in this case δ is 4 days.

Regarding the new methodology for estimating Rt, the results obtained show that it
outperforms the standard approach. In fact, in the regions with a high Rt slope, the estimate
from the latter approach has a lower slope as compared to the proposed one, while in the
remaining part, there is good agreement. This is a real effect, as the pattern appears for
both real and “realistic” synthetic first symptoms data. From the ramp synthetic data, we
have seen that the bias increases with the slope α of the ramp. However, for the standard
estimator, the bias is always larger than that of our method, and its rate of increase with α
is greater for the standard method.

In the standard approach, the estimator is the mean of the posterior distribution (in
most cases and in practice, the likelihood of the data), and one simultaneously imposes
that Rt is constant within two weeks. As usual, in this situation, the price for the induced
regularity of the Rt curve is a reduction of its slope in the region where it is large. Instead,
in our method, we reduce the influence of the errors on the data by first smoothing them.
Then, the estimate of Rt is obtained by independently maximizing the posterior probability
at each time. The estimates obtained are not affected by the problem above. This is true for
both the first symptoms and the positive test data. It would be interesting to investigate if
this happens in general or under certain conditions.

By applying our simple methodologies, either the standard method applied in Italy to
compute Rt for SARS-CoV-2 based on the first symptoms sequence is improved, or a valid
alternative (or additional) approach is provided to the one using the first symptoms data
when applying the standard method to positive test data. We notice that we also developed
more advanced methods, e.g., the Bayesian approach with an a priori probability model
on the temporal continuity of Rt, obtaining very similar results. However, the former
approach is more difficult to understand, and its implementation is more complicated as
it involves Markov Chain Monte Carlo simulation to perform statistical inference, which
is also time-consuming. In addition, there is the problem of hyper-parameter estimation.
We were able to cope with all these issues, but we wonder—why should one use a more
complicated approach to get similar results to those derived from a far simpler one?

As a conclusion, the results illustrated in this paper suggest that the reproduction
number Rt during an epidemic can also be estimated by applying the standard estimator to
positive test data, with some advantages. In addition, the new estimator we proposed for Rt
outperforms the standard one. We hope that the extensive application of these procedures
to real situations, including the current SARS-CoV-2 pandemic, will become a common
practice that could help in the study and control of epidemics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10111788/s1.
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