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Energy threshold changes 
in volcanic activity at Mt. Etna 
(Italy) inferred from volcanic 
tremor
Horst Langer , Susanna Falsaperla *, Salvatore Spampinato  & Alfio Messina 

From the 2010s on, pattern classification has proven an effective method for flagging alerts of 
volcano unrest before eruptive activity at Mt. Etna, Italy. The analysis has been applied online to 
volcanic tremor data, and has supported the surveillance activity of the volcano that provides timely 
information to Civil Protection and other authorities. However, after declaring an alert, no one 
knows how long the volcano unrest will last and if a climactic eruptive activity will actually begin. 
These are critical aspects when considering the effects of a prolonged state of alert. An example of 
longstanding unrest is related to the Christmas Eve eruption in 2018, which was heralded by several 
months of almost continuous Strombolian activity. Here, we discuss the usage of thresholds to 
detect conditions leading to paroxysmal activity, and the challenges associated with defining such 
thresholds, leveraging a dataset of 52 episodes of lava fountains occurring in 2021. We were able to 
identify conservative settings regarding the thresholds, allowing for an early warning of impending 
paroxysm in almost all cases (circa 85% for the first 4 months in 2021, and over 90% for the whole 
year). The chosen thresholds also proved useful to predict that a paroxysmal activity was about to end. 
Such information provides reliable numbers for volcanologists for their assessments, based on visual 
information, which may not be available in bad weather or cloudy conditions.

Etna is an active basaltic volcano, with frequent episodes of eruptive activity in the form of Strombolian explo-
sions, lava fountains and lava  flows1. For example, hundreds of lava fountains occurred from 2000 to 2021 
 alone2–4. They stem from the summit craters, which are located at ~ 3300 m a.s.l., far away from inhabited areas 
(Fig. 1). Nevertheless, lava fountains produce abundant fallout of ash and lapilli, causing air and road traffic 
disruption, with heavy social and economic impacts (e.g.,5).

Early changes detected by a monitoring network of sensors are of paramount importance to highlight impend-
ing eruptions. In this perspective, volcano observatories around the world, such as at Kilauea  (Hawaii6), Soufrière 
Hills volcano  (Montserrat7), and Piton de la Fournaise (Réunion8), have not only enhanced their monitoring 
systems, but have also exploited cutting-edge tools for automated data processing. Unglert et al.6 study various 
unsupervised classification techniques with respect to their capacity to retrieve certain spectral patterns on 
Kilauea; Hammer et al.7 propose a dynamic application of Hidden Markov Models for event classification on 
Montserrat; Hibert et al.8 apply Random Forests to the discrimination of volcano-tectonic events from rockfalls 
on Piton de la Fournaise.

The monitoring of the background seismic radiation, which is mainly of volcanic origin and therefore called 
volcanic tremor (e.g.,9), focuses on the development over time of the amplitude and frequency content of the sig-
nal. It has become key for the surveillance of volcanic activity on Mt. Etna, where volcanic tremor is  persistent10–12 
(Fig. 1). Amplitude-ratio based criteria, such as short- and long-time averages (STA/LTA trigger algorithm), 
are effective in short-lived lava fountains, but have limits in the presences of a gradual increase of activity. Also, 
amplitude-based criteria, such as  RSAM13, do not account for changes in the spectral characteristics, which 
provide information for warning  purposes14. On Mt. Etna, the application of pattern recognition techniques 
to spectral features (see “Methods” section) has enabled detecting impending unrests in their very early stages 
(e.g.,14). Consequently, the staff of Istituto Nazionale di Geofisica e Vulcanologia (INGV), who runs monitoring 
and surveillance activity, gains precious lead time for alerting government authorities. To this end, Spampinato 
et al.15 designed a multi-station-alert system that follows the principles of voting a law in a parliament. The 
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system counts each seismic station for which an anomaly in volcanic tremor is detected, applying triggering 
parameters at each single station as described by D’Agostino et al.12. Additional information beyond the binary 
decision “criticality: yes–no”, can be inferred from a voting scheme based on the number of stations where an 
anomaly is detected, and their weights. Even though the criticalities are flagged at each single station, the lead 
times vary from station to station allowing some insight into the development of an unrest. The voting essentially 
expresses some degree of certainty to which a criticality is declared (here, the detection of specific variations 
in the frequency content of the signal radiated by the volcanic system). However, a condition of volcano unrest 
may hold true for months and not just be short-lived. This is a serious drawback even during time spans with 
mild, long-lasting volcanic activity, as the voting scheme does not explicitly account for the signal energy at each 
station. A similar condition, hovering around low to moderate Strombolian activity, occurred at Etna more or 
less over the whole of 2018. Tremor amplitudes remained at an intermediate level, which is marked by a yellow 
band in Fig. 2. As a consequence, many stations maintained an alert flag over long-time spans before a climac-
tic eruption started on Christmas Eve. Multidisciplinary studies have actually documented prolonged magma 
replenishment from depth starting at least 6 months before the eruption (e.g.,16).

The concept to flag even modest signs of unrest was successful for the previous years, starting from the 
 2010s14; however, the almost continuous state of alert in 2018 jeopardized confidence in the robustness of the 
system as if it were due to a malfunction. To overcome the drawback, we envisaged the use of thresholds of the 

Figure 1.  Digital elevation model (DEM) of Etna from TINITALY/01 by Tarquini et al.26. The DEM is 
referenced in the UTM WGS 84 zone 32 projection system, and is published with a CC BY 4.0 license 
(https:// doi. org/ 10. 13127/ TINIT ALY/1.0; last access 14 September 2022). Red circles mark the location of the 
permanent seismic stations we used in this study. The dashed square marks the area of Etna’s summit craters.

Figure 2.  RMS amplitude of volcanic tremor at the ESLN station in 2018. The station is equipped with a 
velocimeter. The data are filtered between 0.5 and 2.5 Hz, and averaged over 30 min. The tremor amplitudes 
remained at an intermediate level, marked by the yellow band, concurrent with low to moderate Strombolian 
activity more or less throughout the year.

https://doi.org/10.13127/TINITALY/1.0
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flag alert not only for the detection of the unrest (such as weak to mild Strombolian activity in the context of 
Etna), but also for the onset of impending, (more energetic) eruptive activity.

Figure 3 refers to a lava fountain episode on February 19, 2021. In the figure, we depict the spectral amplitude 
of volcanic tremor (panel I); the spectrogram with frequency content up to 15 Hz (panel II); and the results from 
Self-Organizing Maps (SOM) (panel III) and fuzzy clustering (FC) (panel IV) where the membership of a pattern 
to a cluster is given by a membership vector (see "Methods" section). We exploit the possibility given by the SOM 
to represent the spectral characteristics as an RGB (Red–Green–Blue; see "Methods" section) color code, which 
allows us to visualize the development of pattern characteristics over time as a sequence of colored symbols. A 
simplified, yet effective representation consists in plotting the saturation degrees of the Red-Green components 
(R-G saturation in panel V of Fig. 3) in the SOM colors. The two R-G saturation curves can be easily used to 
define thresholds and trigger criteria, and we focus on their variation in the following sections.

The spectral amplitudes peaked at ~ 9:00 UTC (the climax of the lava fountain) and then sharply decreased, so 
that at 10:15 UTC the phenomenon was essentially over (Fig. 3I–II). The development of the spectral character-
istics is clearly mirrored in the SOM colors (Fig. 3III). Before the onset of the eruption, the symbols had typically 
blue colors that changed to purple and intense red as the paroxysmal phase approached. The climax of the lava 
fountain had a clear regime during which cluster “C” showed up in the SOM (Fig. 3III). The presence of this 
cluster has been reported as typical for eruptive activity with intense tremor  radiation14,15. In the R-G curves, the 

Figure 3.  Episode of lava fountain (F) at Etna on February 19, 2021. Based on the analysis of volcanic tremor 
at the ESVO station, the diagrams cover 24 h: (I) spectral amplitude; (II) spectrogram; (III) results of the SOM 
in the form of colored triangles; (IV) fuzzy clustering (FC) considering three clusters; (V) normalized values of 
the saturation of the Red-Green (R-G) components in the SOM colors. The first dashed line marks the start of 
the unrest (warning flag of the multi-station system by Spampinato et al.15). The second dashed line (with the 
question mark) refers to the possible range of transition to a paroxysmal activity.
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saturation of the red component was also achieved during the climax of the volcanic activity, when the spectral 
amplitudes peaked (Fig. 3V). We noticed that the trend of the R saturation (R hereafter) shown in Fig. 3 initially 
had a slow increase, which speeded up only when the paroxysm became impending. From a visual inspection of 
those values, a ‘critical’ threshold of R could be inferred somewhere between 0.55 or 0.6, which marked a sharp 
acceleration towards the value 1 (full red saturation) shortly after. We observed that such a trend also holds for 
the R-G values of the lava fountains in 2011 from Spampinato et al.15 (see Supplementary Information). Moving 
on from this evidence, we investigated the presence of ‘critical’ thresholds of the R-G values, leading eruptive 
activity towards a climax. Here, we focus on two time-intervals, namely the year 2018 with the December 24 
climactic lava effusion, and the time span from January to April 1, 2021 with 19 paroxysmal lava fountains. The 
results of our analysis were then tested on a new dataset encompassing all the 33 lava fountain episodes that 
occurred from May to December 2021.

Fixing the threshold. The Christmas Eve eruption in 2018 was heralded by short-term (days) as well as 
long-term (months) changes in ground deformation, tectonic seismicity, and magma composition (e.g.,16–18). In 
Fig. 4 we show how many stations reached or topped three arbitrary threshold values of the R saturation, namely 
0.5, 0.55 and 0.6, in 2018. Discarding peaks associated with the occurrence of earthquakes (mostly regional 
events or teleseisms marked with T in Fig. 4), we notice that R = 0.6 was reached at four stations on December 
9. Only a lower number of stations reached synchronously this value from January to December 9, a timeframe 
during which volcanologists reported Strombolian activity and a few overflows at the summit  craters4. On the 
other hand, all stations topped the value 0.6 ~ 2 ½ hours before the Christmas Eve eruption on December 24, and 
even peaked full saturation (R = 1) during the climax of the eruption.

So far, we have considered thresholds, such as 0.5, 0.55 or 0.6, for the R component moving on from rather 
generic considerations on Fig. 3, the Supplementary Information, and somewhat following our intuition. How-
ever, each decision made on the basis of the information provided by volcanic observatories comes with costs 
and efforts. In this context, it is mandatory that criteria are defined following reproducible rules. Any rule for 

Figure 4.  Number of stations that reached or topped three arbitrary threshold values (0.50, 0.55, and 0.60) of 
the R saturation in 2018. T and E stand for teleseisms and the Christmas Eve eruption, respectively. Red bars 
mark warnings caused by teleseisms.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17895  | https://doi.org/10.1038/s41598-022-20766-8

www.nature.com/scientificreports/

setting up criteria must deal with a principal dilemma: The greater the degree of confidence in our system, the 
more challenging the choice of thresholds and criteria will be. The major challenge comes from the risk of los-
ing relevant eruptive activity for some reasons, such as peculiarities of the phenomenon or temporary technical 
failures of the seismic network. In other words, we have to appraise various criteria comparing the “true positives” 
(event correctly flagged) with respect to “false positives” (event flagged without having occurred). The so-called 
‘Receiver Operation Characteristic’ (ROC hereafter)  curves19 are often used in binary decision problems, such 
as business decisions (e.g., launching a marketing campaign) or health care issues (for instance, whether to start 
a certain medical treatment). Here they allow us to establish rules for the identification of suitable criteria to 
evaluate the performance of our system. In ROC diagrams, we plot for each criterion the ‘True Positive Rate’ 
(TPR; the share of recognized events with respect to all those truly occurred) versus the ‘False Positive Rate’ 
(FPR), which is obtained from the ratio of all erroneously identified events with respect to all observations 
without the event of interest.

In the following, we discuss how to set up the threshold in the saturation of the red component (R) and the 
number of stations for which we require that the threshold is reached or topped in 2021. The year 2021 was mostly 
characterized by frequent episodes of paroxysmal volcanic activity, mainly lava fountains preceded and followed 
by longer time intervals with Strombolian activity and sporadic episodes of ash emission and lava effusion. The 
lava fountains were short-lived events with durations of several  hours20. Their column height reached up to 10 km 
above ground, and formed a considerable threat to the air traffic for the fallout of pyroclastic material and ash 
over the municipalities located along the flanks of the  volcano4.

Here, we start considering the time span from January 1st to April 1st, 2021, during which there were 19 lava 
fountains along with almost persistent Strombolian activity. To select the threshold, we consider five alternatives 
of the R value ranging from 0.5 to 0.6, counting the number of stations where the chosen saturation value is 
reached or topped. Our observations are evaluated every 5 min. This time span corresponds to the one for which 
the patterns, represented by the colored symbols, are obtained. Consequently, we have 288 evaluations per day, 
in total 26,208 patterns in the considered time span.

Keeping the threshold fixed, we count how many true and false positives (TP and FP) were declared account-
ing for the number of stations reaching that threshold. Figure 5 depicts the ROC curves obtained for R equal 
to 0.5, 0.52, 0.55, 0.58, and 0.6. Seven stations were functioning in the time span from January 1st to April 1st 
(Fig. 1), with occasional gaps at single stations. On the whole, there were 635 time intervals of 5 min concurrent 
with a paroxysm, which marked the highest value reachable for true positives, namely TPR = 1. In terms of the 
maximum false positive rate FPR = 1, we acquire a number of 25,573 (5-min) time intervals, whereas TPR = 1 is 
never reached. Figure 5 shows the ROC curves for various threshold values of the R saturation, with their major 
variations in the range 0 ≥ FPR ≤ 0.2.

The interpretation of ROC curves can be guided by the so-called ‘Area Under the Curve’ (AUC), which is 
essentially the integral of an ROC curve. In case of a mere random result, then 0.5 < AUC < 0.6, namely TPR and 
FPR increase to the same degree, and the diagonal line across the ROC diagram has slope 1. The performance is 
good when 0.8 < AUC < 0.915,19. Overall, all ROC curves shown in Fig. 5 have AUC ~ 0.95, a value indicative of 
an excellent performance of the system. The calculation of these AUCs, however, is ill-conditioned here, due to 
problems arising from the low number of TP (635) with respect to the maximum number of possible FP (i.e., ca. 
26,000). This leads to errors in computing the integral of the ROC. Indeed, the tail of the ROC with FPR greater 
than 0.1 dominates the AUC, even though being supported by only one FPR/TPR pair. As mentioned above, 
we have no valid configuration achieving TPR = 1. Our discussion will therefore focus on the absolute values of 
TP and FP (see Table 1). In general, we get TPR ~ 0.8 (namely ~ 480 out of 635 true positives for all ROC) when 
requiring that the threshold for an alert flag is reached in at least 4 stations. In this case, the number of false posi-
tives is 135 for R = 0.6, 170 for R = 0.58 and reaches 469 when choosing R = 0.50. Based on the values in Table 1, 
a configuration with a minimum of four flagging stations (called “Min4”) and thresholds such as R = 0.58 or 
0.6 keeps the number of false positives well below the number of true positives (Fig. 6). With less conservative 
options (R = 0.5 and R = 0.52), more or less equal numbers of true and false positives are obtained.

Requiring a rate close to 90% of detected true positives, we can opt for three flagging stations and all thresh-
olds from R = 0.5 to R = 0.6. However, with the less conservative choices (R = 0.5 and R = 0.52) we encounter a 
considerable amount of FP (twice the number of TP for R = 0.5 and 1.5 fold the number of TP for R = 0.52). 
Again, the conservative choices may be preferred.

Lead times. In many applications, for instance in medical disciplines, false positives are generally undesired. 
They can be the ruin of disease diagnostics, as the chance of belonging to a group of erroneously positive subjects 
tops the risk of being among the people actually affected by a disease. In those cases, at least a second test is rec-
ommended (e.g.,21). Such a rigid understanding of false positives is not feasible for our problem. In the context of 
eruption forecasting, volcanic observatories are interested in precursory phenomena, that is, peculiarities which 
may herald the unrest. Such precursors are intrinsically false positives, even though they are welcome for the 
needs of ‘lead times’, namely the timeframe between the moment when the first positive (precursor) is detected 
and the true positive is observed.

To be accepted as precursors in our system, we require that the positives detected form a chain longer than 
5 min without gaps (no more than one positive missing in the sequence). As an example, we list in Table 2 the 
time difference between when the value 0.58 of the R component was reached and the moment in which the onset 
of each of the paroxysmal events from January to April 1, 2021 was reported (see also Fig. 6). Here the lead time 
is positive when the threshold R = 0.58 was reached before the onset given by the INGV timely communications 
to government authorities, such as Civil Protection, prefectures, and aviation authorities. As patterns are created 
every 5 min and the precision of the times reported is even less, the lead times of Table 2 are multiples of 5 min. 
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Figure 5.  Receiver Operation Characteristic (ROC) curves for various threshold values of the R saturation. 
The number of True Positives (TP) and False Positives (FP) refers to a warning with at least four stations. The 
red and blue rectangles mark the range of FP for each threshold and the part of FP that comes as a precursor, 
respectively (the corresponding values are shown on the right side of the figure).

Table 1.  True and False Positives (TP and FP) for various thresholds of the R value and number of stations 
flagging an alert.

Stations FP TP FP TP FP TP FP TP FP TP

0 25,573 635 25,573 635 25,573 635 25,573 635 25,573 635

1 5352 580 4202 578 2951 573 2280 564 1398 560

2 3129 569 2359 565 1674 559 1147 552 741 549

3 1086 557 854 553 622 545 413 544 269 542

4 469 492 406 490 279 486 170 485 135 481

5 155 406 136 405 120 400 117 394 112 390

6 112 387 108 386 108 381 101 379 100 375

7 84 214 81 213 79 211 74 206 68 203

Thresh R = 0.50 R = 0.52 R = 0.55 R = 0.58 R = 0.60
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Figure 6.  Number of stations reaching the threshold R = 0.58 (blue line, positive values) and volcanic activity 
(orange line) in 2021. The negative values in the y-axis are associated with the presence of strong effusive activity 
with ash emission (“− 1”) and lava fountains (“− 2”), respectively.

Table 2.  Lead times per station. Column “Max” is the maximum lead time encountered. Column “Min4” 
corresponds to a lead time requesting a minimum of four triggering stations. Values are obtained for a 
threshold R = 0.58.

Station/Episode ECNE ECPN EMFO EPLC ESLN ESPC ESVO Max Min4

1: 18/01/2021
20:00–21:05 50  − 10 40 10 10 15  − 5 50 10

2: 16/02/2021
16:10–17:00 10  − 5 0 0 0  − 5 10 0

3: 18/02/2021
00:00–00:50 10 0 15 5 20 5 20 5

4: 19/02/2021
08:50–09:50 20 0 15 15 20 5 20 15

5: 20/02/2021
22:00–01:15 30  − 50 25  − 5  − 35  − 30 30  − 30

6: 22/02/2021
22:25–00:15 45  − 30 35 35 5  − 25  − 15 45 5

7: 24/02/2021
19:30–22:30 45 5 10 5 15 5 5 45 5

8: 28/02/2021
07:40–08:20 0  − 15  − 10  − 10  − 5  − 10  − 15 0  − 10

9: 02/03/2021
12:20–14:50 10  − 30  − 5 5 5 5  − 5 10 5

10: 04/03/2021
02:20–03:15 20  − 20 20 Nd

11: 04/03/2021
07:50–09:25 60 0 5 5 30 5 0 60 5

12: 07/03/2021
06:00–07:10 90 40 65 40 85 30 35 90 40

13: 10/03/2021
00:40–03:30 120 65 85 90 100 95 75 120 90

14: 12/03/2021
07:40–09:55 65 25 30 60 45 30 30 65 30

15: 14/03/2021
23:40–02:40 65 40 50 60 70 60 40 70 60

16: 17/03/2021
02:15–06:15 45 25 35 50 45 40 30 50 40

17: 19/03/2021
08:35–10:20 55 45 50 50 50 40 55 50

18: 23/03/2021
22:00–08:45 35 50 40 45 50 35

19: 01/04/2021
00:00–08:05 235 55 35 245 255 50 255 50

Median 45 0 30 35 22.5 20 5

Average value 54.17 9.41 26.05 31.82 42.50 33.33 15.83
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In most cases, lead times are positive and vary from a few minutes to several hours depending on the dynam-
ics of the eruptive event. The ECNE station, being one of the closest to the summit craters where the activity 
started, is the first to signal it at almost any time. On the other hand, the station ESVO is in most cases the last 
site where the threshold R = 0.58 was reached. The “Max” column in Table 2 shows the longest lead times among 
all operating stations, which are obtained requesting that only one station meets the threshold. The highest value 
(255 min, corresponding to 51 patterns) refers to the station ESPC for the paroxysm on April 1, 2021, whereas 
ECNE had on average the largest lead times. In fact, if we sum up all lead times (keeping the positives only), we 
obtain 213 patterns that fall in the lead time range, namely the patterns that can be considered as precursors 
(see row “Sum/5” in Table 3). Nonetheless, there are 2280 false positives for the same configuration (Table 1). 
In a more conservative configuration, where we request that the threshold is met at four or more stations, we 
still obtain positive lead times in 15 out of the 19 reported paroxysms (see Table 2, column “Min4”); in one case 
(“nd” in the table) the number of operating stations was less than four.

Table 3 gives a summary of the lead times for various thresholds of the R value, namely 0.50, 0.52, 0.55, 
0.58, and 0.60. Keeping R = 0.58 and increasing the minimum number of alert flags to four stations (Fig. 6), the 
resulting lead time is the value reported in the column “Min4” in Table 3. As before, if we sum up the lead times 
in that column (keeping the positives only), we obtain 89 positive patterns as precursors. Comparing the 89 
precursor patterns to the total of 170 false positives for the configuration R = 0.58 / four stations (see Table 1), 
we find this configuration more convenient than the previous choice with only one station. Focusing on the 
“Max” and “Min4” columns of this table, we find that also the configuration R = 0.60 / four stations provides a 
reasonable performance. With this configuration we have a total of 135 FP (see Table 1), 84 of which are actually 
precursors (Table 3).

In the choice of the most convenient configuration of our system, we may also consider the appearance of 
cluster C instead of the saturation in red. Cluster C shows up in the context of strong volcanic  activity14 (see 
panel III in Fig. 3). If we calculate the lead times replacing the R threshold with patterns prevalently belonging 
to cluster C, we obtain a similar picture as before (see Table 4). Again, in the majority of cases, the ECNE station 
is the one where cluster C appears first, and ESVO is typically the last one. The values in the “Max” and “Min4” 
columns resemble those found for R = 0.52 or 0.55 in Table 3. Consequently, from a practical viewpoint, it may 
be sufficient to focus on the R thresholds, as the appearance of the cluster C does not really add new, independent 
evidence. Cluster C also appears due to sources which are not linked to the volcano, such as during teleseisms 
or strong stormy weather (see, e.g.,14).

Discussion and conclusions
In this paper, we calculate the ‘true’ value of thresholds at Etna that may lead to a climax after the detection of 
volcanic unrest. To this end, we have refined a previous alert system by Spampinato et al.15 based on a multi-
station voting scheme. This kind of voting provides information redundancy, which improves robustness against 
possible operational failures of a single station—a frequent phenomenon in harsh environmental conditions. 

Table 3.  Comparison of lead times (given in minutes) for various thresholds of the R value for the 19 lava 
fountain episodes from January 1 to April 1, 2021. Sum/5 is the sum of the lead times expressed in terms of the 
number of the patterns, each of which covers 5 min.

Episode Max Min4 Max Min4 Max Min4 Max Min4 Max Min4

1 325 15 325 15 80 15 50 10 40 5

2 20 0 15 0 10 0 10 0 5 0

3 85 5 75 5 20 5 20 5 20 10

4 35 15 35 15 20 15 20 15 20 10

5 45  − 20 45  − 25 30  − 30 30  − 30 30  − 30

6 85 5 65 5 65 5 45 5 40 5

7 55 10 55 10 55 5 45 5 15 5

8 0  − 5 0  − 5 0  − 10 0  − 10  − 5  − 10

9 25 5 25 5 10 5 10 5 5  − 5

10 55 nd 55 nd 25 nd 20 nd  − 10 nd

11 100 15 95 10 95 5 60 5 60 5

12 145 85 135 85 105 85 90 40 85 40

13 165 95 165 100 165 100 120 90 110 90

14 115 40 75 40 70 40 65 30 60 35

15 100 60 100 60 70 60 70 60 65 55

16 60 55 60 45 60 45 50 40 50 40

17 70 50 70 50 65 50 55 50 55 40

18 60 55 50 35 45 35 50 35 50 30

19 335 60 310 60 255 55 255 50 255 50

Sum/5 376 114 351 108 249 105 213 89 193 84

Thresh R = 0.50 R = 0.52 R = 0.55 R = 0.58 R = 0.60
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A further point is the increased reliability of an alert issued from a group of stations, which is less affected by 
local disturbances, such as environmental noise or instrumental effects. However, after the scheme sums over all 
the positive votes and issues an alert, there is no indication of the intensity of the impending eruptive activity. 
The decision-based vote may also be insufficient when moderate anomalies become persistent over long-time 
spans. In the year 2018, for instance, the volcano fed Strombolian activity of low to modest intensity over several 
months, yielding a nearly uninterrupted alert flag. Such a continuous, longstanding switched-on red light may 
decrease the staff ’s level of attention in a volcano observatory and can even be annoying for the authorities, who 
operate on an emergency basis. It is therefore important to mark ‘points of no return’, i.e., thresholds which, once 
topped, herald an impending change to a major increase of the eruptive activity. Analyzing the Supplementary 
Information (redrawn from Spampinato et al.15), we surmised that such thresholds may indeed exist. Convincing 
evidence for their existence has been found from a visual inspection of the R-G curves, in which the red compo-
nent (R = 0.6 or higher values) in the SOM appeared as a good candidate. We also tried to figure out at how many 
stations the threshold has to be reached or topped. In a new, in-depth analysis we focused on the period from 
Jan 1st to April 1st, 2021, when 19 lava fountains occurred. This data set has been used as a learning ensemble 
for the choice of a threshold, marking the non-return point, and the number of stations to consider. The choice 
was guided using Receiver Operation Characteristic (ROC) curves, which come as diagrams of true-positive vs. 
false-positive rates. In these diagrams we count, for each specific threshold and number of stations where the 
threshold is met, how many times a critical phenomenon—here a paroxysmal event—was truly identified by the 
spectral characteristics of the patterns (true positives; TP). We compare these TP to the number of cases where the 
phenomenon was flagged, without actually having occurred. A commonly used parameter describing the validity 
of a ROC curve is the Area Under the Curve (AUC). Unfortunately, the calculation of AUC is ill-conditioned in 
our context, as we have no configuration where we are able to recognize all true positives, even requiring that the 

Table 4.  Lead times calculated from the appearance of cluster C.

Station/Episode ECNE ECPN EMFO EPLC ESLN ESPC ESVO Max Min4

1: 18/01/2021
20:00–21:05 active  − 5 40 0 25 20 10 40 10

2: 16/02/2021
16:10–17:00 10  − 5 0 0 0 0 10 0

3: 18/02/2021
00:00–00:50 15 5 15 10 25 5 25 15

4: 19/02/2021
08:50–09:50 20 5 30 20 20 5 30 20

5: 20/02/2021
22:00–01:15 30  − 45 40 30  − 20  − 5 40 30

6: 22/02/2021
22:25–00:15 45  − 5 35 30 30 0 30 45 30

7: 24/02/2021
19:30–22:30 35 10 10 5 20 10 5 35 10

8: 28/02/2021
07:40–08:20  − 5  − 10  − 5  − 10  − 5  − 5  − 10  − 5  − 5

9: 02/03/2021
12:20–14:50 10 0 5 0 5 5 0 10 5

10: 04/03/2021
02:20–03:15 20 15 20 Nd

11: 04/03/2021
07:50–09:25 70 5 15 5 45 15 15 70 15

12: 07/03/2021
06:00–07:10 90 65 85 45 95 80 60 95 80

13: 10/03/2021
00:40–03:30 120 85 95 110 110 105 85 120 105

14: 12/03/2021
07:40–09:55 65 40 40 60 65 40 40 65 40

15: 14/03/2021
23:40–02:40 65 60 50 55 75 70 50 75 60

16: 17/03/2021
02:15–06:15 50 30 45 50 75 50 30 75 50

17: 19/03/2021
08:35–10:20 55 50 50 55 50 45 55 50

18: 23/03/2021
22:00–08:45 60 15 50 55 60 15

19: 01/04/2021
00:00–08:05 250 200 65 255 265 60 265 60

Sum/5 227 119

Median (min) 45 7.5 37.5 37.5 30 25 30

Average value (min) 55.58 30.63 36.11 35 52.94 44.71 27.65
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threshold is reached at only one station. However, this should not be taken as a deficiency. In fact, a part of the 
‘false positives’ belongs to the so-called lead time, the time interval leading to the occurrence of the phenomenon 
we are interested in. Those false positives are in reality precursors, thus welcome in the context of monitoring 
and alert. We carried out a systematic analysis of true and false positives, varying both the threshold of the red 
saturation (R = 0.5…0.6), as well as the number of stations where this should be reached or topped. We found a 
reasonable compromise for R = 0.58 or 0.6 together with the request that this R value should be reached at least 
in four stations (Fig. 6). In these configurations, a majority of the false positives fall into lead times. In other 
words, they are precursors rather than errors caused by noise or other problems.

Applying the same scheme, that is, considering saturation thresholds of the red component and a (minimum) 
number of stations, we essentially cancel out the phenomenon of a continuous alert we were facing before. Cer-
tainly, the volcano was in an almost persistent state of unrest in the year 2018 until December, when the climactic 
Christmas Eve eruption occurred. In Fig. 4 we recognize that, with the requirement of at least 3 stations reach-
ing a threshold of R = 0.5, we acquire some false alarms mainly caused by the presence of regional earthquakes 
and teleseisms due to their low frequency content. Using a more conservative setting, i.e. R = 0.55 or higher, and 
requiring at least 4 stations to reach the threshold, we actually get no more than one false alarm, which occurred 
on October 25, 2018 during a teleseism.

To test if the system is up to the task with the chosen thresholds, we considered the 33 episodes of lava foun-
tains from May to December 2021. We focused on the two conservative settings mentioned above, i.e. R = 0.58 
or R = 0.6, always requiring the threshold to be reached or topped at a minimum of four stations. In both the 
configurations we almost always noticed positive lead times, i.e., the impending paroxysmal activity was detected 
before its occurrence was reported in the communications released by INGV-OE. In only two single cases 
was the detection delayed by 5 min (1 pattern length). On average, the lead times were ~ 40 min with R = 0.58 
and ~ 35 min choosing R = 0.6. A further issue is the ‘closure’ of the activity, i.e., the prediction that the eruptive 
crisis is going to end. In both configurations, the closure was declared, on average, 20 min earlier than the end 
times reported in the communications (see Table 5). Occasionally, the closure by our revised system was delayed, 
producing a number of false positives. However, these were essentially the only false positives encountered in 
the tested period May-December, 2021.

In a recent paper published during the preparation of the present study, Calvari and  Nunnari20 re-analyzed 
the visual and infrared- images recorded by the INGV video cameras installed on the volcano. They considered 
66 lava fountains occurring from December 2020 to February 2022, for each of which they report start and end 
times inferred from their analysis of the images. We decided to use their study as a further test of our system. 
We compared the times they report for the eruptive episodes in 2021 with the times we calculated, considering 
the configuration R = 0.58 and four or more stations reaching or topping this threshold. Table 6 gives a summary 
of the comparison. On average, our system had an additional positive lead time of ~ 13 min (the corresponding 
median is 8 min). The absolute discrepancies (counting negative and positive differences, all positive) are some-
what higher. On the other hand, end times were fairly close to each other. The tremor-based system marked the 
end of an episode on average 6.8 min later (median is 0); taking the absolute differences we obtain an average 
of 10 min (median 5 min).

The comparison of our results to those inferred by the detailed analysis of the video camera images highlights 
that the tremor-based system is a valid proxy for the automatic identification of impending paroxysmal events. 
Note that two of the episodes reported in 2021 by Calvari and  Nunnari20, namely those on February 23 at 03:45 
UTC and March 4 at 01:30 UTC, were among the weakest in terms of the ‘Time Averaged Discharge Rate’ given 
by the authors. Those episodes did not reach the energy levels of tremor needed to trigger the alert flag at four 
stations. As the transition of various states of volcanic activity is not always clear cut, the tremor-based criteria 
may provide a guide to help volcanologists to better distinguish the activity regimes.

Table 5.  Average lead and closure time for the lava fountain episodes from May to December 2021. “Closure” 
reports the time difference between the declared end and the actual warning of the episodes.

Lead Time R = 0.58 Closure Lead Time R = 0.6 Closure

Average (min) 40.6 20.5 34.5 20

Median (min) 30 15 25 15

Table 6.  Comparison between the times calculated by Calvari and Nunnari, 2022 (CN22 in the table) for the 
eruptive episodes in 2021 and those we obtained with the threshold R = 0.58 and four or more flagging stations.

Difference start
R = 0.58  −  CN22

Difference closure
R = 0.58 − CN22

Average (min) 13.0  − 6.9

Median (min) 8 0

Average abs. Difference (min) 29.8 10.5

Median abs. Difference (min) 25 5
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We can therefore envisage using a two-stage warning system. The first, which has been operating so far 
remains active, as it effectively recognizes mild phenomena of unrest, such as Strombolian activity, or minor lava 
effusions, not always leading to a relevant threat to human facilities. In the presence of a first stage of warning, 
the observatory staff will follow the ongoing development. Once the second level of criticality is reached (e.g., 
R = 0.58 at four stations or more) little doubt is left that the situation is heading towards a larger unrest, such as 
a paroxysmal lava fountain or a major lava emission as happened during the Christmas Eve eruption in 2018. 
It is worth noting that such a two-stage warning system overcomes problems of methods based on STA/LTA 
strategies, which fail when there is a slow increase in energy of the seismic radiation. Indeed, in this case, LTA 
slowly creeps to high values, which cannot be easily topped by the STA.

The practical choice of the parameters R and the number of stations is partly a matter of the decision makers, 
who decide whether the actual risk of missing an event can be accepted, and what is the desired lead time. A 
comparison of the number of patterns, being precursors with respect to the total of false positives encountered 
for a configuration, can guide the choice. Here, using R = 0.58 or 0.6 and four stations, most of the false positives 
come as precursors, thus they are opportune rather than representing a deficiency of the system. Others occur 
shortly after a paroxysmal phenomenon dies out, as their occurrence is still linked to the fading volcanic activity.

Methods
Feature extraction. Langer et al.14 developed a scheme for automatic feature extraction based on spec-
tral analysis, which resembles the Seismic Spectral Amplitude Measurement (SSAM) proposed by Rogers and 
 Stephen22. The first step is the calculation of the Short Time Fourier Transform (STFT), with a gliding window 
applied to the whole time series. Each window has a length of 1024 points (corresponding to 10.24 s) and is 
shifted by 500 points. Each short-time spectrum forms an element in a spectrogram. Frequency bins are aver-
aged over the power spectral amplitudes in a selected frequency band to reduce the number of features. A further 
simplification is obtained by considering an ensemble of 60 short-time power spectra, i.e., a time span of 5 min. 
We preferred to study the 10% (bottom) percentile, focusing on the lowest amplitudes encountered in the 5-min 
time span, to largely eliminate the effect of short-lived transients (e.g., wind gusts or local earthquakes).

Self‑organizing maps. SOM—or Kohonen  maps23—are a type of artificial neural network. SOM form a 
mesh of nodes, which are small clusters with each one representing a number of patterns. The centroid of the 
clusters can be understood as a prototype of patterns. During the learning phase, the feature vectors W of the 
centroids are adjusted so that the sum of the distances between the original data and their representing prototype 
nodes converges to a minimum. Formally, during the training of SOM, one minimizes the sum of the distances

where Vj is the normalized input feature vector and Wi the weights stored in the nodes. V and W have the same 
dimension. A core step is the identification of the closest node to the actual input vector, i.e., the best matching 
unit (BMU) for the jth pattern. During the learning steps, neighboring nodes lying within a certain radius of 
influence are considered as well. Weights are gradually adjusted according to the so-called learning rate λ, which 
decreases with time t. A second parameter φ (called influence radius) describes the dependence on distance ∆ of 
the upgrade of a node. φ (∆,t) is maximum for the BMU, whereas nodes outside the radius of influence are not 
upgraded at all. Similar to the learning rate λ, also φ (∆,t) decreases with time. The upgrade of weights follows 
the relationship:

The introduction of the term φ (∆,t) has an important effect, known as ‘Topological fidelity’, i.e. patterns rep-
resented by neighboring nodes in the SOM are truly close to each other also in the original data space. SOM can 
be particularly instructive when the weights take the form of a color code. For this purpose, Principal Component 
Analysis is applied, projecting the multi-dimensional weights vector in a 2D representation space spanned by 
the principal axes z1 and z2. The coordinates of a node with respect to the axes are expressed in terms of a color 
code, such that saturation in red (“R”) stands for the first, saturation in green (“G”) for the second axis, and 
saturation in blue is just complementary to saturation in green. The coding allows identifying the position of a 
pattern on the map simply by an appropriate colored symbol. For more details, the reader can consult textbooks 
such as  Kohonen23 or Langer et al.24.

Spampinato et al.15 probed Self-Organizing Maps (SOM) in the framework of a multi-station system aimed 
at early warning. They considered continuously recorded data from 11 permanent seismic stations. The seismic 
network was composed of two rings with the center at the summit craters: an inner ring of seven stations (within 
a radius of ∼3 km), and an outer ring with four stations placed at distances of up to ~ 8 km (Fig. 1). Following the 
strategy proposed in Spampinato et al.15, our trigger parameters are defined for each single station. These param-
eters are basically based on the RGB color codes, with “R” (red) and “G” (green) being independent, whereas “B” 
(blue) is complementary to “G”, i.e., B = 1 − G. The classifier has been tested on past data streams, encompassing 
various episodes of eruptive activity for which each of the 11 seismic stations issued a timely warning.

Fuzzy clustering. The cluster analysis follows a non-hierarchical, partitioning strategy of clustering. The 
measure of the heterogeneity of the k-th cluster is expressed as the sum of the squared distances of the patterns 
in each cluster from their centroid vector. Contrary to crisp clustering, where each pattern is exclusively assigned 
to one cluster, in fuzzy  clustering25 each pattern may belong to a certain degree to all possible classes. Conse-

Dij =

√

(Wi − Vj)
T (Wi − Vj)

Wi(t + 1) = Wi(t)+ ϕ(�, t) · �(t) · Dij(t)
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quently, the class membership of a pattern, rather than being a simple ID, is given by a vector. The partition is 
consequently described by a M × K matrix of class membership values, with M being the number of patterns in 
the entire data set, and K the number of clusters. Transitional regimes become evident in the gradual changes 
in the class membership vector. In our application, we calculate the fuzzy membership vectors on the original 
feature vectors and show them together with the SOM colors. In Fig. 3 (see panel IV) the patterns are assigned 
to the cluster with the highest membership degree.

Data availability
The raw seismic data analysed during the current study are available in the European Integrated Data Archives 
(www. eida. ingv. it). The software for the pattern recognition can be freely downloaded from https:// earth ref. org/ 
ERDA/ 974/. The dataset that we used to create the statistics of this article are freely available in https:// doi. org/ 
10. 13127/ etna/ mavt2 021.
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