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Abstract 25 

This study develops a new spatial correlation model for Italy using the most up-to-date and densest dataset of 26 

accelerometer and velocimeter records available. The objective is to estimate the average correlation length and assess its 27 

impact on the prediction accuracy of the Italian Shakemap compared to the global model (Loth and Baker, 2013 - LB13) 28 

adopted in the default configuration of the program. We compute the spatial covariance structure using a geostatistical 29 

approach based on traditional variography applied to standardized residuals within the events of a reference ground 30 

motion model (ITA10). We observe spatial clusters of the correlation lengths and a wide variability over the Italian 31 

territory linked to the profound heterogeneity of the geological and geomorphological context.  The obtained estimates 32 

are then implemented within the LB13 co-regionalization model in place of the default values while assuming the same 33 

cross-correlation coefficients among spectral parameters. Although our results are quite consistent with previous models 34 

calibrated for Italy, we find that the inclusion of the new correlation lengths in the Shakemap predictions, assessed through 35 

a leave-one-out cross-validation technique, results in a non-appreciable improvement over the global model, thus 36 

indicating that the adopted approach is not able to resolve the regional features and the corresponding spatial correlation 37 

with reference to individual scenarios. These findings may suggest the need to move towards nonergodic models in the 38 

Shakemap computing to better capture the spatial variability or to determine different co-regionalisation matrices more 39 

suitable for the regional applications. 40 

Keywords: Spatial correlation; Ground motion models; Correlation length; Italian Shakemap; Shaking Intensy 41 

Measures 42 

 43 

1. Introduction 44 

Spatial correlation is a measure of the degree of variability of sample data in space.  Its role is crucial in seismic shaking 45 

modelling, as it is known that the residuals of IMs (i.e. the difference between observations and predictions of an empirical 46 

ground motion model - GMM) - typically the within-event terms - are more correlated for closely spaced sites, due to the 47 

similarity of the seismic wave path between source and site and the homogeneity of ground conditions (Jayaram and 48 

Baker, 2009; Park et al. 2007). By definition, such spatially-varying deviations from the average predictions are not 49 

captured by the reference GMM; hence, their identification and quantification is necessary to enhance ground motion 50 

prediction capability over space and to reconstruct the shaking pattern at unobserved sites with improved accuracy. A 51 

comprehensive review of the spatial dependency of ground motion IMs and the assessment of the uncertainty in 52 

spatial‑correlation models is provided by Schiappapietra and Douglas (2020) and Schiappapietra and Douglas (2021). 53 
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The topic is particularly relevant in many seismological applications as it has been shown to have a strong impact on the 54 

estimates of probabilistic seismic hazard assessment (PSHA) and risk analysis of spatially distributed 55 

structures/infrastructures (Wheatherill et al., 2015; Esposito and Iervolino, 2011; Sokolov and Wenzell, 2011; Crowley 56 

et al., 2008, Park et al. 2007), as well as for emergency planning purposes and post-earthquake response, such as for the 57 

Shakemap tool (Verros et al., 2017).  58 

The latter is an open-source software, developed by the USGS - United States Geological Survey (Worden et al., 2018) 59 

that produces near-real-time maps of shaking intensity after the occurrence of significant earthquake events. It is widely 60 

used at the global level by different stakeholders including government agencies, earthquake monitoring centers, as well 61 

as public and private users. Also in Italy, the ShakeMaps are produced routinely by Istituto Nazionale di Geofisica e 62 

Vulcanologia (INGV) for earthquakes with magnitude≥3.0 (Michelini et al., 2008; Michelini et al., 2020) as part of the 63 

products requested by the Italian Civil Protection (Dipartimento per la Protezione Civile). 64 

The strategy at the base of Shakemap software combines data from individual recording stations (i.e. the recorded 65 

observations in terms of IMs), empirical GMM predictions corrected for the between-event bias and site amplifications, 66 

with the aim to generate a composite map of shaking (Worden et al., 2020). In doing this, the algorithm reproduces the 67 

exact observation recorded at the site where the station is available. In contrast, it produces reasonable estimates at grid 68 

points where data are not available by performing a geospatial interpolation of the observations via a multivariate normal 69 

distribution technique (Verros et al., 2017; Worden et al. 2018). To achieve such an interpolation, it is necessary to 70 

introduce a variance model that could describe the spatial dependencies in the data. In the Shakemap program, the 71 

correlation function adopted is the Loth and Baker model - LB13 herein (Loth and Baker, 2013), which is one of the few 72 

well-constrained models available in the literature at the global scale. This function provides both cross-correlations 73 

among IMs at various periods and the spatial correlation for the same IM.  74 

Although the LB13 model was calibrated on a large number of strong-motion records related to 8 large global events, its 75 

estimates could be biased when applied to different tectonic and geologic contexts. It was found indeed, that the 76 

correlation level is strongly influenced by regional geology and site conditions (Schiappapietra and Douglas, 2020; 77 

Jayaram and Baker, 2009; Sokolov et al., 2010, Chen and Baker, 2019). Schiappapietra and Douglas also highlighted that 78 

the correlation models proposed over the past two decades are affected by significant discrepancies, depending also on 79 

the estimation approach of the correlation parameters (e.g. the fitting technique) and the reference GMM adopted, which 80 

may lead to underestimation or overestimation of the final spatial predictions. 81 



3 
 

In this study, we want to calibrate an ad-hoc spatial correlation model that takes into account the peculiarities of the Italian 82 

context and evaluate the differences with LB13 implemented in the default configuration of the Shakemap programme, 83 

in order to finally assess the prediction performance on the Italian ground motion. In doing so, we focus only on the 84 

spatial correlation part of the IMs, leaving the same cross-correlations between IMs calibrated by LB13.  85 

To this aim, we perform a geostatistical analysis of the within-event correlation structure computed with reference to a 86 

regional GMM calibrated at the national scale (ITA10, Bindi et al. 2011) in order to calibrate a new spatial model for 87 

Italy. Namely, we use traditional variography to characterize the spatial variance in the residuals and compute the range 88 

values (the parameter that reflects the cutoff distance between spatial dependence and spatial uncorrelation) by fitting the 89 

sample semivariogram estimators. Compared to previous models calibrated for Italy (Esposito and Iervolino, 2012; Huang 90 

and Galasso, 2019), we take advantage of the steady increase in the number of good-quality seismic records gained in the 91 

last 15 years after the occurrence of significant seismic sequences in Central and Northern Italy. A new extended Italian 92 

dataset is then used for the purpose of this work (Brunelli et al., 2022a), which benefits from the integration of a large 93 

number of velocimetric records and homogenization of the magnitude estimates that allows improved quantification of 94 

the inter-event variability, which is removed from the computation of within-event variables. 95 

 96 

2. Dataset 97 

The dataset adopted for the analysis is the most extended dataset available for Italy. It is extracted from the ITACA 98 

accelerometric database (ITalian ACcelerometric Archive, http://itaca.mi.ingv.it/ItacaNet_31/#/home) - version 3.1, 99 

which includes earthquakes of magnitude equal to or greater than 3.0 for the period 1972-2020 (more than 30,000  100 

accelerometric records) only from sensors installed at ground level and in free-field conditions. In addition, this dataset 101 

includes velocimetry records with magnitudes less than 4.0 in the less sampled areas (e.g., Northwest Italy and Western 102 

Sicily), taking care to exclude recordings affected by instrument saturation. Both accelerometric and velocimetry data are 103 

manually processed according to the standard ITACA scheme, described in Paolucci et al. (2011).  104 

Smaller events (M<4) were included in the dataset in order to extend the spatial coverage over the entire national territory, 105 

thus allowing a more homogeneous and robust sampling of the data for spatial correlation modelling. The inclusion of 106 

small events is also relevant for the application of Shakemap, since the maps in Italy are developed for events of magnitude 107 

greater than or equal to 3.0 (Michelini et al., 2020). 108 
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On this set, a selection is applied to include only events of the active crustal tectonic regime, which led to the exclusion 109 

of subduction events in the Southern Tyrrhenian Sea and volcanic events. The maximum epicentral distance for the 110 

records is 220 km, slightly higher than the validity upper threshold distance of the most common GMMs (200 km). 111 

Several accelerometers and velocimeters are co-located, and when both recordings are available, the (not-saturated) 112 

velocimeter data is preferred with respect to the accelerometer because of the better resolution of the weak motion. This 113 

initial dataset consists of more than 37,000 records and 1,800 events.  114 

After an additional data quality check, that resulted in the exclusion of poorly sampled events (i.e. poor azimuthal 115 

coverage or number of records ≤ 25) and poor quality records (i.e. records containing spikes or having low signal to noise 116 

ratio), we get a final dataset consisting of 25,775 records, 416 earthquakes, recorded by 1,657 measuring stations. Fig. 1 117 

shows the events and the stations map of the final dataset.  118 

 119 

 120 

Figure 1. Map of Italian events and stations in the calibration dataset 121 

 122 

In order to correctly interpret the results of the residual analysis discussed in the next section, we homogenize the moment 123 

magnitudes Mw of the events. In particular, the Mw calculated with the TDMT method (Time Domain Moment Tensor; 124 

Dreger, 2003), are converted into Mw estimated with the RCMT method (Regional Centroid Moment Tensor; Pondrelli, 125 

2002), because in the assumed reference GMM, the explanatory variable for magnitude scaling is the RCMT. For this 126 

purpose, we adopt a conversion law calibrated by Brunelli et al (2022b) based on 141 events, for which both the Mw 127 
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estimates from TDMT, available from the INGV web-service (http://webservices.ingv.it/), and the Mw estimate with the 128 

RCMT method, extracted from the European-Mediterranean RCMT Catalog (https://rcmt2.bo.ingv.it/), are available. This 129 

conversion ensures a reduction of the between-event variability due to inhomogeneous magnitude estimates. 130 

 131 

Fig. 2 displays the number of records per event in the dataset, which shows that in the majority of the events, more than 132 

60 waveforms are recorded. The Figure also shows the magnitude Mw-RCMT (hereinafter only Mw) vs distance 133 

distribution; the latter is represented by the Joyner-Boore distance when the fault geometry is available (for all the events 134 

with Mw>5.5), otherwise the epicentral distance is considered. 135 

The flat-file of this dataset is available online (see “Data Availability” section), and is formatted consistently with the 136 

Engineering Strong Motion (ESM) flat-file (Lanzano et al. 2018). It comprises observed ground motion parameters 137 

provided by the ITACA database including PGA and SA at 27 spectral periods that extends up to 4s. 138 

 139 

 140 

Figure 2. a) number of records per event (the largest events occurred in Italy are marked); b) magnitude-distance scatter 141 

plot according to different focal mechanisms (NF - Normal Fault; SS - Strike Slip; TF - Thrust Fault). 142 

 143 

3. Ground motion model 144 

On the above dataset, we investigate the spatial features of the Italian ground motion based on a residual analysis (Al-145 

Atik et al., 2010). In detail, we compute the total residuals 𝑅  of a given GMM, as the logarithm difference between the 146 

observed ground motion IM (log10-units), i.e. log(IM)obs and the corresponding prediction log(IM)pred obtained from the 147 

reference GMM. The reason for such an approach is that the residuals, by definition, take into account the unmodelled 148 
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effects (i.e. the unaccounted covariates in the model description) that show a spatial dependence. Therefore, through the 149 

residuals, it is possible to trace the spatial correlation structure and reconstruct the pattern of ground shaking.  150 

Here we adopt as GMM the model by Bindi et al. (2011), whose acronym is ITA10, which predicts spectral IMs, as the 151 

Peak Ground Acceleration (PGA), Peak Ground Velocity and acceleration response spectra SA (damped at 5%) in the 152 

interval 0.01-2s. It is valid for active crustal regions in the magnitude range 4.0-6.9.  153 

Despite the availability of a more updated GMM for Italy (i.e. the ITA18, Lanzano et al., 2019), we selected the ITA10 154 

as a reference model for the analyses because it is the longest implemented within the mostly used tools for hazard 155 

assessment (OpenQuake, Pagani et al., 2014) and engineering applications (the Italian Shakemap, Michelini et al, 2020). 156 

However, although the spatial correlation depends upon the adopted GMM (Schiappapietra and Douglas, 2020), we do 157 

not expect significant variations with respect to the most recent model, as the ITA10 and ITA18 produce similar 158 

predictions being calibrated on earthquake data that are the expression of the same tectonic setting and geological/crustal 159 

conditions of Italy. 160 

The ITA10 functional form is synthetically recalled in the following: 161 

 162 

𝑙𝑜𝑔 𝑌  =  𝑙𝑜𝑔 𝑌  (𝑀 , 𝑅, 𝑆, 𝑆𝑂𝐹) +  𝜂 +  𝜀          [1] 163 

 164 

where 𝑌  is the intensity measure to regress at sth site due to the eth event.  𝑌  is the median prediction of the model 165 

expressed as a function of several explanatory variables (i.e. the moment magnitude 𝑀 , the source to site distance R 166 

equal to the Joyner–Boore distance or the epicentral distance when the fault geometry is unknown, the site S and the style 167 

of faulting SOF).  168 

In Eq. [1], the median prediction  𝑌  for ITA10 is schematically expressed as follows: 169 

 170 

𝑙𝑜𝑔  𝑌 =  𝑎 +  𝐹 (𝑅, 𝑀 ) + 𝐹 (𝑀 ) + 𝐹   +  𝐹    [2] 171 

  172 

where 𝑎 is a constant term, 𝐹 (𝑅, 𝑀 )  is a distance function including a term linearly decreasing with distance (anelastic 173 

attenuation), 𝐹 (𝑀 ) is a bi-linear magnitude scaling, 𝐹    the site amplification linearly depending on dummy variables 174 

used to denote the five different Eurocode 8 (CEN 2004) site classes, and 𝐹  the style of faulting correction  that is 175 

modeled with dummy variables to denote the different fault classes. For more details on the model, the reader can refer 176 

to Bindi et al. (2011). 177 
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The total residuals  𝑅 =  𝜂 +  𝜀  are random-effects of the regression (Stafford, 2014; Bates, 2015) according to the 178 

approach and notation of Al-Atik et al. (2010). Namely,  𝜂  ~ ℕ(0, 𝜏 ) are zero-mean (Gaussian) normally distributed 179 

between-event residuals with standard deviation 𝜏 . They represent the systematic deviation observed between prediction 180 

and observation for a specific event e, i.e. the mean of the residuals for a specific event. Several authors have shown that 181 

𝜂   are correlated with some source characteristics not captured by the standard magnitude scaling in GMMs (e.g. stress 182 

drop or focal depth, see Bindi et al., 2017). More in general, it depends on the geometric variations in the faulting 183 

properties or the dynamic rupture process, which are common to different sites (Jayaram and Baker, 2007); thus it is 184 

usually not included in spatial correlation modeling.  185 

The terms 𝜀 ~ ℕ(0, 𝜙 ) are zero-mean (Gaussian) within-event residuals with standard deviation 𝜙 , describing the 186 

average misfit of ground-motion at the site with respect to the event-corrected median value predicted by the GMM. They 187 

include regional propagation features or effects that are not captured by the general model, such as slip patches of the 188 

rupture and directivity effects (Colavitti et al. 2022), in addition to missing covariates depending on the surface geology, 189 

which are not fully explained by the site proxy introduced in the functional form (i.e. the EC8 site class for ITA10). 190 

Depending on site effects, the within-event component reflects spatial variability of ground-motion from one site to 191 

another and thus it is generally used to model the spatial correlation.  192 

In the following, we consider the residuals 𝜀  which are dimensionless data points normalised to their standard deviation: 193 

𝜀 =        [3] 194 

𝜀  follow a multivariate Gaussian distribution with unitary standard deviation 𝜙 = 1; they are completely defined by the 195 

mean and covariance function, which reflects the correlation of within-event residuals (Schiappapietra and Douglas, 196 

2020).  197 

 We visually inspect the spatial distributions of 𝜀  to identify potential patterns over the Italian domain. Some examples 198 

are reported in Fig. 3 where the bubble plots of the normalized residuals exhibit some spatial trend.  199 

 200 
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a) b) 

 

c) d) 

Figure 3. Bubble plot of the normalised residuals at PGA for example events in the dataset: a) 2012.05.29 in Northern 201 

Italy (ESM code: IT-2012-0011); b) 2016.10.30 in Central Italy (ESM code: EMSC-20161030_0000029); c) 2018.08.16 202 

in Southern Italy (ESM code: EMSC-20180816_0000090); 2020.12.22 in Sicily (ESM code: EMSC-203 

20201222_0000154). Colors are coded according to the sign of the residuals: positive values are red-colored whereas 204 

negative values are blue-colored. 205 
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4. Method 206 

To estimate correlation, the data 𝜀  are considered spatially-varying random variables representing local fluctuations of 207 

each event with respect to a baseline averaging ground motion effects over space. On these residuals, the hypothesis of 208 

second-order stationarity and isotropy is usually made due to the lack of repeated ground motion observations from the 209 

same event at a given site (Schiappapietra and Douglas, 2021); under these hypothesis we assume that the mean function 210 

of the random variable 𝜀  is constant for all sites and the correlation depends only on the separation distance (h) between 211 

two sites i and j and not on their absolute location (i.e. [𝜌(𝜀𝒆𝒔, , 𝜀𝒆𝒔, ) = 𝜌(h)]. 212 

Hence, we can get the correlation structure in a simplified manner, that is by calculating experimental semivariograms 213 

𝛾(ℎ) on 𝜀  to measure the average dissimilarity between spatially distributed data, as done by many authors e.g. Jayaram 214 

and Baker, (2009); Oliver and Webster (2014); Schiappapietra and Douglas (2020). To do this, we use the classic 215 

estimator based on the method of moments (Matheron 1962), as follows: 216 

 217 

𝛾(ℎ) =  𝐸 𝜀𝒆𝒔, −  𝜀𝒆𝒔,           [4] 218 

 219 

where the mathematical operator 𝐸[ ] denotes the expected value. The empirical estimation of 𝛾(ℎ) from the observed 220 

residuals can be done via the following equation: 221 

 222 

𝛾(ℎ) =  
( )

∑ 𝜀𝒆𝒔, −  𝜀𝒆𝒔,,           [5] 223 

 224 

being 𝐷 ,  the inter-site distance between site i and site j which is assumed equal to h within a given tolerance ( 𝐷 , − ℎ ≤225 

𝛥ℎ), where the tolerance 𝛥ℎ is the bin distance, whereas 𝑁(ℎ) is the number of observed station pairs with separation 226 

distance h.  227 

In this work, we performed some trials to set a bin size appropriate to obtain stable semivariograms and enough populated 228 

bins, then we chose a compromise value of 12 bins with equal width of 8 km. The maximum considered distance when 229 

computing semivariograms is 100 km, which is half of the maximum distance of validity of the GMM (i.e. 200 km). In 230 

this way, a high number of site pairs is sampled on average as shown in Fig. 4.  231 

 232 
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 233 

Figure 4.  Number of data pairs as a function of site-to-site separation distance bin (8 km). Marked lines correspond to 234 

the largest Italian earthquakes in the dataset. 235 

 236 

 237 

An increasing trend versus separation distances h usually characterizes sample semivariograms up to a given 238 

correlation length after which no more spatial correlation is observed; then it stabilizes asymptotically at the level of data 239 

variance. The first analysis of the sample semivariograms of our data reveals some non-stationarities identified by unstable 240 

plateaus (i.e. increasing trend with separation distance increasing that determines overestimated correlations), which is 241 

somewhat expected, since we are looking at data from a wide geographic domain, implying the need to go beyond the 242 

assumption of stationarity. Assuming non-stationarity means that there is a mean spatial trend underlying the data, due to 243 

systematic unmodelled effects typical of the ergodic ground motion models. In this case, the expected value of the random 244 

variable E[ 𝜀 ] may not be constant across all sites, but indeed varying depending on the location (Schiappapietra and 245 

Douglas, 2020).  246 

In order to manage non-stationarity and remove the observed deterministic component of spatial variability from each 247 

data point (i.e. the residuals 𝜀 ), we first try to adopt usual detrending technique based on the use of a polynomial surface 248 

fitting dependent on the geographic coordinates (Oliver and Webster, 2014; Sgobba et al., 2021) on which however, we 249 

experienced instability in the local curvature at the boundary of the surface, where the constraint to data is weaker. To 250 

overcome this drawback, we use the Inverse Distance Weighting (IDW) algorithm (Chen and Liu, 2012) to interpolate 251 

the 𝜀  residuals to create a trend surface. Assuming to have n residuals we perform n interpolations leaving one point out 252 
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each time. The residual corrected for the trend is the difference between the original 𝜀  value and the value of the trend 253 

surface at that particular point. This allows to obtain more robust results in terms of the stability of the semivariograms 254 

of the reminaing residuals (i.e. the residuals purifies of the deterministic average trend). The removed component, called 255 

drift, is plotted in Fig. 5 by stations as a function of distance and with varying spectral periods. It can be seen that there 256 

is a bias at longer distances (above 80 km about) that is more significant at short periods. This may represent an adjustment 257 

to ITA10; indeed, anelastic attenuation is not properly described by ITA10 as highlighted by previous studies (Zimmaro 258 

et al., 2018, Lanzano et al., 2019 and reference therein), resulting in a residual bias at short periods and long distances. 259 

Indeed, the effects of the anelastic attenuations become relevant for long event-station distances (Sedaghati & Pezeshk, 260 

2017).  261 

In the following, we will refer to the de-trended results (i.e. after drift removal) as the “non-stationary case” and to 262 

the estimates as-they-are (i.e. without de-trending) as the “stationary case”. 263 

 264 

 265 

Figure 5 Mean drift by station with error bar (solid lines) versus distance R colored according to different spectral periods. 266 

 267 

4.1 Univariate spatial analysis  268 

Under (second-order) stationarity and isotropy assumption, we can assume that the semivariogram and the covariance 269 

function are equivalent (Oliver and Webster, 2014). This means that we can adopt a common semivariogram fitting 270 

function to model the correlation structure. In doing this, we implement an automatic fitting algorithm due to the large 271 

number of earthquakes and the number of periods to be analysed, similar to Loth and Baker (2013). Namely, we adopt 272 
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the exponential relationship, which is the most used functional form in seismology (Schiappapietra and Smerzini, 2021) 273 

that is defined as: 274 

 275 

𝛾(ℎ) =  𝑠𝑖𝑙𝑙 1 − exp          [6] 276 

 277 

where the 𝑠𝑖𝑙𝑙 is the semi-variance of the residuals and represents the asymptotic value of  𝛾 ̂(ℎ) for ℎ → ∞, whereas the 278 

𝑟𝑎𝑛𝑔𝑒 is defined as the value of the separation distance ℎ corresponding to the 95% of 𝛾(ℎ) that represents the maximum 279 

separation distance above which two sites are spatially uncorrelated. In the present case, the 𝑠𝑖𝑙𝑙 value is equal to 1, due 280 

to previous normalization of the residuals 𝜀   and we also assume that there is no nugget effect (i.e. we consider neglecting 281 

the small-scale errors).  282 

Hence, the unique unknown parameter is the 𝑟𝑎𝑛𝑔𝑒, which is the searched correlation distance to determine for 283 

characterizing the spatial correlation structure of our data. Its estimate largely depends on the adopted fitting technique 284 

(Schiappapietra and Douglas, 2020), and specifically on the metric used to evaluate the misfit. Indeed, there is no general 285 

consensus on the most appropriate method to apply on seismological data, therefore, to achieve robust estimate of 𝑟𝑎𝑛𝑔𝑒  286 

values, we test different techniques applied to our residuals, to find the best fitting model; namely we adopt the same 287 

algorithms examined by Baker and Chen (2020): i.e. i) the Ordinary Least Squares (OLS), which minimizes the sum of 288 

squared differences between the data and the model (i.e. the error); ii) the Weighted Least Squares (WLS1) incorporating 289 

weights on the squared errors that tend to apply larger weights to small-distance values (smaller ℎ) and more populated 290 

bins (larger 𝑛(ℎ)), as follows: 291 

 292 

𝑤 =  𝑛(ℎ)𝑒            [7] 293 

 294 

being 𝑤 the weight,  𝑛 the number of separation distances, c is a factor controlling the rate of weight decreasing with h 295 

increasing (fixed to 5 km, according to Baker and Chen, 2020 and verified as appropriate after preliminary tests); iii) the 296 

Weighted Least Squares (WLS2) defined as point ii) but incorporating weights as: 297 

 298 

𝑤 =  
( )

           [8] 299 

iv) the Linear Regression transformation LR (Loth and Baker, 2013). More details on the methods can be found in Baker 300 

and Chen (2020).  301 



13 
 

A comparative plot of the mean error across all earthquakes and associated with each fitting method (i.e. the squared 302 

differences between the observed semivariogram data and the fitted function, weighted according to the specific fitting 303 

technique, as in Baker and Chen, 2020) is shown in Figure ESUPP1 in the supplementary material. These results indicate 304 

that the weighted least squares (WSL) fitting methods perform better than the alternatives, as noted by Baker and Chen 305 

(2020). In our analysis, WSL1 and WSL2 provide essentially the same performance, so we deemed it irrelevant to use 306 

either of the two weighting method, thus in the following we continue to consider the earthquake-specific semivariograms 307 

fitted with the WLS1. 308 

Fig. 6 shows some semi-variogram examples fitted with the four above techniques along with the empirical data. 309 

  

  

Figure 6. Example of empirical (non-stationary case) semivariograms and fitting functions for SA(3s): a) 2012.05.29 in 310 

Northern Italy (ESM code: IT-2012-0011); b) 2016.10.30 in Central Italy (ESM code: EMSC-20161030_0000029); c) 311 

2018.08.16 in Southern Italy (ESM code: EMSC-20180816_0000090); 2020.12.22 in Sicily (ESM code: EMSC-312 

20201222_0000154). 313 

 314 
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5. Results 315 

The average of range values calculated for each individual event are plotted against periods in Fig. 7 (the range estimates 316 

are provided in the table ESUPP2 in the supplementary material), along with the predictions by the global models of 317 

Jayaram and Baker (2009) and Heresi and Miranda (2019), as well as with Huang and Galasso (2019) and Esposito and 318 

Iervolino (2012), who calibrated spatial correlation models specifically on Italian datasets.  319 

Note that, instead of applying an arithmetic average to the range values, we opt for a weighted average in which the 320 

weight assigned is equal to the inverse of the number of records associated with each event. In this way, smaller weights 321 

are given to events that are less sampled in the dataset and for which the uncertainty in estimating the range parameter is 322 

greater, as also described by Baker and Chen (2020) and Schiappapietra and Douglas (2020) who demonstrated that the 323 

correlation estimation uncertainty is inversely correlated to the number of available stations. 324 

 325 

Figure 7. Average range provided in this study for Italy (black lines) versus periods compared with literature models.  326 

 327 

Fig. 7shows that higher values characterize the main trend in the stationary case (i.e. without removing the drift) at very 328 

short periods (T<0.2s); then, it decreases slightly up to about 2s to increase again with the period increasing. The latter 329 

trend for long-periods is common to nearly all the considered models and in line with past studies since the coherency in 330 

amplitude and phase angle between the frequency components of seismic waveforms increases with period increasing 331 

(Zerva and Zervas, 2002). The stationary case is intermediate to the models proposed by Jayaram and Baker (2009), in 332 

that we expect that there are some regions in Italy that show heterogeneous geologic site conditions (model case 1) as in 333 

Central Italy, and others that show site clustering conditions (model case 2), as in the Po Plain.  334 
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The observed trend is also consistent with the model of Huang and Galasso (2019) (hereinafter recalled as HG) and with 335 

a similar peak at T<0.2s, despite the adoption of a different method to get spatial correlation parameters (i.e. a one-stage 336 

nonlinear regression algorithm) calibrated on an ITACA dataset composed by 233 events and 7843 records (version 337 

updated to 2018) similar to that adopted in this study.   338 

The estimates differ from that of Esposito and Iervolino (2012) (hereinafter recalled as EI) even if these authors used a 339 

similar geostatistical approach and the same GMM (ITA10) considered in our study. We attribute such differences to the 340 

diversity in the calibration dataset; in fact, EI employed 763 records from 97 events in ITACA that are almost the same 341 

as used to fit the ITA10 model, thus obtaining smaller residuals that lead to less correlation. In contrast, our dataset 342 

contains a large amount of smaller events, introducing larger variability in the short-period range. This effect is removed 343 

when passing to the non-stationary model (i.e. with drift removal), which then produces estimates more similar to those 344 

by EI at short periods. The non-stationary case shows a more stable trend in the short periods and lower values over 345 

almost the entire range of periods.  346 

In general, the observed differences in the models are more marked at short periods, where the reference GMM and the 347 

dataset used to compute the residuals seem to play a crucial role in estimating of the correlation distance, as also 348 

highlighted by Schiappapietra et al. (2022). This behavior may depend on the different ability of the GMMs to capture 349 

the anelastic attenuation. Conversely, at intermediate and long periods, the models converge towards a more similar trend.  350 

Ranges patterns are plotted in Fig. 8 for individual earthquakes, showing that the variability associated with the estimates 351 

is relatively large, likely due to highly heterogeneous geological/geomorphological settings that feature the Italian 352 

territory. Here we report the results for the stationary case, as they are not affected by the drift estimation, in order to 353 

better compare them with the results of previous works. For example, the events Mw6.5 Norcia EMSC-20161030_000029 354 

and Mw6.1 Amatrice (EMSC-20160824_000006), both recorded in central Italy (CI), are characterised by relatively 355 

lower range values, in line with the studies by Schiappapietra and Smerzini (2021) and Schiappapietra et al. (2022) for 356 

the CI. Instead, the Mw6. 1 of Emilia 2012 (IT-2012-0011) is characterised by larger estimates at longer periods due to 357 

basin effects in the Po Plain, in agreement with the results of Infantino et al. (2021), Sgobba et al. (2019) and 358 

Schiappapietra et al. (2022) for Northern Italy (NI). In Southern Italy (SI), the results are highly variable, as lower range 359 

are observed, such as in western Sicily (EMSC-20200923_0000176) and Molise (EMSC-20180816_0000090), in 360 

agreement with Schiappapietra et al. (2022) for SI, while we observe larger values for events in south-eastern Sicily, 361 

which are enucleated in a carbonate foreland, e.g. Mw4.2 EMSC-20160208_0000065 (Hyblean plateau). 362 

A further observation concerns the main trend of the event-specific curves in Fig. 8, where one can note a more variable 363 

behavior at short periods and more stability for periods T>1s. In addition, the long-period part of these curves seem to be 364 
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more consistent with the expected physical trend of correlation (e.g. Emilia IT-2012-0011 shows larger ranges at long T, 365 

as expected in the Po Plain region). 366 

 367 

 368 

Figure 8. Range estimates vs periods for some specific events in the dataset dinstinct for area (NI: Northern Italy; CI: 369 

Central Italy; SI: Southern Italy). The shaded gray area indicates the total variability of the range estimates in the dataset.  370 

 371 
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                                                          372 

Figure 9. Mean range estimates (non-stationary) on the Italy map for short (left) and long periods (right). 373 

 374 

We guess that the event-specific differences observed in the range values, reflect some regional features related to the 375 

seismic propagation through the crust combined with large-scale site amplifications/deamplification and anisotropic 376 

ground motion effects near the source rupture. Hence, the latter aspects represent unmodeled effects included in the 377 

within-event residuals, whereas the amount of variability linked to the individual event and tectonic features are mainly 378 

removed with the between-event components. To explore these aspects and evaluate the spatial distribution of the 379 

correlation structure over Italy, we plot on map the range values (Fig. 9) to identify potential spatial patterns. The map 380 

shows a high variability across different regions that may indicate some physical effect underlying the observed 381 

variability, such as spatial anisotropy in the anelastic attenuation. For example, larger correlation lengths both at short 382 

and long periods are focused in the areas of the Apulian carbonate platform (the northern part) and the Eastern Sicily 383 

(Iblean plateau), marked by bigger bubbles, which are also characterized by slower attenuation properties of ground 384 

motion (Brunelli et al., 2022b). Higher correlation is also noticeable in the area of the Po Plain where resonance and 385 

amplification effects occurring at sites within and at the borders of the basin tend to produce highly correlated ground 386 

motions (Sgobba et al., 2019; Menafoglio et al., 2020).  387 

These main findings corroborate the hypothesized link between the level of correlation and attenuation/site properties, 388 

even if a univocal physical interpretation is difficult to draw and it is out of the scope of the present study. 389 

 390 
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5.1 Adaptation of the Loth and Baker (2013) model 391 

As the main aim of this study is to calibrate a spatial correlation model for Italy for application in the Italian Shakemap, 392 

we compare our results with those implemented within that tool in the default configuration, i.e. the Loth and Baker’s 393 

model (Loth and Baker, 2013 corrected after Loth and Baker, 2020, hereinafter referred to LB13).  394 

LB13 is a global spatial model valid for crustal earthquakes in active seismic regions, calibrated on 8 well-sampled 395 

earthquakes that occurred in Japan, California and Taiwan. 396 

In that study, the authors formulate a spatial cross-correlation model of spectral accelerations by which they generalize 397 

the modeling to a multivariate framework to account simultaneously for spatial and spectral correlation (i.e. the cross-398 

correlation between spectral ordinates at different periods).  399 

They make a fundamental assumption based on the stationary hypothesis, that is, the spatial covariance 𝐶 is directly 400 

related to the semivariogram function 𝛾 as follows: 401 

 402 

𝐶(ℎ) = 𝐶(0) − 𝛾(ℎ)    [9] 403 

 404 

where 𝐶[ ] is the covariance operator and 𝐶(0) = 𝜙  that is the variance of the random variable 𝑍 (in this case the residuals 405 

𝜀   have unitary variance 𝜙 = 1 due to the previous normalization of Eq. [3]). 406 

LB13 extend Eq. [8] to the multivariate case, by defining the isotropic semivariogram matrix 𝜞(ℎ) = 𝛾 (ℎ)  and the 407 

isotropic full covariance matrix 𝑪(ℎ) = 𝐶 (ℎ)  for two random variables 𝜀𝒆𝒔, (𝑇 )  and 𝜀𝒆𝒔, (𝑇 ) (e.g. the normalized 408 

residuals of the spectral ordinates at two periods respectively T1 and T2 and at spatially separated locations 𝑖 and 𝑗 distant 409 

ℎ), so that the relation [9] is generalized as follows: 410 

 411 

𝑪(ℎ) = 𝑪(0) − 𝜞(ℎ)     [10] 412 

 413 

To solve Eq. [10] for the multivariate case, however, the matrix 𝑪(ℎ) must be positive definite as in the univariate case 414 

(i.e. the variances of the variables 𝜀  defined at a certain number of sites and periods, must be non-negative). However, 415 

using the approach before described and thus fitting each empirical semivariogram independently takes no such constraint 416 

into account when estimating the range, therefore not necessarily leading to a positive definite covariance matrix.  417 

To overcome this drawback, LB13 invoke the so-called “separation model” (Banerjee et al., 2004) so that the covariance 418 

matrix of Eq. [10] can be rewritten by Eq. [11]: 419 

 420 
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𝑪(ℎ) = 𝜌(ℎ) ⋅  𝑪(0)       [11] 421 

 422 

where 𝜌(ℎ) is a scalar function named correlation coefficient, which is related to the semivariogram by: 423 

 424 

𝜌(ℎ) = 1 −
( )

 = exp       [12]. 425 

 426 

Using this approach, the problem of solving the full covariance matrix positive definite reduces to the need to have a 427 

positive definite covariance matrix at the single site 𝐶(0), being the latter defined only for the number of considered 428 

periods and not also for the number of sites. 429 

Yet, it is not possible to fit a single range of Eq. [12] to be adopted in Eq. [11] for the whole model as it does not reflect 430 

the real correlation features in the data at different scales. LB13 solves this problem with a linear model of co-431 

regionalization that is equivalent to model each variogram and cross-variogram. A complete mathematical description is 432 

provided in Loth and Baker (2013); here, we limit to point out that they make an extension of the separable model to 433 

incorporate multiple range, which is called linear model of co-regionalization: 434 

 435 

𝜞(ℎ) = ∑ 𝐵 𝛾 (ℎ)     [13] 436 

 437 

The latter assumes that the semivariogram matrix of all the random variables is a linear combination of some basic 438 

semivariogram functions 𝛾 (ℎ) chosen a-priori to represent the spatial structure at different scales, 𝐵  are the 439 

coregionalization matrices and 𝐿 is the number of the independent underlying structural components. This number is 440 

equal to 3 in LB13, in order to minimize the number of structures and simplify both calculation and interpretation (Loth 441 

and Baker, 2013), so that the identified correlation functions 𝛾 (ℎ) are: i) a short range acting on small-periods, ii) a large 442 

range acting on long-periods and a iii) nugget effect for very short-periods, which is assumed constant. 443 

As a result, combining Eq. [12] and [13], LB13 model is simplified as follows: 444 

 445 

𝜞(ℎ) = 𝐵 1 − exp  + 𝐵 1 − exp  +  𝐵     [14] 446 

 447 

In Eq. [14], it can be noted that the identified range values of the exponential model 𝑟1 and 𝑟2 are equal to 20 km and 70 448 

km, respectively for the short- and long- period. These two values proved to be adequate in describing the spatial 449 

correlation structure of observed ground motion in LB13; however, since spatial correlation is also region-dependent 450 
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(Schiappapietra and Douglas, 2020); here, we propose different correlation lengths for the Italian context. Hence, we only 451 

modify the range values while maintaining the same co-regionalization matrices 𝐵 , 𝐵  and 𝐵  of Eq. [13], as we assume 452 

that the spatial and spectral parts of the cross-correlation matrix are independent of each other because of the separation 453 

model (Eq. [11]). 454 

The candidate range for Italy are r1=13 km and r2=25 km, chosen as short-range and long-range values and respectively 455 

implemented in the two exponential basis functions of LB13 coregionalization model (Eq. [14]). These values were 456 

preliminarily selected in light of the previous univariate analysis, considering the maximum values assumed in the 457 

weighted average trend of the range distances (non-stationary case) for short (T<1s) and long (T>=1) periods. Then, the 458 

candidate values were confirmed on the basis of the best-fit outcome of the direct and cross-semivariograms of the most 459 

sampled earthquakes, thus extending to the multivariate case. We do not include the nugget among the parameters of the 460 

new model, as we guarantee the fit at small separation distances provided by the LB13 co-regionalisation model. We 461 

perform the fitting on the empirical semivariograms derived from the non-stationary analysis because this approach allows 462 

us to remove the deterministic component (i.e. the drift) and is therefore best suited to provide a better resolution of the 463 

multiscale variability of our spatial data. Indeed, the drift represents a large-scale model, while the remaining random 464 

component can be modelled as a second-order stationary process containing short- and long-range effects. 465 

In Fig. 10 we show some examples of how the LB13, modified with r1 and r2 intervals for Italy, fit the empirical 466 

semivariograms in comparison with the original LB13. The events considered are among the best sampled ones in 467 

different regions of Italy and previously shown with reference to the univariate analysis, i.e. i) event 2012.05.29 in 468 

Northern Italy (IT-2012-0011) with 166 records; ii) event 2016.10.30 in Central Italy (EMSC-20161030_0000029) with 469 

179 records; iii) event 2018.08.16 in Southern Italy (EMSC-20180816_0000090) with 128 records and iv) event 470 

2020.12.22 in Sicily (EMSC-20201222_0000154) with 60 records. The curves provide a good fit on both direct and cross-471 

semivariograms, from which we can infer the adequacy of the adopted functional form and range distances. 472 

As already mentioned, in this study we intend to modify the LB13 model only for the correlation distance while adopting 473 

the same coregionalisation matrices calibrated by LB13. Indeed, we assume the separability of the covariance function, 474 

as already done by other authors, such as LB13 and Goda and Hong (2008), according to whom spatial and spectral 475 

structures can be modelled separately.  476 

To get an idea of the adequacy of the coregionalization matrices to our data, we evaluate the median predictions of LB13 477 

at zero-distance (i.e., the cross-correlation matrix obtained from Eq. [14] for h = 0) in order to account only for the spectral 478 

part. The results for each IM are shown in Fig. 11, where the semi-variogram residuals (i.e., the difference between the 479 
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empirical data and the prediction of LB13 at zero distance) are compared. The correspondence is acceptable, especially 480 

for longer periods, so we ignore the spectral part in our analysis. 481 

 482 

a) 483 
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 484 

b) 485 

 486 

c) 487 
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 488 

d) 489 

Figure 10.  Sample (circles) and modeled (curves) semi-variograms of earthquakes: a) 2012.05.29 in Northern Italy (ESM 490 

code: IT-2012-0011); b) 2016.10.30 in Central Italy (ESM code: EMSC-20161030_0000029); c) 2018.08.16 in Southern 491 

Italy (ESM code: EMSC-20180816_0000090); d) 2020.12.22 in Sicily (ESM code: EMSC-20201222_0000154). 492 

 493 

 494 

Figure 11. Boxplot of the residuals (Res) of LB13 at zero distance for different IMs. 495 
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 496 

 497 

6. Validation  498 

In this section, we quantify the effects of the new spatial correlation model within the Italian configuration of ShakeMap. 499 

As already applied to test the choice of GMM models for the current ShakeMap configuration (Michelini et al., 2020), 500 

we adopt the technique of leave-one-out cross-validation analysis (Tomczak, 1998; Hofierka et al., 2007; Worden et al., 501 

2010). The test quantifies the ShakeMap algorithm's accuracy in predicting the station's ground motion model. The 502 

strategy is applied separately for each IM under consideration (i.e., PGA, PGV, SA at 0.3s, 1.0s and 3.0s). 503 

To apply the leave-one-out analysis, we need to define a reference data set of earthquakes to be tested. Next, for each 504 

earthquake and each recording station, we apply the following procedure iteratively: i) we remove the station under 505 

consideration from the dataset; ii) with the remaining stations, we compute the ShakeMap at the location of the station 506 

under consideration; iii) we calculate the difference in logarithmic scale between the value predicted by ShakeMap at the 507 

station and the actual value recorded for each of the 5 IMs. 508 

For the definition of the validation data set, we focused on earthquakes that fall within the shallow active crustal region 509 

(SACR), as defined by Michelini et al. (2020), for the Italian tectonic zonation. The reasons that led us to select only 510 

those events that fall within this zone are attributable to the fact that the new model of spatial correlation is calibrated 511 

using ITA10 as a reference GMM and that in SACR, the Italian implementation of ShakeMap uses ITA10. Fig. 11 512 

summarizes the main characteristics of the implemented validation data set. A total of 106 earthquakes were analyzed, 513 

with 6378 stations (see the table ESUPP3 in the supplementary material for detail) . The number of recording stations 514 

range from a maximum of 201 for the October 30, 2016, earthquake to a minimum of 2 stations for a magnitude 3.9 515 

earthquake near Frosinone in 2008. The magnitude ranges from a minimum of 3.5 to a maximum of 6.5, and the depth is 516 

included in the range 3-34 km for earthquakes from 1997 to 2018. In the analysis, we considered only stations with a 517 

distance (epicentral or Joyner–Boore distance, depending on the extended fault's availability for the earthquake under 518 

consideration) from the epicentre that was no more than 200km. For the generation of the maps, the IMs for earthquakes 519 

with M ≥ 4 have been downloaded from the ESM database while, for events with M < 4, from the INGV web services. 520 

Similarly, we obtained the finite-fault information through the web-services of the ESM and ITACA databases. We used 521 

(partly) different datasets than the one adopted in the analysis, and this choice introduced some independence between 522 

the results.  523 
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 524 

Figure 12. Map of Italian events and stations used for the validation data set. The earthquakes (star markers) are scaled 525 

with magnitude and coloured according to the hypocentral depth. The grey triangles are the stations used for the analysis. 526 

 527 

Ultimately, for each of the models shown in Table 1, we have opportunely modified the ShakeMap code that deals with 528 

calculating spatial correlation, defining the parameters r1 and r2 appropriately, and launching the leave-one-out analysis 529 

on the 106 earthquakes. Fig. 12 shows the results. The results are presented as differences between observed and predicted 530 

IMs through boxplot representations. The same results are resumed in Table 2. 531 

Figure 13 shows that the median value for all the IMs is close to zero for both tested models, indicating no significant 532 

systematic bias. Going more specifically, we have that the model of LB13, which is the one currently implemented in 533 

ShakeMap, is the one with a median closer to zero. In addition, Table 2 shows a mean and a slightly lower standard 534 

deviation for all IMs analyzed for LB13. Regarding the median values, SA 3.0s, contrary to the other IMs, shows results 535 

closer to 0 for the analyses proposed in this study than LB13.  536 
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 537 

Figure 13. Boxplot diagram of the differences between the base-10 logarithm of observed and ShakeMap predicted values 538 

for the entire dataset used in the analysis (106 earthquakes) per the SACR in Italy for the five different modes and the 539 

five IMs (Peak Ground Motion, PGM). The units for peak ground acceleration (PGA) and spectral acceleration (SA) are 540 

log (percent-g) and for peak ground velocity (PGV) are logcm/s. The boxplot indicates the median values and spans over 541 

the first quartile (25 percentile) and third quartile (75 percentile). 542 

 543 

Table 2. Median, 25 percentile and 75 percentile as shown in Fig. 12 for the leave-one-out analysis for the two models 544 

analysed. For completeness, the table reports the mean and the standard deviation values.  545 

 Loth & Baker (2013) 

 25 perc 50 perc 

(median) 

75 perc mean std 

PGA -0.190 -0.013 0.162 -0.015 0.273 
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PGV -0.175 -0.004 0.151 -0.012 0.249 

SA(0.3) -0.198 -0.006 0.172 -0.014 0.285 

SA(1.0) -0.197 -0.020 0.155 -0.018 0.271 

SA(3.0) -0.151 -0.012 0.146 0.002 0.236 

 This study 

 25 perc 50 perc 

(median) 

75 perc mean std 

PGA -0,221 -0,020 0,176 -0,024 0,306 

PGV -0,199 -0,013 0,155 -0,021 0,266 

SA(0.3) -0,230 -0,026 0,172 -0,031 0,309 

SA(1.0) -0,215 -0,031 0,160 -0,024 0,287 

SA(3.0) -0,146 0,003 0,171 0.020 0,261 

 546 

 547 

7. Conclusions 548 

Our outcomes show that the obtained range values for Italy are significantly different from those predicted by the LB13 549 

both at short and long periods (-35% and -64%, respectively, with reference to the non-stationary model). Still, these 550 

differences do not reflect in a clear improvement of the Shakemap prediction performance assessed via cross-validation 551 

despite the improved fitting performance on the semi-variograms of well-recorded events. This result is not obvious as 552 

we expect a model calibrated at the regional scale on a well-sampled dataset to produce significantly more constrained 553 

estimates than global-scale models, such as LB13. The possible reasons can be related to the following aspects: 554 

- at short-periods (T≤1s), the estimates of the correlation length are affected by large variability, as shown by the 555 

comparison with other Italian correlation models (EI and HG). This may reflect the variability of the calibration 556 

datasets from the median predictions of the reference GMM. As a consequence, the estimates of the range are 557 
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highly variable from one spatial model to another and are not able to capture the regional differences in ground 558 

motion properties.  559 

- at the longest period (T=3s), the five models produce less variable results and the range estimates of the Italian 560 

models show slightly better performance than the global LB13 model, in terms of median predictions. This trend 561 

may suggest that the correlation distance in the long-period is more representative of regional ground motion 562 

characteristics, as also evidenced by more consistent patterns relative to the Italian models considered, although 563 

the improvement remains negligible.  564 

Such low sensitivity of the predictive performance provided by ShakeMap to the correlation distance may also depend 565 

on the fact that the Italian data are affected by heterogeneous geologic and geophysical characteristics reflected in highly 566 

variable properties of ground shaking throughout Italy. In such a case, a national-scale model may not be sufficient to 567 

explain the spatial variability with reference to individual scenarios. On these bases, the calibration of a new spatial 568 

correlation model for Italy, as the one proposed here and related to an existing GMM, is unable to resolve regional features 569 

compared to the global correlation distances of LB13. More accurate predictions may be achieved through a spatial 570 

correlation model specifically calibrated on the residuals of an ad-hoc GMM updated to the extended dataset used here. 571 

Also, the regional differences observed in the spatial correlation parameters could be better explained by adopting regional 572 

or nonergodic GMMs (where the systematic components of variability are decomposed). The latter should lead to more 573 

accurate predictions by more effective removal of the repeatable source-, path- and site- related effects from the residuals.  574 

Further investigations are ongoing to clarify also the role of the simplified assumptions of stationarity and isotropy on our 575 

results, as well as to ascertain the presence of eventual bias in the cross-correlations among different spectral ordinates 576 

underlying the LB13 model when applied to the Italian dataset. This would imply that the spatial and spectral parts of the 577 

cross-correlation function cannot be separated and thus new co-regionalisation matrices should be calibrated for region-578 

specific applications. 579 

 580 
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