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Abstract 19 

We investigated the temporal variation of the spectral decay parameter κ before and after two 20 

main earthquakes that occurred in the central Italy region, namely the Amatrice (Mw 6.0) of 21 

August 24, 2016, and the Norcia (Mw 6.5) of October 30, 2016, earthquakes. For this analysis we 22 

used seismograms from the Central Italy dense seismic array stations, and earthquakes located at 23 

hypocenter distances r < 80 km, having magnitudes Mw 3.4-6.5. The data set consists of 393 24 

events recorded at 92 stations. We estimated for both earthquake sequences average functions �̃�(𝑟) 25 

that describe the distance dependence of κ along the S-wave source-station paths using acceleration 26 

spectra from foreshocks, main shock, and aftershocks. We observed that there was a regional 27 

attenuation drop within approximately two months after the Amatrice earthquake. Then, �̃�(𝑟) tends 28 

to return towards the attenuation values observed before the occurrence of the main event, namely 29 

to the values of �̃�(𝑟) obtained from the foreshocks, when the earthquake cycle is probably 30 

completed. We also estimated the near-source kappa (𝜅𝑠) using aftershocks from August 24, 2016, 31 

to September 3, 2016. The results show that near the epicenter of the Amatrice earthquake the 32 

values of 𝜅𝑠 are lower than those from aftershocks located to the north, suggesting that the tectonic 33 

stress was probably high near the rupture zone and that there may be a likely fluid-flow of crustal 34 

fluids. �̃�(𝑟) obtained from the foreshocks of the Norcia earthquake is like that calculated with the 35 

records of the Amatrice aftershocks. Then, �̃�(𝑟) drops to lower attenuation values during the 36 

Norcia main event and tends to increase again during the aftershocks. From the analysis of these 37 

two earthquake sequences, that occurred in a short time interval in central Italy, we conclude that 38 

the temporal variation of �̃�(𝑟) could be a valuable indicator to monitor the earthquake cycle.  39 

 40 

  41 
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Key points: 42 

1. Temporal variation of the decay parameter κ before and after the 2016 earthquakes in 43 

central Italy  44 

2. The variation of the average �̃�(𝑟) along the path can be related to fluid flow in the 45 

seismogenic zone 46 

3. The temporal variation of �̃�(𝑟) may be a good indicator to monitor the earthquake cycle  47 

  48 
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Introduction 49 

Several geophysical investigations have shown that the temporal and spatial distribution of 50 

aftershocks seem to correlate with physical mechanisms that are time-dependent, such as state 51 

friction (Dieterich, 1972), after slip (Burgmann et al., 2002), poroelastic rebound (Jónsson et al., 52 

2003) and static stress drop estimates (Kemma et al., 2021). Recent studies have suggested that 53 

changes in pore pressure can induce crustal stresses a few months after a strong earthquake 54 

(Albano et al., 2019; Convertito et al., 2020). These changes in pore pressure can explain the 55 

spatial and temporal distributions of aftershocks (Nur and Booker, 1972; Bosl and Nur, 2002; 56 

Albano et al., 2017; among others). Moreover, to explain the decay of the number of aftershocks 57 

with time, usually observed during earthquake sequences, Nur and Booker (1972) proposed that 58 

the presence of a viscous element is necessary, and they show that the flow of pore fluid provides 59 

this viscous component. Because the presence of fluids in the crust can increase S-wave 60 

attenuation, a spatial and temporal variability of the spectral decay parameter kappa (κ) is expected. 61 

Q-tomography studies in the central Italy region (Chiarabba et al., 2009; Amoroso et al., 2017) 62 

show attenuation and velocity heterogeneities that may be related to fluid-pressure migration in 63 

the fault system of this region. Previous studies of seismic attenuation (Castro et al., 2000) in the 64 

Umbria-Marche region of central Italy show significant variability of the parameter κ that could 65 

be related also to the presence of fluids in the crust. 66 

In this paper, we study the temporal variation of the spectral decay parameter κ in central Italy 67 

using earthquakes from the Amatrice-Norcia 2016 seismic sequence. The Amatrice (Mw 6.0) 68 

earthquake (420 42’N, 130 13.8’E) occurred on 24 August 2016 and caused severe damage and 69 

casualties in the village of Amatrice (Chiaraluce et al., 2017; Fiorentino et al., 2018). Many 70 

aftershocks were reported to occur for several days which gradually migrated to the north from the 71 
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epicentral area of the initial rupture, suggesting that a diffusive transit process was taking place, 72 

perhaps related to the flow of pore fluids (Tung and Masterlark, 2018; Albano et al., 2019). After 73 

the Amatrice main shock, it is likely that the flow of fluids reduced the stability of the fault system 74 

and triggered the sequence (Gabrielli et al., 2022), including the Mw 5.9 earthquake of October 75 

26, 2016, that occurred near the village of Visso (420 54.6’N, 130 7.8’E), and on 30 October a 76 

larger event (Mw 6.5) that occurred on the town of Norcia (420 49.8’N, 130 6.6’E) causing further 77 

damage. The red stars in Figure 1a are the epicentral locations of these earthquakes. 78 

There are several factors that may impact the estimates of the attenuation parameter κ, 79 

particularly to the near-surface component 𝜅0. Ktenidou et al. (2013) investigated the variability 80 

of κ in a vertical array that recorded earthquakes at a downhole and found a significant variability 81 

of 𝜅0 at the surface and at the rock sites. Perron et al. (2017) used a semiautomatic procedure to 82 

measure κ and show that the associate uncertainty of the estimates of κ depend on the bandwidth 83 

use to determine κ. They also found that site amplification has an important impact in the estimate 84 

of 𝜅0. Hollender et al. (2020) found that soil-structure interaction may cause high-frequency 85 

amplifications that can affect the estimation of κ. However, this effect can be considered part of 86 

the  𝜅0 component of κ. Parolai and Bindi (2004) show that site effects may not affect the 87 

determination of κ when the site resonances are below the frequency band used to calculate κ. 88 

We focus on this paper in the average regional source-station path contribution of κ (�̃�(𝑟) ) 89 

and minimize the uncertainties of the κ estimates by making a careful selection of the data used. 90 

Most of the records analyzed come from sites having frequency resonances outside of the 91 

frequency band used to calculate κ (f = 8-38 Hz) and the selected earthquakes (Mw>3.4) have 92 

corner frequencies considerably lower than 8 Hz. In addition, we used an inversion technique that 93 

separates source, path and site effects from the estimates of κ (e.g. Van Houtte et al., 2011) 94 
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  95 

Data 96 

We analyzed accelerograms and velocity records from the Central Italy dense seismic array 97 

stations that recorded the 2016 Amatrice (Mw 6.0), and the Norcia (Mw 6.5) earthquake 98 

sequences. The data set consists of 393 earthquakes located at hypocenter distances r < 80 km, 99 

having magnitudes 3.4< Mw< 6.5, recorded by 92 stations (Figure 1b) from the Italian National 100 

Seismic Network (RSNC), that is managed by the Istituto Nazionale di Geofisica e Vulcanologia 101 

(INGV), and the National Accelerometric Network (RAN), that is managed by the Civil Protection 102 

Department (DPC). Most stations are on class B sites (VS_30=360-800 m/s), using EC8 site 103 

classification, and the natural frequency of resonance is between 3 Hz and 6.7 Hz, outside the 104 

frequency band (8-38 Hz) used to calculate κ. The magnitude-distance distribution of the 105 

recordings is displayed in Figure 2. Most of the events have a magnitude Mw < 4.9 and have 106 

epicentral distances of less than 140 km. 107 

We selected earthquakes having records with signal-to-noise ratio (SNR) greater than three 108 

and that were recorded for more than 50 stations to assure that the earthquake locations are reliable. 109 

Moreover, the earthquakes selected (Mw > 3.4) have corner frequencies lower than the frequency 110 

band (8 – 38 Hz) used to estimate κ.  It is expected that for earthquakes with Mw > 3.4 the corner 111 

frequency (fc) is considerably lower than 8 Hz (Aki, 1987). For instance, the rupture length of an 112 

Mw=3.5 event is approximately 0.26 km (Wells and Coppersmith, 1994), and that gives an fc =4.35 113 

Hz, using Brure (1970) source model, larger earthquakes have smaller fc.  114 

The time series are generally sampled at 100 samples per second and are baseline corrected 115 

by subtracting the average of all points following the same method as Pacor et al. (2016). The S-116 
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wave spectral amplitudes were calculated with time windows selected using a distance-dependent 117 

energy criterion. A 4 s minimum length was used for close hypocenter-distance range, to be able 118 

to resolve above 1 Hz. The windows start 0.1 s before the direct S-wave arrival and end when the 119 

accumulated energy reaches 90% of the total recording for r < 25 km, 80% for 25-50 km and 70% 120 

for r > 50 km. These windows contain primarily S waves and avoid surface-wave contamination. 121 

Finally, the selected windows are tapered with a Hanning window, and the spectral amplitudes are 122 

smoothed using b=40 with the Konno and Ohmachi (1998) technique. We combine the north-123 

south (N-S) and the east-west components (𝐴(𝑓) = √𝐴(𝑓)𝑁−𝑆
2 + 𝐴(𝑓)𝐸−𝑊

2  ) to estimate κ. 124 

 125 

Method 126 

We computed κ using a similar method introduced by Anderson and Hough (1984), where 127 

the logarithm of the high-frequency S-wave spectral amplitude acceleration is least-squares fitted 128 

and κ is estimated from the slope of the linear fit which equals −𝜋𝐿𝑜𝑔(𝑒)𝜅. We estimated the 129 

median κ and the corresponding standard deviation with a semi-automatic technique that 130 

precompute the slopes over 11 frequency bands with length varying between 8 and 38 Hz (Lanzano 131 

et al., 2022). The parameter κ is calculated via the least-square fit if at least 65% of the spectral 132 

ordinates exceed a signal-to-noise ratio (SNR) threshold of three, and if the lowest frequency of 133 

the band is larger than the corner frequency of the theoretical Brune’s spectrum of the event, 134 

computed considering a typical stress drop value of 3 MPa for central Italy (Bindi et al., 2004) and 135 

VS=3.0 km/s, the average crustal velocity value based on the standard model of central Italy (De 136 

Luca et al., 2009). The median value of κ is discarded if it was pre-computed with less than six of 137 

the 11 frequency bands considered and if the associated standard deviation is larger than 0.015 s 138 
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(the observed variability of κ at a given distance). The variability of κ is estimated by selecting κ 139 

from records having the same hypocenter distance and calculating the standard deviation. 140 

The resulting values of κ were modeled following Anderson (1991), Ktenidou et al. (2014) 141 

and Castro et al. (2022) as: 142 

𝜅(𝜅𝑠, 𝑟, 𝜅0) = 𝜅𝑠 + �̃�(𝑟) + 𝜅0                      ( 1 ) 143 

Where 𝜅𝑠 is the attenuation near the source, �̃�(𝑟) is the average attenuation along the S-wave 144 

source-station distance r and 𝜅0 is the attenuation near the site. A similar inversion scheme was 145 

previously introduced by Van Houtte et al. (2011) to separate source, site and path contributions 146 

to κ. 147 

We determined first �̃�(𝑟)  with the nonparametric technique proposed by Anderson (1991), 148 

which defines a function that describes the variation of κ with distance without assuming an a 149 

priori functional form. For that purpose, eq. (1) can be rewritten as (Castro et al., 2022): 150 

𝜅(𝑟) = 𝜅1 + �̃�(𝑟)                                                   ( 2 ) 151 

Where 𝜅1 includes both the attenuation near the source and near the site. To solve eq. (2) it is 152 

assumed that �̃�(𝑟) is a smooth function of r, that κ varies slowly with distance, that �̃�(0) = 0,  and 153 

that the shape remains the same for all the earthquakes and that undulations in the observed κ are 154 

related to 𝜅1. The function �̃�(𝑟) is shifted downward or upward, depending on the value of 𝜅1. 155 

This empirical model provides curves that are unbiased by a priori assumptions about the nature 156 

of the distance dependence of �̃�(𝑟) (e.g., Anderson, 1991).  157 

We estimate 𝜅1 in a second iteration by correcting the observed values of κ with the function �̃�(𝑟) 158 

obtained solving eq. (2). Then, we solved the following system of equations as in Castro et al. 159 

(2022): 160 
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𝜅1𝑖𝑗 = 𝜅0𝑖 + 𝜅𝑠𝑗                                                                  ( 3 ) 161 

Where 𝜅1𝑖𝑗 is the corrected value, by the average path attenuation (�̃�(𝑟)), of the observed κ from 162 

site i and source j; 𝜅0𝑖 is the near-site attenuation parameter at station I; and 𝜅𝑠𝑗 is the near-source 163 

attenuation from earthquake j. To resolve the degree of freedom between 𝜅0𝑖 and 𝜅𝑠𝑗, we 164 

constrained eq. (3) to satisfy the condition: 165 

∑ 𝜅0𝑖 = 0𝑁
𝑖=1                                                                          ( 4 ) 166 

where N is the number of reference sites used for that constraint. Note that this constraint is 167 

irrelevant for the analysis of  �̃�(𝑟), which is our primary interest. The values of 𝜅0𝑖 of the reference 168 

sites vary between 0.0049 and 0.0183. 169 

 170 

Results and Discussion 171 

The Amatrice (Mw 6.0) of 24 August 2016 and the Visso (Mw 5.9) of 26 October 172 

Earthquakes 173 

        Figure 3 (left) shows the average attenuation along the S-wave path �̃�(𝑟) obtained using 174 

estimates of κ from stations that recorded the Amatrice main event (solid line). These values of κ 175 

are like those obtained by Castro et al. (2000) using earthquakes from the Umbria-Marche, central 176 

Italy region, namely, 0.026 to 0.057 s between 20 and 83 km. These values of κ are also consistent 177 

with the mean value of 0.005 s obtained by Bindi et al. (2004) in the same region. We also 178 

computed  �̃�(𝑟) using records from one foreshock recorded on January 18, 2016, about seven 179 

months before the main event (asterisks), and from aftershocks that occurred for 15 days (circles), 180 

30 days (triangles), 2 months (diamonds) and 3 months (crosses) after the main earthquake. The 181 
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estimates of �̃�(𝑟) using aftershocks from 15-30 days and 3 months, as well as those from the Norcia 182 

aftershocks are within the error bars of the corresponding estimates. For the Visso sequence, the error bars 183 

overlap between foreshocks and aftershocks (Figure 3).       184 

Based on these results, it seems that the attenuation in the epicentral area remain approximately 185 

unchanged (3 % increased) for at least seven months before the main earthquake. During the 186 

Amatrice sequence Gabrielli et al. (2022) observed high scattering, which is consistent with the 187 

high values of  �̃�(𝑟) showing in Figure 3 (left) before and during the main shock.  An increase in 188 

attenuation is expected during main earthquakes due to rock damage, generated by the fault 189 

rupture, that increases rock permeability (Ben-Zion and Ampuero, 2009; Kelly et al., 2013; Castro 190 

and Ben_Zion, 2013; Malagnini and Parsons, 2020) allowing fluid flow. When rocks are water 191 

saturated the friction coefficient decreases facilitating sliding and thus decreasing the quality factor 192 

Q of the S waves significantly and increasing at the same time the overall attenuation (Johnston et 193 

al., 1979). Then, �̃�(𝑟) gradually decreased by 39 % after the first 30 days of the main earthquake 194 

and then the attenuation dropped considerably (85 %) after two months. It is possible that after the 195 

main event fluids flowed outside of the epicentral area and the stress drop produced by the main 196 

shock reduced the permeability of the rocks with a consequent reduction of attenuation. Malagnini 197 

et al. (2022) observed a notable decrease of 𝑄𝑆
−1(𝑓, 𝑡) after normal faulting earthquakes of central 198 

Italy. After this period, �̃�(𝑟) start increasing for the next month, probably due to fluids 199 

redistribution. Two months after the Amatrice main event the aftershocks migrated 20 km north 200 

(Chiaraluce et al., 2017; Tung and Masterlak, 2018) and triggered the Visso (M5.9) mainshock. 201 

Figure 3 (right) shows that �̃�(𝑟) had approximately the same attenuation level before the Visso 202 

main event as the three-month aftershocks of the Amatrice earthquake, and �̃�(𝑟) also decreased 203 

during the Visso aftershocks as shown on the right of Figure 3 (circles).  204 
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A possible explanation of the temporal variation of �̃�(𝑟) can be related to stress variations and 205 

changes in the elastic properties of the medium, as part of a post-event phase. These changes of 206 

�̃�(𝑟) could be also related to the migration of pressurized fluids in the epicentral area (e.g., Lucente 207 

et al., 2010). Several authors (Miller et al., 2004; Chiodini et al., 2004; Di Luccio et al., 2010; 208 

Malagnini et al., 2012) have proposed that CO2-rich fluids and gas releases modulate the seismicity 209 

in the Central Italy region. Changes in permeability of the rocks during seismic sequences can 210 

produce attenuation variations and create fluid-flow pathways that can contribute to the triggering 211 

of mainshock sequences (Malagnini et al., 2022).  212 

We also computed the near-source kappa (𝜅𝑠) using aftershocks from August 24, 2016, to 213 

September 3, 2016, and the two-step inversion described above. These events are well azimuthally 214 

recorded to assure that the estimates of 𝜅𝑠 are not affected by possible anisotropy of �̃�(𝑟).  Figure 215 

4 shows the values of 𝜅𝑠 plotted chronologically. The errors of the 𝜅𝑠 estimates range between 216 

0.0005 and 0.0024, less than 13% of the estimated values of 𝜅𝑠.    217 

The spatial variability of 𝜅𝑠 after the Amatrice earthquake, is shown in Figure 5, where the 218 

blue star represents the epicenter of the main event and the circles the location of the aftershocks. 219 

Near the epicenter of the main event the values of 𝜅𝑠 are lower than those from aftershocks located 220 

north from the main event. This suggests that the tectonic stress was probably high near the rupture 221 

zone. Experimental data shows that attenuation decreases with increasing pressure (Johnston et 222 

al., 1979). Figure 6 (left) shows that 𝜅𝑠 tends to increase when the focal depth of the aftershocks 223 

decreases, probably because crustal permeability decreases with depth, favoring the presence of 224 

fluid-saturated rocks in the upper crust (Tung and Masterlark, 2018). The errors of the focal depth 225 

(H) vary between 0.2 and 0.7 km, less than 10% of H. The line is the best-fitting linear regression, 226 

which has a negative correlation coefficient of -0.38, indicating a weak correlation between 𝜅𝑠 and 227 
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H. Figure 6 (right) displays the distribution of 𝜅𝑠 with earthquake magnitude and shows that 228 

earthquakes in the magnitude range of 3.5 to 4.0 have wide variability of attenuation near the 229 

source. However, for larger magnitude (Mw>4) events 𝜅𝑠 seems to increase from 0.0046 for 230 

Mw=4.0 to 0.0147 for Mw=6.3, although the apparent increasing trend is not clear. It is possible 231 

that larger magnitude events may generate a bigger rock-damage area increasing the rock 232 

permeability and facilitating the presence of fluids. 233 

The Norcia Earthquake (Mw 6.5) of 30 October 2016 234 

For this earthquake sequence, we analyzed foreshocks that occurred from October 8, 2016, to 235 

October 29, 2016, one day before the main event, and aftershocks that occurred from October 30, 236 

at 06:40 hrs., eight minutes after the main event, to November 16, 2016. 237 

Figure 7 shows the resulting �̃�(𝑟) functions obtained from the foreshocks (continuous line), the 238 

main event (triangles) and the aftershocks (stars). The error bars of the estimates of �̃�(𝑟) vary 239 

between 0.00096 and 0.00397 s. The values of  �̃�(𝑟) from the foreshocks is within the values of the 240 

�̃�(𝑟) functions obtained from the Amatrice aftershocks (filled squares in Figure 3 left), suggesting 241 

that the state of stress and the elastic properties of the media tend to return to the prevailing 242 

conditions after the Amatrice earthquake. The Norcia main event generated a significant 243 

attenuation drop, possibly related with an increase in tectonic stress and migration of fluids outside 244 

of the epicentral zone. Gabrielli et al. (2022) observed low scattering during the Norcia sequence 245 

which traduces into low attenuation and low �̃�(𝑟). The values of �̃�(𝑟) from the aftershocks show 246 

that the attenuation increased probably during the recuperation phase of the elastic properties of 247 

the media after the main event and after completing the earthquake cycle.   248 

 249 
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Conclusions 250 

 From the analysis of two earthquake sequences, that occurred in a short time interval in 251 

central Italy, we estimated average functions �̃�(𝑟) that describe the distance dependence of the 252 

spectral decay parameter κ along the S-wave source-station paths. We observed a regional drop of 253 

the attenuation parameter κ within approximately two months after the Amatrice earthquake (Mw 254 

6.0) of 24 August 2016. Then, �̃�(𝑟) tends to return towards the attenuation values observed before 255 

the occurrence of the main event, namely to the values of �̃�(𝑟) obtained from the foreshocks, when 256 

the earthquake cycle is likely completed. Because �̃�(𝑟) obtained from the foreshocks of the Norcia 257 

earthquake (Mw 6.5) of 30 October 2016 is comparable to that calculated with records from the 258 

Amatrice aftershocks, it is likely that at that point the tectonic stress returned to its original state. 259 

Then, �̃�(𝑟) drops during the Norcia main event and tends to increase again during the aftershock 260 

sequence. A possible explanation of this temporal variability of the regional �̃�(𝑟) is that during the 261 

Amatrice earthquake sequence the rock damage generated by the foreshocks increased the rock 262 

permeability permitting the crustal fluids to flow, decreasing the friction coefficient, and 263 

facilitating sliding (Figure 3 left). After the main event the fluids migrated towards the Visso 264 

epicentral area saturating the rocks, making the quality factor Q of S waves significantly lower and 265 

increasing the attenuation (Figure 3 right). In the meantime, the tectonic stress was transferred to 266 

the Norcia region generating the foreshocks and eventually the main event. The Norcia mainshock 267 

increased the fracturing and allowed crustal fluids to flow facilitating the triggering of the 268 

aftershocks and increasing the attenuation (Figure 7).  269 

The near source 𝜅𝑠 is low near the epicenter of the Amatrice earthquake, increasing towards 270 

the north and south of the epicenter (Figure 5). This, together with the observed temporal variations 271 

of �̃�(𝑟) indicates that fluid flow must be an important factor controlling the rupture process. For 272 
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instance, Gabrielli et al. (2022) observed that the evolution of seismic sequences across the 273 

Apennines are consistent with the role of fluids with high CO2 content, as reported by other authors 274 

(Miller et al., 2004; Chiodini et al., 2004; Di Luccio et al., 2010; Malagnini et al., 2012).  275 

We conclude that the temporal variation of �̃�(𝑟) could be a good indicator to monitor the 276 

earthquake cycle in central Italy.  277 

 278 
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List of Figure Captions 460 

 461 

Figure 1. (a) Maps of the distribution of earthquakes analyzed with magnitudes ranging between 462 

3.4 and 6.5.  The red stars correspond to the epicenters of the Mw=6.0 Amatrice (420 42’N, 463 

130 13.8’E), the Mw=5.9 Visso (420 54.6’N, 130 7.8’E) and the Mw=6.5 Norcia (420 464 

49.8’N, 130 6.6’E) earthquakes. (b) Map with recording stations. 465 

Figure 2. Magnitude-distance distribution of the recordings of the dataset used. 466 

Figure 3. On the left is the average source-station S-wave path kappa �̃�(𝑟) calculated from the 467 

records of the Amatrice earthquake (Mw 6.0) of August 24, 2016 (solid line), from 468 

foreshock (asterisk), from 15 days of aftershocks (circles), from 30 days of aftershocks 469 

(triangles), from three months of aftershocks (crosses) and from two months of aftershocks 470 

(diamonds). The �̃�(𝑟) calculated using foreshocks of the Norcia earthquake is represented 471 

with filled squares. On the right is �̃�(𝑟) calculated from foreshocks (continuous line) and 472 

aftershocks (circles) of the Visso earthquake (Mw 5.9) of October 26, 2016.  473 

Figure 4. Kappa near the source (𝜅𝑠) computed from aftershocks that occurred during 15 days 474 

after the Amatrice earthquake (Mw 6.0) of August 24, 2016. 475 

Figure 5. Spatial distribution of near-source attenuation (𝜅𝑠) of the aftershocks occurred during 476 

the 15 days after the Amatrice earthquake (Mw 6.0) of August 24, 2016 (blue star). 477 

Figure 6. Focal depth (left) and magnitude (right) versus kappa near the source (𝜅𝑠) from the 478 

aftershocks occurred during the 15 days after the Amatrice earthquake (Mw 6.0) of August 479 

24, 2016. The continuous line on the left is the linear regression least-square fit using all 480 

data points. 481 
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Figure 7. Average source-station S-wave path kappa �̃�(𝑟) calculated from the records of the 482 

Norcia earthquake (Mw 6.5) of October 30, 2016 (triangles), from foreshocks (black 483 

continuous line), and from aftershocks (stars). 484 
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Figure 1. (a) Maps of the distribution of earthquakes analyzed with magnitudes ranging between 490 

3.4 and 6.5.  The red stars correspond to the epicenters of the Mw=6.0 Amatrice (420 42’N, 491 

130 13.8’E), the Mw=5.9 Visso (420 54.6’N, 130 7.8’E) and the Mw=6.5 Norcia (420 492 

49.8’N, 130 6.6’E) earthquakes. (b) Map with recording stations. 493 
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Figure 2. Magnitude-distance distribution of the recordings of the dataset used. 496 
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 500 

Figure 3. On the left is the average source-station S-wave path kappa �̃�(𝑟) calculated from the 501 

records of the Amatrice earthquake (Mw 6.0) of August 24, 2016 (solid line), from 502 

foreshock (asterisk), from 15 days of aftershocks (circles), from 30 days of aftershocks 503 

(triangles), from three months of aftershocks (crosses) and from two months of aftershocks 504 

(diamonds). The �̃�(𝑟) calculated using foreshocks of the Norcia earthquake is represented 505 

with filled squares. On the right is �̃�(𝑟) calculated from foreshocks (continuous line) and 506 

aftershocks (circles) of the Visso earthquake (Mw 5.9) of October 26, 2016.  507 

 508 

 509 
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 510 

Figure 4. Kappa near the source (𝜅𝑠) computed from aftershocks that occurred during 15 511 

days after the Amatrice earthquake (Mw 6.0) of August 24, 2016. 512 
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 514 

 515 

Figure 5. Spatial distribution of near-source attenuation (𝜅𝑠) of the aftershocks occurred 516 

during the 15 days after the Amatrice earthquake (Mw 6.0) of August 24, 2016 (blue 517 

star). 518 

 519 

 520 

  521 



32 
 

    522 

 523 

Figure 6. Focal depth (left) and magnitude (right) versus kappa near the source (𝜅𝑠) from the 524 

aftershocks occurred during the 15 days after the Amatrice earthquake (Mw 6.0) of August 525 

24, 2016. The continuous line on the left is the linear regression least-square fit using all 526 

data points. 527 
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 529 

Figure 7. Average source-station S-wave path kappa �̃�(𝑟) calculated from the records of the 530 

Norcia earthquake (Mw 6.5) of October 30, 2016 (triangles), from foreshocks (black 531 

continuous line), and from aftershocks (stars). 532 

 533 

 534 

 535 
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