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Abstract: The rapid identification of beached marine micro-plastics is essential for the determination
of the source of pollution and for planning the most effective strategies for remediation. In this
paper, we present the results obtained by applying the laser-induced breakdown spectroscopy (LIBS)
technique on a large sample of different kinds of plastics that can be found in a marine environment.
The use of chemometric analytical tools allowed a rapid classification of the pellets with an accuracy
greater than 80%. The LIBS spectrum and statistical tests proved their worth to quickly identify
polymers, and in particular, to distinguish C-O from C-C backbone pellets, and PE from PP ones.
In addition, the PCA analysis revealed a correlation between appearance (surface pellets roughness)
and color (yellowing), as reported by other recent studies. The preliminary results on the analysis of
metals accumulated on the surface of the pellets are also reported. The implication of these results
is discussed in view of the possibility of frequent monitoring of the marine plastic pollution on
the seacoast.

Keywords: marine litter; laser-induced breakdown spectroscopy; resin pellets; environmental
pollution; metals contamination

1. Introduction

The occurrence of microplastics in the environment has attracted great attention as it
has become a global concern. The most recent estimates put the amount of plastic reaching
the oceans on a global scale at over 150 million tonnes, of which about 250,000 tonnes
are fragmented into 5 trillion pieces that can float in water [1]. The economic damage
caused to the fish market and tourism is estimated by the United Nations Environment
Programme (UNEP) to be around 13 million USD each year [2]. The Mediterranean has
one of the highest densities of waste, with around 62 million floating objects over the entire
surface area, i.e., 17 times more than that estimated 35 years ago [3]. The origin of this huge
amount of plastic is varied: 80% of the plastic comes from land and the remaining 20%
from shipping [4,5]. Microplastics in a marine environment can originate from the photoox-
idation and fragmentation of macroplastics (“second generation microplastics”) or can be
directly introduced into the marine environment (“first generation microplastics”). Among
the latter, a high percentage in the microplastics range (from 1 to 5 mm) is represented by
“resin pellets”. Pellets are granules of different polymeric types and are used to produce
macroplastic objects via melting followed by extrusion and molding. Recent surveys have
shown that they comprise about 30% of the microplastics present in the sea and on beaches
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(see, for example, Merlino et al. [6] and references therein). Biodegradable polymers (poly-
lactide (PLA) and polybutylene adipate terephthalate (PBAT) have been recently added
to the more commonly traceable pellets (mainly polyethylene (PE), polypropylene (PP)
and polystyrene (PS)) [5] due to the commercialization and rapid diffusion of disposable
products, which in recent years have been replacing the classic single-use products made
of standard polymers, which were prohibited by the recent EU Directive n. 2019/904 and
European Delegation Law 2019–2020.

It is feared that plastic can enter the food chain through voluntary or involuntary
ingestion, causing damage not only through possible mechanical and physical effects due
to their accumulation, but also through the chemical transfer of harmful substances from
them to the stomachs of animals. These toxic substances can be absorbed from marine
water or can be incorporated into plastics during industrial processing [7].

Recently, the problem of resin pellet pollution has created many concerns. Since there
are still no strict regulations for the adoption of measures to prevent the possible loss of
these millimetre plastics during their transport, storage and processing, the pellets are
easily dispersed in the environment, and nowadays are present in many areas, including
polar areas [8]. Field experiments have shown such pellets have a high capacity to absorb
persistent organic pollutants (POP) [9,10] and metals [11].

Given the large number and variety of the pellets that can be recovered on sea coasts,
it is important to develop methods for the rapid in-situ identification of the constituent
materials of the pellets for individuating the origin of the plastic pollution but also for
devising the best strategies for site remediation. Recent studies have shown how plastic
pellets not only act as vehicles for metals in marine systems [12], but also act as an accumu-
lator matrix [12–14]. An analysis of microplastics from marine organisms of the San Diego
Bay area revealed a higher metal concentration (even by two orders of magnitude) than the
one from the marine particulate matter of the same bay [13]. However, Rochman et al. [15]
demonstrated that high-density polyethylene (HDPE) pellets typically accumulated lower
concentrations of metals listed as priority pollutants by the US EPA (Cd, Ni, Zn and Pb)
with respect to other kinds of plastics (polyethylene terephthalate (PET), polyvinyl chloride
(PVC), low-density polyethylene (LDPE) and polypropylene (PP)). It has been shown that
the microplastic pollution on the seacoast has a strong temporal and spatial dependence [6].
It is thus essential to develop fast and efficient methods for the analysis of microplastics
capable of operating in situ. Because of their capability to absorb and concentrate pollutants
from marine environments, over the years pellets have been used as non-living passive
samplers to avoid the slow and high-cost preparation of samples of costal environmental
media [16].

The techniques commonly used for the analysis of microplastics are FTIR and Raman
spectroscopy (see Ref. [17] for a critical discussion). These techniques are complementary
vibrational techniques and are often applied to analyse plastic debris extracted from sed-
iments, water and living organisms, as described in Xu et al. [18]. Most of the FTIR and
Raman analyses are preceded by manual visual sorting with a stereoscopic microscope, as
described in Bruno et al. [19] and in the mentioned paper by Xu et al. [18].

These techniques, however, although generally precise in the determination of the
pellets’ composition, are relatively slow and sensitive to the surface composition of the
pellets. In addition, the Raman spectra technique exhibits strong fluorescence caused
by micro-biological, organic and inorganic items on the plastic surface and the FTIR
spectra interfere with water, therefore the pellets must be carefully dried. Moreover, no
information about the accumulation of metals on the pellets’ surface can be obtained
from the spectra. The hyperspectral imaging techniques recently described in a review by
Faltynkova et al. [20], on the other hand, are in principle very fast, having the capability to
analyze several pellets at the same time. The drawback of these systems is the high cost of
the experimental apparatus required for the analysis (the ideal spectral range of analysis for
plastics extends from 1000 to 2500 nm). As in the case of FTIR and Raman, hyperspectral
imaging techniques do not give information about metallic pollution.
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In this paper, we explored the possibility of setting up a new rapid strategy to monitor
marine environments using the laser-induced breakdown spectroscopy (LIBS) technique.
The advantages of LIBS with respect to the above-mentioned techniques area speed, ease of
use and a relatively low cost of the experimental apparatus. Moreover, the LIBS technique
is also capable of analysing the metal accumulation on the sample surface, thus assuring a
full characterization of the pellets.

2. Materials and Methods

To explore the feasibility of the classification of marine pellets by LIBS, we first anal-
ysed a set of 828 samples of virgin polymers (provided by Polymeric Materials Chemistry
Laboratory of ICCOM-CNR), divided into 8 different classes corresponding to the polymers
reported in Table 1.

Table 1. Materials and corresponding number of samples analysed by LIBS.

Material Number of Samples Analyzed

HDPE
(high-density polyethylene) 85

NYLON 148
PBAT
(polybutylene adipate terephthalate) 99

PET
(polyethylene terephthalate) 82

PLA
(polylactide) 117

PP
(polypropylene) 111

PS
(polystyrene) 101

PVC
(polyvinyl chloride) 85

For the analysis, we used the Modì mobile LIBS instrument [21], equipped with a dual
pulse Nd:YAG laser, which emits two collinear laser pulses of about 20 ns FWHM at the
wavelength of 1064 nm. The pulse energy was set to 30 mJ per pulse, with an interpulse
delay of 1 µs. The acquisition delay was set to 1 µs (from the second pulse), with a gate
of about 2 ms (time-integrated acquisition). The laser pulses were focused on the sample
surface using a lens with 100 mm focal length to generate a plasma (the diameter of the
sampled area is typically around 100 µm on the surface, with a depth of about 1 µm). The
analysis takes place in the internal experimental chamber of the instrument. The LIBS
signal was collected using an optical fiber and sent to an AvanSpec-USB2 spectrometer
(from Avantes, NL) for acquisition. The LIBS spectrum, once acquired, was processed via
the proprietary LIBS++ software. The analysis is very fast (fractions of seconds per sample)
and minimally invasive, since a single laser shot is used for the analysis of the samples.

LIBS is essentially an elemental technique and, from an elemental point of view, the
8 polymers in Table 1 are very similar. Consequently, also the LIBS spectra of the samples
are very similar. In Figure 1 we reported the average LIBS spectra of the eight polymers,
showing almost no visible difference among the materials.

The prominent emission lines are, as expected, the carbon line at 247.9 nm, the CN
violet molecular band between 370 and 390 nm and the hydrogen Balmer alpha line at
656.3 nm. Emission lines from Mg, Ca, Na and K are also visible in the spectra.

Given the strong similarity of the LIBS spectra, the classification of the plastic samples
is not trivial. For differentiating the polymers, it is thus necessary to have recourse to
chemometric methods, which have been demonstrated to be very efficient in similar
studies [22–32].
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Figure 1. LIBS spectra of the plastic samples (average).

Among the many classification methods available, we chose a simple artificial neural
network classifier [33] (1 fully connected layer, 10 neurons) preceded by a principal compo-
nent analysis (PCA) step for reducing the number of input variables. The LIBS spectra were
zero-centered and normalized before the analysis. A 5-fold cross-validation was applied to
test the classification capabilities of the model on unknown samples. All the calculations
were performed using Matlab® R2022a.

After this analysis, we studied a set of “marine” pellets, taken on different beaches on
the coast between Tuscany and Liguria. We focused our attention specifically on PE and
PP, since these polymers, due their density, can float on top of the sea’s surface and are
predominant among the beached microplastics, and for these reasons are used as non-living
passive samplers for marine pollution detection [16].

These pellets were collected at three beaches: “Spiaggia delle Grazie” (La Spezia),
“Spiaggia di Marina di Pisa” (Pisa) and “Spiaggia del Calambrone” (Pisa), all three “natural”
beaches, i.e., not subject to cleaning operations during the sampling period.

The littorals under study do not present considerable daily tides that modify the ex-
tension of the beach. In any case, in order to avoid possible interferences, due to seasonality
or variations in environmental conditions, on pellet accumulation rates, the collection of
pellets was carried out over one week for all three beaches considered (March 2019). This
choice is also corroborated by previous studies showing minimal seasonal variations in
the density of pellets compared to other types of microplastics in the areas considered [6].
The number of pellets collected at each site (around 100) guarantees statistical significance,
and the methodology used (zig-zag transects along a 100 metre stretch of beach, from the
foreshore to the dunes or limiting structures in the inner part of the beach) is appropriate
for our target, which does not include the study of the spatial and temporal variability of
sample accumulation [34,35]. Pellets with a visible addition of dye (blue, black, brown,
red, etc.) were discarded at the outset as they could not be used as a non-living passive
samplers for the presence of additives added during manufacture [16,35]. All others (from
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transparent to white to yellow/amber) were placed in a glass container to avoid possible
contamination with plastic and/or metal materials and then brought to the laboratory.

Then the samples were filtered with a Giuliani sieve (2 mm mesh), washed with
deionized water and then placed in a dryer for two days. Once dried, pellets were classified
by seven different parameters: polymer type, dimension, shape, appearance, coloring, fouling
and the presence of superficial spots (see Figure 2).
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Figure 2. Different kinds of pellets. Masterbatch pellets are used in plastic manufacturing to carry
pigments or other additives.

Size, shape, appearance, fouling and presence of superficial stains were identified with
a Dino-LITE optical microscope (AM4113ZT 10x–50x, 220x Polarizing Digital Microscope);
meanwhile, for the classification of the colouring (yellowing), we followed the guidelines
set out by Fanini’s work [35], which consisted of a comparison between the polymers with
a colour scale used in the dental field [36]. Size was calculated by placing the pellets on a
graph paper and observing them by optical microscope. Appearance consists of the presence
or absence of surface roughness and porosity; pellets whose surface did not have porosity
were classified as smooth, while pellets whose surface did not appear homogeneous were
classified as porous. In other words, appearance parameter represents the pellets’ erosion
caused by the permanence in sand or sea (oxidative degradation process) to the pellets’
surface. Pellets have been classified according to the presence or absence of fouling and
surface stains. Fouling is a phenomenon due to the accumulation and deposition of living,
animal and plant organisms, both unicellular and multicellular (biofouling), or other non-
living substances, organic or inorganic [37]; superficial spots are biological matters but more
are superficial and not inside plastic fractures and irregularities.

Obtained data were analysed through Principal Component Analysis (PCA) [38]. The
results of the physical classification of pellets were converted into numerical data according
to the following nomenclature (Table 2).
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Table 2. Parameters and numerical conversion for physical classification of the pellets.

Number Parameter Numerical Conversion

1 Polymer PE → 0
PP →1

2 Size
2–3 mm → 0
3–4 mm → 1
4–5 mm → 2

3 Shape

Disk → 0
Cylinder → 1
Sphere → 2

Masterbatch → 3

4 Appearance Smooth → 0
Rough → 1

5 Color

Transparent → 0
White → 1
Gray → 2

Yellow → 3
Light Amber → 4
Dark Amber → 5

6 Fouling Yes → 0
No → 1

7 Superficial spots Yes → 0
No → 1

3. Results
3.1. LIBS Classification of the Plastic Samples

The results of the analysis showed that a simple artificial neural network (ANN)
classifier can guarantee a very high classification efficiency (the percentage of samples
correctly classified is greater than 75%). The resulting confusion matrix is shown in Figure 3.
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It can be observed that the true positive rate (true positives/total number) of PLA,
PP and PVC is around or above 80%, with a maximum of 95.1% for PVC, while the true
positive rates of PET, PBAT, NYLON, PS and HDPE are considerably lower. Notably, HDPE
is mostly confused with NYLON (7.3%) and PLA (7.3%) and only at 3.7% with PP, while
PP is, again, mostly confused with PLA (8.1%). Nylon is confused with HDPE (12.2%) and
PBAT (11%), PBAT with NYLON (9.8%) and PET with PLA (12.2%) and PP (8.5%). Note
that, to avoid possible bias in the classification due to the different number of samples per
polymer type, we downsized the number of samples and performed the analysis on only
82 samples per type.

Despite that, the classification efficiency of the model can be considered more than
satisfactory, given that the LIBS spectra were taken with a mobile instrument. Moreover, just
one spectrum per sample was acquired and all the spectra were used for the classification,
including possible outliers resulting from laser intensity fluctuations and/or focusing
issues on the transparent sample surface.

3.2. Metal Analysis

As already described, “marine” beached pellets were analysed exploiting the same
experimental setup used for the classification of the pristine pellets. As preliminary test,
the LIBS spectra of a few of them were studied to detect possible contamination by metal
pollution. We observed in the LIBS spectra (not shown here) weak emission lines of Al
(394.4 nm and 396.2 nm), Fe (373.5 nm and 373.7 nm), Pb (405.8 nm) and Cr (425.4 nm and
427.5 nm). These lines were detected only in a thin layer corresponding to the portions
of the surface covered by fouling or surface spots. The results are in accordance with
the findings of Rochman et al. [15], which showed that the accumulation of metals does
not occur directly on the polymer matrix but is mediated by the biofilm layer of marine
fouling [39,40]. Further studies are planned to assess the feasibility of this kind of analysis;
on the samples analysed, we verified that the lines of the metallic pollutants completely
disappeared after the first laser shot on the surface. Therefore, in the analysis of beached
pellets, it might be necessary to send two laser shots on the sample, the first to analyse
the metals on the surface, and the second to determine the chemical nature of the sample.
This can be completed in a fraction of a second, therefore the time of analysis would not be
substantially affected.

3.3. PE and PP Resin Pellets Characterization

From the PCA analysis of the sub sample of PE and PP pellets collected in three Italian
coastal areas (Figure 4), despite the relatively low variance (<50%) explained by the first
two PCs, we observed a definite correlation between the fouling and presence of surface
stains variables. The appearance and the color variables are also related to each other.

It is interesting to note that the size distribution of the pellets varies for the three
beaches considered. On the ‘Le Grazie’ beach, we had about 30% of the pellets in class
1 (between 3 and 4 mm) and 70% in class 2 (between 4 and 5 mm). On the ‘Calambrone’
beach, the distribution changed to 40% in class 1 and 60% in class 2, while on the ‘Marina
di Pisa’ beach, the pellets were equally distributed between class 1 and class 2. On all the
beaches, the percentage of pellets in class 0 (between 2 and 3 mm) is negligible (<10%).
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4. Discussion

This study highlights the possibility of easily and quickly distinguishing different poly-
mer types among the samples collected during beach/sea microplastic surveys using LIBS.

So far, the golden standard technique to characterize pellets or plastic fragments
is FTIR, but LIBS analysis is much faster (fractions of seconds for a single pellet). In
addition, LIBS leads many advantages compared to FTIR, as it has the possibility to set up
polymer characterization and metal contamination in the same analysis session (with the
first ablation, the instrument detects metals on pellets surface, then with the second one, the
laser ablation reaches the inner part of the polymer) and the option to collect information
about the stratification of pollutants in the polymer matrix.

The scientific literature reports that PP and PE are the most common polymers used as
marine pollution environmental proxies [16,35,41,42]. In fact, PE and PP, due their densities,
can float on top of the sea’s surface, where most pollutants, especially polycyclic aromatic
hydrocarbons (PAHs), are present. Other polymers, with higher densities, sink under the
sea and are not easily collectable. In addition, following Endo et al. [34], prescriptions
PE pellets have been used for a long time as passive samplers of POP pollution in the
International Pellet Watch project [16,43,44], as they seem to present larger surface areas
than PP and other common pellets, and to have an affinity for a wide range of organic
contaminants varying in hydrophobicity [39,45–47]. The prescribed protocol for these
studies involves the collection and separation of PE pellets from other types of collected
beached pellets, with which they are easily confused if one relies solely on appearance.

Hence, it is therefore extremely useful to have a methodology that can quickly distin-
guish visible eroded and coloured PE pellets from other types of polymers, and particularly
PP, considering that PE and PP together, due to their low specific gravity, account for about
80% of the beached pellets.
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The PCA analysis conducted on our collected beached pellets revealed the correlation
between the two pellet parameters of appearance and colour; surface porosity and staining
formation are two parameters that are dependent on each other [48]. The highly oxidizing
and stressful environment of the sea leads to the formation of cavities and therefore makes
the surface porous [49]. This is because PE and PP degradation proceeds according to the
Norrish II reaction [50]. The phenomenon is reported by other studies involving pellets
collected from the beach and sea. They showed that prolonged residence in a marine
environment produces an enhanced yellowing of resin pellets [51,52], which increases with
time of exposure, as observed by Brandon in their long-term experiment conducted in tanks
filled with seawater [36,53]. This has recently been confirmed by in-situ experiments on
different types of pellets kept in sand and open water immersion [54], showing that a period
of 6 months is sufficient to produce a visible change in colouration from white/transparent
to yellow. However, the yellowing process can also be due to the absorption of pollutants
by the surrounding environment: De Monte et al. [54] found that all sea samples show
a more pronounced colour deviation towards yellow/amber compared to sand samples;
this fact seems to indicate that in the first environment, i.e., the sea, the processes causing
yellowing are enhanced.

The use of pellets as a “proxy” for pollution, widely used both for the International
Pellets Watch and in subsequent studies, requires the analysis a large number of PE samples,
which must be identified among all those sampled. The use of LIBS instead of the more
classical method with the FT-IR makes it possible to greatly reduce the time required for
pellet sorting and, at the same time, to obtain data on the metal pollution of the pellets, a
type of study that is still scarce in the literature.

5. Conclusions

In this paper we have successfully tested the feasibility of an in-situ LIBS analysis of
preproduction micro-plastic pellets, many of them collected from a marine environment.

While the cost of a portable LIBS instrument can be comparable to a portable FTIR or
a Raman instrument, the main advantage of the technique is the possibility of performing a
very fast analysis (fractions of seconds per pellet) on untreated samples, providing with
the same measurement the classification of the pellet material and the concentration of the
metals accumulated on the pellet’s surface.

In fact, this study has demonstrated that the pellets can be classified with a good
efficiency (>75% on the average) in a fraction of second, a figure that could increase sub-
stantially by applying spectral selection methods for outlier rejection. The LIBS spectrum
and statistical tests proved valuable in quickly identifying polymers, in particular distin-
guishing C-O from C-C backbone pellets, and PE from PP ones. Moreover, a preliminary
study has provided encouraging results on the possibility of detecting and measuring the
metals accumulated on the surfaces of beached pellets. In addition, the PCA analysis on a
sub sample of PP and PE pellets revealed a correlation between plastic appearance and color,
as reported by other studies (De Monte et al. [54] and Endo et al. [34]).

These findings could help monitor marine coasts in a more simple way and at a lower
cost using easily collectable pellets, as proposed by Ogata et al. [16], who introduced the
first International Pellet Watch (IPW).
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