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1. Introduction 
Characterising the physical properties of the Earth’s ionosphere is fundamental to 

shed light on the dynamic processes occurring therein on a wide range of both spatial and 
temporal scales and to understand several phenomena relevant to Space Weather. 

In fact, due to the presence of ions and electrons, the ionosphere reacts to the onset, 
amplification and evolution of magnetic and electric fields. 

This response may substantially change the physical properties of the ionosphere and 
its energetic budget and may be reflected, for example, in the modification of the propa-
gation properties of electromagnetic signals traveling through the ionospheric medium. 

Due to the conspicuous amount of high-quality data, these features can be reliably 
investigated at different scales taking advantage of remote sensing and in situ facilities 
such as ionosondes, radars, satellites and Global Navigation Satellite Systems (GNSS) re-
ceivers. 

2. Overview of Contribution and Future Perspectives 
In this context, the Special Issue “Ionosphere Monitoring with Remote Sensing” aims 

at promoting significant advances in our knowledge of the ionosphere through the use of 
different data from different facilities as well as currently recognized ionospheric models. 
In fact, the Special Issue focuses on: (1) the investigation of the impact of sunlit, solar and 
geomagnetic activity on the ionosphere at all latitudes; (2) the investigation of the impact 
of ionospheric variations on contemporary technology; (3) the improvement of iono-
spheric models through new instrumental observations, analyses and data-handling tech-
niques; (4) the investigation of magnetosphere–ionosphere coupling through multi-in-
strumental approaches; and (5) the promotion of new instruments, missions and tools to 
monitor the ionosphere. 

The Special Issue provides 15 original research papers describing results obtained 
with a wide range of tools, data and analysis techniques and focused on the characterisa-
tion of several properties of the ionosphere. 

As mentioned above, great attention has been paid to the development of new facil-
ities and analysis techniques to increase our knowledge of the ionosphere. Shindin et al. 
[1] presented a prototype of a low-cost and good-quality fast ionosonde capable of per-
forming with the unprecedented speed of one second cadence, which allows recording 
fast quasiperiodic and moving ionospheric disturbances in the F, E and Es layers. An ad-
ditional strength is that the ionosonde is equipped with cheap, publicly available compo-
nents, which favours the multi-position registration of ionograms and, as a consequence, 
the investigation of ionospheric disturbances in a three-dimensional region of space and 
the possibility to create a network of observation points. A layer of critical importance for 
ionospheric studies is the transition region between the lower and upper atmosphere, 
namely, the sporadic E (Es) layer, which consists of a region of enhanced ion plasma at 
altitudes between 90 and 120 km with a vertical extent of several kilometres and a hori-
zontal extension of tens of kilometres [2]. The existence of this region can be explained by 
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the wind shear theory and the convergence of metal ions and can be influenced by shear 
instabilities, tidal, planetary or gravity waves, meteors and thunderstorms [3–8]. The ver-
tical structure of the Es layer is still poorly understood due to its transient and complex 
nature together with limitations in observation techniques [9–13]. Liu et al. [14] applied 
the frequency domain interferometry (FDI) technique by using the Es layer measurements 
near Wuhan, China, on 8 June 2021. They pointed out that this technique allowed them to 
obtain increased spatial resolution of ionosonde imaging capable of identifying different 
types of Es and to capture its internal fine structure. Unlike the “classic” vertical sounding 
mode, for the oblique sounding mode, the transmitter and the receiver are located at sta-
tions that can be hundreds or thousands of kilometres apart [15–18]. The resulting oblique 
ionograms can capture ionospheric properties at the reflection point, which is usually lo-
cated at the middle point between the transmitter and receiver. However, the problem of 
how to automatically scale oblique ionograms is still open, and various solutions have 
been identified over the years [19–23]. Jiang et al. [24] developed a method to carry out 
the automatic inversion of oblique ionograms to extract the parameters of the ionosphere 
together with the electron density profile. Their results show that the accuracy of the in-
ferred autoscaled maximum observable frequency and minimum group path of the ordi-
nary trace of the F2 layer is about 91.98% and 86.41%, respectively. Kim et al. [25] used 
Vertical Incidence Pulsed Ionospheric Radar (VIPIR) to observe the polar ionosphere with 
Dynasonde analysis software at Jang Bogo Station (74.6°S, 164.2°E), Antarctica, which is 
located in the polar cap, cusp or auroral oval depending on the local time and the geo-
magnetic activity conditions. The resulting F2-layer peak electron density (NmF2) and 
bottomside total electron content (TEC) exhibit an overall good correlation with GPS TEC 
measurements during quiet conditions. During the daytime and in summer, the bot-
tomside TEC is less correlated with the GPS TEC due to particle precipitation and the 
onset of large density irregularities in the polar ionosphere. However, the Dynasonde 
analysis show some limitations and needs to be improved in order to provide accurate 
density profiles, especially during disturbed geomagnetic conditions. The use of radar 
imaging and interferometry techniques also provides important information on the phys-
ical properties of the ionosphere. In a horizontally structured atmosphere, radar echoes 
are strongest near the zenith and decrease with the angle off the zenith. In the presence of 
ionospheric field-aligned plasma irregularities (FAIs), radar echoes are strongest at the 
beam direction perpendicular to the geomagnetic field, with a fast decrease in the angle 
off the perpendicular direction. The aspect angle, which is a measure of the aspect sensi-
tivity, i.e., the half width of half power or the standard deviation of Gaussian fitting in the 
angular power distribution, is of the order of degrees [26,27]. On the contrary, it can be of 
order 0.1 degrees or less in FAI echoes (see, e.g., Kudeki and Farley [28]). A way to effec-
tively measure an FAI's aspect angle lies in the radar interferometry technique [28,29]. 
Chen et al. [30] applied the coherent radar imaging (CRI) technique to estimate the aspect 
angle of mid-latitude E region FAIs. CRI requires the use of separate antennas as inde-
pendent receiving channels to collect radar echoes [27,31]. The echoes received allow one 
to retrieve the in-beam angular power distribution. By using the multireceiver and mul-
tifrequency capabilities of the 46.5 MHz middle and upper atmosphere radar in Japan, 
Chen et al. [30] showed that, among the three methods (namely, Fourier, Capon and norm-
constrained Capon) used to recover the brightness distribution, the norm-constrained Ca-
pon method produces more reliable results and more trustworthy aspect angle values 
consistent with those obtained with the RI technique. Their results may help to shed light 
on the spatial and temporal properties of plasma irregularities in the ionosphere. 

Karpachev [32] separated and classified ionospheric troughs (regions of anomalously 
decreased electron density) in the winter ionosphere of the Southern hemisphere by using 
CHAMP satellite data during high solar activity (between 2000 and 2002). In particular, 
the authors identified two kinds of high-latitude troughs: (1) a wide trough associated 
with a region of particle precipitation on the poleward edge of the auroral oval; (2) a nar-
row trough of ionisation presumably associated with an electric field. Moreover, the main 
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ionospheric trough (MIT) was separated from the ring ionospheric trough (RIT), the latter 
being formed by the decay of the magnetospheric ring current. 

A relevant aspect at the centre of ionospheric investigation concerns plasma density 
irregularities, which play a key role in the propagation of electromagnetic signals, being 
a cause of disturbance for the GNSS. In fact, irregularities are responsible for degradation 
and, eventually, interruptions in the signals received by the system. In the equatorial F 
region, irregularities are also known as plasma bubbles and develop on the nightside [33] 
at magnetic latitudes up to 20° in both hemispheres [34], at heights up to 1000–1550 km 
[35] and on a wide range of spatial scales, from hundreds of kilometres down to a few 
decametres [36]. Their spatial and temporal distribution depends on solar and geomag-
netic activity and exhibits a diurnal and seasonal variation [33,37,38]. The origin of plasma 
bubbles is recognised to be due to the establishment of density gradients sufficient to trig-
ger a Rayleigh–Taylor instability growth mechanism [34,39]. The irregularities generated 
in this way expand vertically and then follow the geomagnetic field lines in both direc-
tions above and below the magnetic equator. This dynamic is typically overlaid by an 
eastward drift motion due to polarising electric fields generated by neutral zonal winds. 
The instability of these structures can, in turn, generate secondary irregularities and trig-
ger a cascading process. Several studies have pointed out the turbulent nature of plasma 
bubbles [40–45]. In this context, De Michelis et al. [46] focused on the relationship between 
the spectral features of electron density and magnetic field strength inside plasma bubbles 
in order to understand whether it is possible to study the dynamical features of plasma 
bubbles by using either the magnetic field or the electron density measurements. This is 
motivated by the fact that, in the past, important plasma bubble features have been de-
tected by analysing their magnetic signatures using the diamagnetic effect [47]. However, 
studying plasma bubbles by using only magnetic field data may not be the correct way, 
as it implies that the scaling properties of electron density and magnetic fields are equal. 
To address this point, De Michelis et al. [46] studied the scaling properties of both electron 
density and magnetic fields associated with plasma bubbles using about two years of 
Swarm measurements at 1 Hz. Specifically, they applied the local detrended structure 
function analysis [48] and found that a complex relation may exist between the spectral 
features of electron density and magnetic field that depends on local time and latitude 
due to the evolution and turbulent nature of plasma bubbles. A more in-depth study of 
diamagnetic currents at high latitudes obtained by Swarm measurements has been per-
formed by Lovati et al. [49]. Such weak currents are driven by pressure gradients and 
produce a magnetic field that is directed opposite to the background geomagnetic field 
and causes its reduction. The authors used 4 years of electron density, electron tempera-
ture and magnetic field data at 1 Hz to investigate the dependence of diamagnetic currents 
on local time, season, solar and geomagnetic activity and sunlit conditions. They con-
firmed the enhancement of diamagnetic currents at high latitudes, around the cleft region, 
during disturbed periods due to the increase in plasma pressure gradients. In the polar 
cap, currents flow regardless of the geomagnetic activity due to plasma instabilities driv-
ing irregularities and pressure gradients. Moreover, during disturbed periods, features in 
the correspondence of the auroral oval move to lower latitudes. These findings may help 
to improve current geomagnetic field models and understand the impact of ionospheric 
irregularities on dynamics at spatial scales of tens of kilometres. 

New insights into dynamic processes in the ionosphere are obtained by studying its 
turbulent nature, which underlies, for example, chaotic plasma behaviour. The turbulent 
dynamics of ionospheric plasma has long been established, especially at high latitudes, by 
investigating, for example, fluctuations in magnetic and electric fields and electron den-
sity. Such fluctuations are characterised by power-law spectral densities, scaling features 
and non-Gaussian statistics of increments at all scales (see, e.g., [50–53]) and can affect 
plasma dynamics via the ExB drift term. At both high and low latitudes, variations in 
vertical plasma velocity drift plays a key role in the generation of irregularities [54–56]. In 
light of this, Consolini et al. [57] used electric and magnetic field measurements provided 
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by the Chinese Seismo-Electromagnetic Satellite (CSES-01) to investigate the properties of 
the plasma ExB drift velocity during a crossing of the Southern auroral F region. Specifi-
cally, they analysed the spectral and scaling features of velocity fluctuations and pointed 
out the turbulent nature of the drift. In more detail, the authors provided evidence of 2D 
intermittent turbulence at scales from tens of meters to tens of kilometres. This is con-
sistent with filamentary or thin-tube-like features. 

One of the most important application issues is the risk assessment of the impact that 
ionospheric variations may have on technology. A proper risk assessment allows the de-
velopment of effective mitigation strategies. For example, ionospheric anomalies may re-
sult in potential threats for the ground-based augmentation system (GBAS), which is an 
airport-based augmentation of the GNSS capable of providing advanced civil-aviation 
services. When GNSS signals travel through ionospheric regions with enhanced gradients, 
severe errors may be observed and compromise the reliability of the GBAS. Thus, it is 
fundamental to quickly detect anomalies. In this context, Gao et al. [58] developed a mon-
itor to clearly detect anomalies with an average detection speed improved by more than 
16% when dealing with real data instead of simulations. Valdés-Abreu et al. [59] studied 
the effects of an annular solar eclipse on GNSS position estimation accuracy based on TEC 
measurements performed by over 2000 stations worldwide, which were validated with 
measurements by the Swarm satellite mission and four digisondes in Central and South 
America. In particular, TEC maps pointed out a TEC depletion under the moon’s shadow 
and important variations in both crests of the Equatorial Ionization Anomaly (EIA). Vari-
ations typically affect the amplitude of the signal and its delay (see Bravo et al. [60] and 
references therein) and can affect regions outside the umbra and penumbra of the eclipse 
[61–63]. With this global coverage, the work of Valdés-Abreu et al. [59] allowed them to 
find other locations in the world that could be affected by perturbations in the North Pole 
and infer how that perturbations propagate to those potential locations. 

A fundamental physical parameter for studying the impact of sunlit, solar and geo-
magnetic activity on the upper ionosphere and its coupling with the magnetosphere is the 
electron temperature. This quantity exhibits distinct features with spatial, diurnal, sea-
sonal and activity variability [64–71]. Pignalberi et al. [72] performed a statistical and 
global study of the electron temperature in the topside ionosphere derived from seven 
years of in situ data acquired by the Swarm mission at 1 s cadence. The results obtained 
with this unprecedented data set were compared to data modelled by the International 
Reference Ionosphere (IRI) model, as well as data obtained from incoherent scatter radars 
(ISRs). This also allowed an understanding of the deviation between the IRI model and 
the measurements and testing the reliability of including Swarm data in the empirical data 
set layer of the IRI itself. Finally, the authors showed that adding the Lomidze calibration 
to Swarm data [73] improved their agreement with ISR data and the IRI model, especially 
at mid-latitudes and during the daytime. Another significant parameter representative of 
the ionosphere is the equivalent slab thickness (EST), i.e., the ration of the TEC to the 
NmF2. By definition, this parameter represents an imaginary equivalent depth of the ion-
osphere and includes information on both the topside and bottomside ionosphere,  thus 
being useful in the study of variations in the upper atmosphere (see, e.g., [74–76]). EST 
exhibits diurnal, seasonal solar and geomagnetic activity variations with a dependence on 
the location of the observing station. The greatest variability is observed during periods 
of geomagnetic storms. Zhang et al. [77] analysed the EST in Guam, at equatorial latitudes, 
confirming and discussing previous results in the literature. In addition, they obtained 
some new results pointing out diurnal and seasonal changes and the effect of geomagnetic 
storms on EST at the magnetic equator. In particular, they found that during positive 
storms, the penetration electric field increases plasma uplift, causing an increase in TEC 
accompanied by small increases in NmF2. Moreover, equatorward winds drive plasma 
into the topside ionosphere at the equator resulting in TEC that does not undergo severe 
depletion like NmF2 does during negative storms. Thus, geomagnetic storms enhance EST 
both during positive and negative storms. 
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The monitoring of the physical properties of the ionosphere and their perturbation 
also has applications in the study of phenomena that can be considered as precursors of 
major seismic events. Since the early work of Moore [78] and Davies & Baker [79], the idea 
was proposed that the processes of earthquake preparation and occurrence could be 
linked to ionospheric disturbances due to lithosphere–atmosphere–ionosphere coupling. 
With the increase in available data, this idea has become more and more widespread, and 
in the last decades, new satellite missions have been conceived to monitor natural disaster 
activities (QuakeSat, SICH-1M, COMPASS-2, DEMETER, CSES). Satellites with other de-
clared purposes, such as the European Space Agency’s Swarm constellation, have also 
provided important information for ionospheric disturbances. Recently, several works in-
vestigated magnetic field anomalies observed by both ground and space facilities to study 
the lithosphere–atmosphere–ionosphere coupling effects of earthquakes [80–82]. In this 
context, deep learning techniques are used to carry out statistical studies based on the 
analysis of large numbers of earthquakes. Xiong et al. [83] proposed a deep learning 
framework for pre-earthquake ionospheric perturbation identification model called 
SafeNet, which performs better in identifying possible pre-earthquake ionospheric anom-
alies the more intense the earthquakes are. Ionospheric scintillations are also used for cor-
relations with the occurrence of earthquakes. Some studies in the literature pointed out 
that thermal expansion of the atmosphere derived from land surface temperature increase 
before earthquakes can generate small gravity waves altering the electron density profile 
and causing changes in the TEC, and, on the other hand, ionospheric perturbations can be 
detected in the hours after large earthquakes [84,85] (Tsugawa et al. 2011, Pavilidou et al. 
2019). Few works in the literature investigated the correlation between the occurrence of 
earthquakes and ionospheric scintillation (see, e.g., [86]). These studies take advantage of 
GPS data from ground stations or ionosondes to measure the scintillation index S4 and 
study its correlation with earthquakes in the same region. By using statistical tools, Molina 
et al. [87] for the first time used the GNSS reflectometry [88] technique to obtain global 
oceanic maps of ionospheric scintillation and correlate them to earthquake precursors. 
Their results point out a small positive correlation for earthquakes with magnitudes above 
4, with better results for increasing magnitudes. Correlation was better when positive in-
crements in the S4 index were observed between 6 and 3 days before the earthquakes than 
the ones observed after them. In the best case, the correct prediction probability is about 
32% and the false alarm probability is 16%; however, the probability of detection is small 
overall. The authors also recognise that the signature of ionospheric scintillation incre-
ments as precursors of earthquakes is still small and should not be regarded as an early 
warning system for earthquakes. 
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