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During the lithospheric buildup to an earthquake, complex physical changes occur within
the earthquake hypocenter. Data pertaining to the changes in the ionosphere may be
obtained by satellites, and the analysis of data anomalies can help identify earthquake
precursors. In this paper, we present a deep-learning model, SeqNetQuake, that uses
data from the first China Seismo-Electromagnetic Satellite (CSES) to identify ionospheric
perturbations prior to earthquakes. SeqNetQuake achieves the best performance [F-
measure (F1) � 0.6792 and Matthews correlation coefficient (MCC) � 0.427] when directly
trained on the CSES dataset with a spatial window centered on the earthquake epicenter
with the Dobrovolsky radius and an input sequence length of 20 consecutive observations
during night time. We further explore a transferring learning approach, which initially trains
the model with the larger Electro-Magnetic Emissions Transmitted from the Earthquake
Regions (DEMETER) dataset, and then tunes the model with the CSES dataset. The
transfer-learning performance is substantially higher than that of direct learning, yielding a
12% improvement in the F1 score and a 29% improvement in the MCC value. Moreover,
we compare the proposed model SeqNetQuake with other five benchmarking classifiers
on an independent test set, which shows that SeqNetQuake demonstrates a 64.2%
improvement in MCC and approximately a 24.5% improvement in the F1 score over the
second-best convolutional neural network model. SeqNetSquake achieves significant
improvement in identifying pre-earthquake ionospheric perturbation and improves the
performance of earthquake prediction using the CSES data.

Keywords: earthquake, pre-earthquake anomalies, CSES and DEMETER satellites, ionospheric plasma, transfer
deep learning, physical mechanisms

INTRODUCTION

Earth observation by satellites offers several advantages such as wide coverage, short repeat
observation period, fast data update, and non-restriction by ground conditions, which makes up
for the shortcomings of conventional ground-based observations that cannot attain large-area,
dynamic, and continuous earthquake precursor information (Shen et al., 2013). Among such
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observation satellites, the China Seismo-Electromagnetic Satellite
(CSES) (Shen et al., 2018) [as known as ZhangHeng-1 (ZH-1)]
and DEMETER (Detection of Electromagnetic Emissions
Transmitted from Earthquake Regions) (Parrot, 2006) were
launched in February 2018 and June 2004, respectively, which
have been designed to detect variations in the electromagnetic
environment in space to support earthquake monitoring and
research. These satellites have accumulated a wealth of scientific
data and enabled many research achievements over the years of
their continuous operation.

Ionospheric anomalies related to earthquakes are typically
investigated via case studies and statistical analyses. Two
magnitude 6.9 and 7.4 earthquakes struck the area of Kii-
Peninsula (Lat � 33.05°N, Long � 136.78°E) on September 5,
2004 at 10.07.07 and 14.57.18 UT, respectively, were the first for
which many ionospheric perturbations were identified as
earthquake precursors using the DEMETER data (Parrot et al.,
2006a). It was discovered by Zhang et al. (2009) that the ion
density dropped suddenly 3 days before the Wenchuan
earthquake struck on May 12, 2008, and that the ion density
dropped to its lowest level 3 days before the earthquake. About a
month before the earthquake, the equatorial ionosphere started to
exhibit anomalies, and it peaked 8 days before the mainshock
(Ryu et al., 2014b). Píša et al. (2011) showed that the plasma
density increased remarkably before an earthquake in Chile.
Many studies have confirmed that ionospheric perturbations
recorded by DEMETER can detect anomalies related to
earthquakes with good sensitivity, including the 2007 Pu’er
earthquake (Mofiz and Battiston, 2009; He et al., 2011), and
earthquakes in L’Aquila (Bertello et al., 2018) and Haiti
(Athanasiou et al., 2011). The CSES data have also recorded
perturbations in ionospheric plasma parameters before large
earthquakes. The first earthquake with Ms > 7.0 recorded by
CSES was the Ms 7.1 earthquake in Mexico on February 17, 2018;
disturbances in low-frequency electromagnetic waves and
ionospheric plasma were found 1 day before the earthquake
(Shen et al., 2020). Yan et al. (2018b) analyzed the electron
density observed by the Langmuir probe (LAP) on the CSES
before the Ile Hunter M7.1 earthquake on August 29, 2018, and
found that the electron density (Ne) near the epicenter suddenly
increased 12 and 9 days before the event. The 6.9-magnitude 2018
Bayan earthquake has also been studied in detail for co-seismic
and precursor phenomena (Piersanti et al., 2020b) using CSES,
ERA-5, and ground data. Vertical Total Electron Content
(VTEC) precursor anomalies were detected starting 5.3 h
before the earthquake, accompanied by a sharp, temporary
decrease of the Frequency Resonance Line (FLR) 6 h before
the earthquake and followed by a similar co-seismic FLR
decrease. Marchetti et al. (2020) investigated ionosphere
disturbances associated with the Ms 7.5 earthquake in
Indonesia on September 28, 2018, by analyzing the electron
density and magnetic data from the CSES during a quiet
geomagnetic period and found that anomalies were
concentrated around 2.7 months before the quake. In addition,
there are many techniques used to detect pre-earthquake
ionospheric anomalies, such as Global Navigation Satellite
System (GNSS), Constellation Observing System for

Meteorology, Ionosphere, and Climate (COSMIC), etc. Shi
et al. (2021) investigated ionospheric anomalies in the F2
region (Nmf2), vertical structure (GNSS radio occultation
profile) and multi-height (electron density) pre-earthquake
anomalies for the Concepcion, Chile, earthquake (February 27,
2010, Mw 8.8). The findings indicate that there were evident local
Nmf2 disturbances in the epicenter region for up to 5 h on the
21st and 25th of February. The perturbations of the radio
occultation profiles, as well as the interaction of other layers of
the ionosphere, indicated the presence of fluctuation signals with
significant long-wavelength fluctuations >50 km in the F layer.
Total electron content (TEC) and oblique electron content
(STEC) data from GNSS sites near the April 25, 2015 Mw7.8
earthquake in Nepal (Shi et al., 2020) and the January 23, 2018
Mw7.9 earthquake in Alaska (Zhang et al., 2021), after processing
and analysis by the singular spectrum analysis (SSA) method,
revealed a large-scale TEC anomaly in the epicenter and
conjugate region.

Statistical research is a way for studying pre-earthquake
ionospheric anomalies. Němec et al. (2008,2009) conducted
statistical research using electric-field data up to 10 kHz, and
the statistics show a significant reduction in wave intensity of
4–6 dB in several hours before the earthquake. Similar but less
prominent (only two sigmas) results were also found by Píša et al.
(2012,2013). The correlation between the equatorial anomalies
observed by DEMETER and seismic activities have been analyzed
based on electric-field measurements (Hobara et al., 2013) and
equatorial plasma density (Ryu et al., 2014a). Further, other
statistical analyses using the complete DEMETER dataset have
shown that the number of disturbances first increases and then
gradually decreases during earthquakes (Li and Parrot, 2013; Yan
et al., 2017; Parrot and Li, 2018; Xiong et al., 2020). De Santis et al.
(2019c) used 2.5 years of data from the Swarm satellite to analyze
magnetic field and electron density data for months before and
after the 12 strong earthquakes. They discovered significant
concentrations of electron density and magnetic anomalies
that occurred 2 months to a few days before the earthquakes
and magnetic anomalies that occurred after the earthquakes. De
Santis et al. (2019b) then used more Swarm three-satellite data
(4.7 years) to confirm the findings. The CSES team has examined
strong earthquakes withMs > 6.0 in China and earthquakes of Ms
> 7.0 worldwide since the CSES launch and explored the
characteristics and mechanisms of ionospheric disturbances
characteristics before and after earthquakes (Shen et al., 2020).

However, most existing studies have only examined pre-
earthquake ionospheric anomalies in the context of specific
earthquakes; the lack of consistent analysis methods and
anomaly evaluation metrics may lead to inconsistent analysis
results for the same earthquakes. Therefore, suitable and
generalizable research methods must be developed. In this
study, we proposed and tested an efficient analysis method for
pre-earthquake ionospheric perturbations discrimination using
electromagnetic satellite data accumulated over many years by
utilizing deep-learning techniques widely used in recent
earthquake studies (Rouet-Leduc et al., 2018; Bergen et al.,
2019; Gulia and Wiemer, 2019; Ross et al., 2019; Xiong et al.,
2020).
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Pre-earthquake perturbation identification using LAP data
(Lebreton et al., 2006; Yan et al., 2018a) with electron
temperature and electron density data from the CSES and
DEMETER datasets was explored using a sequence-to-
sequence architecture based on deep transfer learning; these
data covered earthquakes worldwide. As CSES has only
accumulated a few years of data since its launch, and thus, has
covered relatively less earthquakes, the analysis of these data may
not be robust. An extensive database containing more than
6 years of data from DEMETER and the transfer-learning
technique (Pan and Yang, 2010) was used to overcome this
limitation. First, we employed the DEMETER data to train an
ensemble model combined with a convolutional neural network
(CNN) and a bidirectional long short-term memory (Bi-LSTM)
network. We then further trained the model with a small set of
CSES data. The proposed method, known as SeqNetQuake, is a
deep-learning method based on a sequence-based classification
neural network for pre-earthquake perturbation identification,
and its performance is compared to that of other state-of-the-art
techniques. Finally, the method’s results allowed us to perform a
test of hypothesis regarding the physical mechanisms of
earthquake-induced ionospheric perturbations.

DATA AND PROCESSING

Dataset
CSES and DEMETER satellites were both launched specifically
with the purpose of monitoring earthquakes. The DEMETER
satellite was launched in 2004 by France and ceased data
collection at the end of 2010, with an operating time of
6.5 years (Parrot, 2006). Data along more than 30,000 orbits
were obtained, which provided a solid data foundation for the
research in earthquake monitoring and ionospheric physics.
During the operation of the DEMETER satellite, preliminary
preparations for the CSES program were initiated and
successfully launched on February 2, 2018 (Shen et al., 2020).
However, compared to DEMETER, CSES is designed for a lower
orbit altitude of 507 km, which is closer to the ionospheric peak
region; the lifting and lowering nodes are at 14:00 and 02:00 local
time, also known as day-side or night-side orbits, and the day-side
observation time is when the peak ionospheric electron density
occurs; the satellite revisiting time is set to 5 days, which is denser
than the 16 days revisiting time of the DEMETER satellite.

Of the scientific payloads on CSES, the LAP is the in situ space
plasma detection device (Liu et al., 2018). LAP can measure
electron density (Ne) in the range of 5 × 102–1×107 cm−3, and
electron temperature (Te) in the range of 500–10,000 K, with a
relative accuracy of 10%, allowing the analysis of Ne and Te to
study space plasma physical phenomena and ionospheric changes
caused by earthquakes, magnetic storms, and other events. CSES
data, including LAP electron density and electron temperature
from August 1, 2018 to June 22, 2020, were utilized in this study.
During this period, 6004 EQs with magnitudes ≥4.8 were
recorded (USGS: http://www.usgs.gov). Due to the impact of
the magnetic storm and the Sumatra earthquake from November
to December 2004, we excluded the data from the DEMETER

satellite in 2004 and started our study using the data from 2005
onwards. The DEMETER data used in this study included LAP
electron density and electron temperature from 2005 to the end of
2010. During this period (about 6 years), 20,727 EQs with
magnitudes ≥4.8 were recorded. The Kp index was referenced
to avoid the effect of solar and magnetic activities (Kp > 3) in
this paper.

Data Processing
To avoid mixing pre-and post-seismic effects, we deleted the
aftershocks from the list of earthquakes in this study (Yan et al.,
2017). In our study, all the seismic events in the area of 2° × 2°

centered on the epicenter and within 15 days after the given
earthquake were considered aftershocks. The choice of 15 days as
the largest anticipation time of the pre-earthquake anomaly was
made for convenience; otherwise, we could not exclude
dependence on the impending earthquake magnitude (De
Santis et al., 2019b). We first sorted the list of seismic events
by time, selecting and removing the aftershocks for an earthquake
(given earthquake) in the list in turn. After these operations, we
dropped 3013 and 11,815 aftershocks for CSES and DEMETER
data analysis. Finally, 2991 (CSES) and 8912 (DEMETER)
independent earthquakes remained on the list, respectively.
Additionally, we also deleted the data corresponding to the
aftershocks.

To validate the dependability of machine learning
technologies and to enhance their robustness, we generated
the same number of artificial non-seismic events as real
earthquakes, randomizing and shifting times and locations to
avoid overlapping with the real earthquakes. We randomly
sampled time, latitude, and longitude within the selected
spatio-temporal range, following the given constraints: 1) the
longitude or latitude is not within 10° before and after the
longitude or latitude of a real earthquake, and 2) the time is
not within 15 days before and after a real earthquake.

The operational modes of the Langmuir Probe onboard CSES
include survey mode and burst mode (Yan et al., 2018a). As the
sweeping period of the two modes is different, we used simple
linear interpolation to interpolate the data in the survey mode so
that the time resolution of the two modes was 1.5 s.

METHODS

The continuously observed satellite data is susceptible to errors
caused by satellite payload interference, space environment, and
other factors. To avoid such errors, we used fixed-length sliding
windows (also called “sequences”) to partition continuous
observation data and used them as inputs to our proposed
model. Moreover, because time series data is a strongly auto-
correlated series of values, we segmented the data as continuous,
but not overlapping, sliding windows. To ensure that the data in
each time window were continuous, we carefully checked the time
difference between the first and the last data points sorted by time
in each time window and deleted time series windows with
unreasonable time differences (i.e., gaps). Then, we formulated
the pre-earthquake ionospheric perturbation discrimination task

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7792553

Xiong et al. Transfer Learning to Identify Perturbations

http://www.usgs.gov
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


as a multiclass multivariate time series classification
problem, where the non-seismic-related data were labeled
as 0, seismic-related data were labeled as 1, and the data with
a Kp index greater than 3 (regardless of whether the data were
related to an earthquake) were labeled as 2, which indicated
density perturbations due to solar and magnetic activity
(Parrot et al., 2006b), as depicted in Figure 1. The labeled
sequence data are well illustrated in Supplementary Figure
S1, which show real cases of different labels. The red dashed
boxes in Supplementary Figure S1 indicate non-seismic
data with labeled 0. The green dashed boxes indicate
seismic-related data with labeled 1 before the Chile Ms 8.8
earthquake on February 27, 2010. The blue dashed boxes are
synchronous perturbations (labeled as 2) with large

fluctuations in the data during the large magnetic storm
on May 15, 2005.

The Earth’s magnetic field experiences temporal fluctuations
and displays known trends associated with the movement of the
poles, and time series data have strong autocorrelation properties.
Each dataset was rigorously divided into two contiguous parts:
the first 80% (chronologically) of the data were used for model
training, and the last 20% for testing and final evaluation.
Specifically, the DEMETER dataset was divided into TR0
(training set) and TS0 (test set), and the CSES dataset was
divided into TR1 (training set) and TS1 (test set). We first
trained the deep-learning models with the DEMETER dataset;
its architecture is shown in Figure 2. Then, we further tuned the
models with the CSES dataset for transfer learning.

FIGURE 1 | Sequence labeling after segmenting the data with a sliding window. Consecutive observations of Ne and Te are segmented by non-overlapping sliding
windows. T is the length of the window. Non-seismic data are labeled as 0 (class #0), seismic-related data are labeled as 1 (class #1), and data with a Kp index >3 are
labeled as 2 (class #2), regardless of whether or not they are related to an earthquake.
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Deep Neural Networks
In our study, we combined a CNN and Bi-LSTM to train our
proposed model SeqNetQuake (Figure 2). The model’s
architecture is composed of one-dimensional convolutional
layers, a one-dimensional Bi-LSTM structural layer, and a fully
connected (FC) block. The SeqNetQuake model employs CNN
layers to extract features from the input data and Bi-LSTMs for
sequence prediction. SeqNetQuake reads subsequences of the
main sequence as blocks, extracts features from each block, and
then allows the LSTM layer to interpret the extract features. To
enable the same CNN model to read each subsequence in the
window, the whole CNN model is wrapped in a TimeDistributed
layer. After flattening the retrieved features, they are forwarded to
the Bi-LSTM layer for reading, and further features are extracted.
Conceptually, the 1D convolutional layers are used to extract the
data features, after which the Bi-LSTM structures optimize the
feature extraction in the sequential data. Finally, an FC layer is
employed to generate a classification probability. The loss
function was categorical cross-entropy, and the optimization
was performed using the Adam method (Kingma and Ba, 2014).

The suggested model was developed using the Keras (v 2.3.0)
interface with TensorFlow 2.0 (Abadi et al., 2016). To facilitate
fast training, all models were built on a server equipped with two
Intel Xeon E5-2650 v4 CPU processors, 128 GB of RAM, and an
NVIDIA GeForce RTX 2080 Ti graphics processing unit (GPU)
(Oh and Jung, 2004). As the proposed method is sensitive to the

selected parameters, Bayesian hyperparameter tuning (Snoek
et al., 2012) was utilized to determine the parameters that
provide the best performance, and the Hyperopt Python
package (Bergstra et al., 2013) was used to implement it. In
this process, the negative of the F-measure (F1) was used as the
return value (loss) of the objective function. The process selects
the most promising hyperparameters based on their ability to
minimize an objective function by building a probability model
based on the past evaluation results. Thus, this study can better
perform with fewer iterations than the required efforts to conduct
random and grid searches. Supplementary Table S2 provides the
information on the search space for the significant parameters of
SeqNetQuake. The maximum number of iterations for each
model was set to 100. Supplemental Dataset S1 provides the
hyperparametric optimization trial results for all the datasets
passed through SeqNetQuake and other benchmarking classifiers
when we train the model.

Transfer Learning
Transfer learning describes when a complex model that has been
trained using a large dataset for a specific task is further trained
for a related task with limited data (Pan and Yang, 2010).We used
the training data from the large DEMETER dataset (TR0) for
initial training, the test data of the large DEMETER dataset (TS0)
was used for testing the initial model, and then transfer learning
was employed using the small CSES training dataset (TR1)

FIGURE 2 | Generalized model architecture of SeqNetQuake and the transfer learning process. Conv1D: 1-D convolutional neural network; MaxPooling1D: 1-D
max-pooling layer; Dropout: drop-out layer; Bi-LSTM: bidirectional long short-term memory layer. “Flatten” and “Dense” are the names of the functional layers.
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(Figure 2). All the weights/parameters that were learned using
TR0 were retrained for TR1. We trained all the model weights
without freezing any layer during transfer learning, as this
approach provides better results (Hanson et al., 2020). The
small CSES test dataset (TS1) was used as an independent test
set during transfer learning, and the hyperparameters used were
the same as those employed when we train the models on the TS0
dataset.

Performance Evaluation
The DEMETER and CSES datasets are often class imbalanced
where the number of the samples representing non-seismic class
is much higher than the number of the samples in the other
classes (Japkowicz and Stephen, 2002). In this case, a trivial
classifier that predicts each sample as the majority class can
obtain very high accuracy, and therefore, the overall
classification accuracy is not accurate to evaluate the
performance. Therefore, we use the F-measure (F1) evaluation
model, which considers the correct classification of each class to
be equally important. The F1-score is a metric that combines
precision and recall. It is usually described as the harmonic mean
of both. Thus, the class imbalance is countered by weighting
different classes according to their sample proportions.

Beyond the metric mentioned above, which emphasize the
positives, theMatthews correlation coefficient (MCC) (Matthews,
1975) is also adopted.

Further, receiver operating characteristic (ROC) curves, plots
of the true positive rate (TPR) against the false-positive rate
(FPR), were used to evaluate the classifier’s output quality in this
study. ROC curves are typically used in binary classification
contexts to evaluate the output of a classifier. To extend the
ROC curve and ROC area for multiclass classification, the output
is binarized, and one ROC curve can be drawn and used to
evaluate classifier quality per class. In addition, we calculated the
area under the ROC curve, termed as AUC, which is used to
distinguish different models. Higher AUC values were considered
to be indicative of superior methods for the identification of pre-
earthquake ionospheric perturbations.

Finally, to visually demonstrate the classification performance
of each class, ternary probability diagrams and confusion
matrixes were used to show the probability distributions for
each input class of the test data and the distribution of the
predictions and actual values.

Comparison of the Methods
Five state-of-the-art methods were benchmarked for the study
task: the gradient boosting machine (GBM) (Friedman, 2001),
deep neural network (DNN) (LeCun et al., 2015), random forest
(RF) (Geurts et al., 2006), CNN (Krizhevsky et al., 2012), and
LSTM (Hochreiter and Schmidhuber, 1997) models. These
methods were implemented in Python (v 3.6) with scikit-learn
(v 0.20.0) and Keras (v 2.3.0). As the investigated models are
sensitive to parameter selection, we chose parameters that yielded
the best performance using Bayesian hyperparameter tuning, as
described above. After optimal parameters were determined for
each method, the performances of the different methods were
compared.

RESULTS

Direct Training Using CSES Data
We first directly trained the proposed SeqNetQuake model using
the CSES dataset, which was further contiguously divided into a
training set (TR1) and a test set (TS1). Given that there is no
universal standard for the lengths of the input sequence and the
spatial window, we initially configured the data with 10
consecutive observations as the input sequence length, a
spatial window centered at the epicenter, a deviation of 3°, and
nighttime data in the initial configuration (DataSet 01 in
Supplementary Table S1).

As shown in Supplementary Figure S2, ROC curves are adopted
as a performance metric, as they depict relative trade-offs between
true positives (benefits) and false positives (costs) for each class; the
model’s performance using nighttime data is displayed for three
classes. Supplementary Figures S2A–C demonstrates that the AUC
values of classes 0 and 1 are higher than 0.7, indicating that themodel
can roughly identify the time series related to earthquakes and non-
seismic events, but the AUC of class 2 is only 0.6128, indicating that
the model’s accuracy in identifying space weather such as magnetic
storms is not high. This may be attributed to the smaller number of
samples used to train class 2, which could have led themodel to fail to
extract the features of this class. Supplementary Figure S2D shows
the bar plot curves of MCC, F1 score, and accuracy, which reflect the
model’s overall performance. The results are similar to those implied
by the ROCcurves, indicating that themodel can distinguish, to some
extent, earthquakes, non-seismic, and space events. In general, the
performance of the model based on the initial configuration was
reasonable but relatively weak. Therefore, we explored whether
combining datasets with different temporal and spatial features or
different models may offer better performance.

Nighttime vs. Daytime Data
Data acquisition time may impact pre-earthquake electromagnetic
perturbation identification. A daytime dataset (DataSet 02 in
Supplementary Table S1) was generated to demonstrate the
influence of data acquisition time. As shown in Figure 3 and
Table 1, benchmarking datasets collected during the daytime and
nighttime were used to compare SeqNetQuake’s results with different
data acquisition times. We employed AUC, MCC, F1, and accuracy
metrics to evaluate the model’s performance.

In general, we discovered that the use of the nighttime datasets
(DataSet 01 in Supplementary Table S1) leads to better classification
performance than the daytime dataset for the same spatial and
temporal features (Table 1). The ROC curves of SeqNetQuake for
both datasets are shown in Figures 3A–C, and we can see that the
AUC curve of SeqNetQuake with the nighttime data is a little higher
than that with the daytime data, with about 8, 8, and 10%
improvements in AUC for the three classes. When all the classes
are considered, the F1 score of SeqNetQuake increases from 0.5963 to
0.6238when the nighttime data are used, compared to thosewhen the
daytime data are used, and MCC improves by 33% (Table 1).
Figure 3D compares the daytime and nighttime MCC, F1 score,
and accuracy values, all of which show better performance with the
nighttime data. These findings may represent a small number of
significant changes in daytime data, since ionospheric conditions are
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oftenmore disrupted during the day, making identification of seismic
electromagnetic impacts more challenging. This conclusion is
consistent with statistical findings on electromagnetic disturbances
associated with earthquake activity (De Santis et al., 2019b; Němec
et al., 2008,2009; Píša et al., 2012,2013).

Effect of Input Sequence Length
We observed that using the dataset with 10 consecutive
observations (DataSet 01) per sliding window as the input
sequence length yields good classification performance. To
further study whether the SeqNetQuake method can identify
pre-earthquake perturbations using different input sequence
lengths, datasets with an input sequence length of 20
consecutive observations (DataSet 03), 30 consecutive
observations (DataSet 04), 40 consecutive observations
(DataSet 05), and 50 consecutive observations (DataSet 06)
were generated (Supplementary Table S1).

Figure 4 shows the ROC curves and MCC, F1 score, and
accuracy bar plot curves for the datasets with different input
sequence lengths. Table 1 shows the classification performance

measures using SeqNetQuake. As shown in Table 1, the overall
F1 scores range from 0.5959 to 0.6658, and the MCC ranges from
0.2629 to 0.3875 for different datasets; these values are also
demonstrated in performance comparison in Figure 4D.
When the input sequence length increases, the model’s
performance fluctuates; the best performance is achieved using
the dataset with the input sequence length of 20 consecutive
observations (DataSet 03). The ROC curves shown in Figures
4A–C also suggest that SeqNetQuake provides satisfactory
performance for each class using DataSet 03. However,
SeqNetQuake’s performance becomes worse if the input
sequence length increases by more than 20. We infer from
these findings that the length of the input sequence has an
impact on the results of the SeqNetQuake model and that the
best performance is achieved with an input sequence of 20
consecutive observations.

Effect of Different Spatial Windows
SeqNetQuake performed well for a circular region centered at the
epicenter with a deviation of 3° (DataSet 03). To further explore

FIGURE 3 | Receiver operating characteristic (ROC) curves displaying the performance comparison between model use in the nighttime and daytime data for (A)
class 0, (B) class 1 and (C) class 2. (D) Bar plot curves of Matthews correlation coefficient (MCC), F1 score, and accuracy comparing model performance for nighttime
and daytime data use.
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the influence of different spatial windows on the model’s
performance, satellite datasets using spatial windows with
Dobrovolsky radius (DataSet 07), a deviation of 5° (DataSet
08), 7° (DataSet 09), and 12° (DataSet 10) were generated
(Supplementary Table S1).

Rows 6 to 10 in Table 1 show the SeqNetQuake’s performance
using the five datasets, and Figure 5 shows the ROC curves and
MCC, F1 score, and accuracy bar plot curves. SeqNetQuake
attains the best performance using the dataset with the spatial
window radius given by the Dobrovolsky’s formula (DataSet 07),
achieving an F1 score of 0.6792 and anMCC of 0.427. Comparing
the results from Figure 5D and Table 1 reveals a slight increase in
the overall performance achieved when the spatial windows are
larger. This trend is also shown in the ROC curves in Figures
5A–C, and the AUC value of DataSet 07 is the best among the
datasets. Though the explanation for these results is unclear, it
might concern the fact that, geometrically, a disturbance traveling
upward from the earth surface may alter the ionosphere’s
characteristics, and the radius of the affected region matches
the radius estimated using Dobrovolsky’s formula.

Initial Training on DEMETER Data and
Transfer Learning on CSES Data
A DEMETER dataset was generated based on the optimal spatio-
temporal feature configuration for the CSES data (DataSet 11 in
Supplementary Table S1). In this study, deep transfer learning,
although it is first applied to DEMETER to be transferred to
CSES, considers the properties and features of CSES data. In other
words, it is shaped/adapted to CSES data features.

We first trained the SeqNetQuake model using the full
DEMETER dataset, which was contiguously divided into a
training set (TR0) and test set (TS0). Using TR0 for training,
TS0 for testing, and the sliding sequences as model input, we
trained deep-learning models with its architecture shown in the
left panel of Figure 2. The performance of the best model using
TS0 is shown in Table 1. The F1 score of 0.7002 and MCC of
0.3763 for TS0 suggest the robustness of the trained model.

The model obtained using the DEMETER data was further
trained using the CSES data employing TR1 (training set) and

TS1 (test set), which corresponds to a transfer-learning process.
The TS1 set was independent of the training data (TR0 and TR1).
Table 1 and Figure 6D further illustrate the performance of the
initial training and transfer training. The F1 score improved by
8% from 0.7002 to 0.7607, and MCC increased from 0.3763 to
0.5523 using TR0 for training, confirming the robustness of the
model trained using the larger DEMETER dataset. The ROC
curves in Figures 6A–C provide a visual performance
comparison of each class and further demonstrate the result.

Comparison Between Transfer Learning
and Direct Learning
We selected the model with the best performance in direct
learning, the SeqNetQuake model trained on Dataset 07
(called SeqNetQuake-DT), and compared it with the model
trained using transfer learning (called SeqNetQuake-TL).
Table 2 compares the performance of the two approaches, and
Figure 6D shows the bar plot of the performance metrics. Figures
6A–C compares the ROC curves yielded by direct training and
transfer learning for the independent test set TS1.

The performance of direct learning was significantly lower
than that of transfer learning, yielding a 10% reduction in the
F1 score and a 23% reduction of the MCC value. These results
confirm the difficulty of using small training data sets (TR1) for
direct learning and the need to use large data sets that can
effectively exploit the capabilities of the deep-learning
networks.

To further confirm the performance of transfer learning,
ternary probability diagrams and a confusion matrix were
used to indicate the distribution of the predicted and true
values and allow more profound insight into the classification
performance of the models. Supplementary Figure S3 and
Figure 7 show the ternary probability diagrams and the
confusion matrix for the three classes obtained from
SeqNetQuake-DT and SeqNetQuake-TL, respectively.

The ternary probability diagrams allow a qualitative
evaluation of the classification results. The number of the
correctly classified samples in class 0 increases significantly, as
evidenced from Supplementary Figure S3A and Figure 7A; the

TABLE 1 | Performance of SeqNetQuake on the test set after direct training, initial training, and transfer learning. Data from DEMETER were divided into a training set (TR0)
and test set (TS0), and data from CSES were divided into TR1 (training set) and TS1 (test set).

Method Traning set Test set F1 MCC Accuracy AUC of class 0 AUC of class 1 AUC of class 2

Direct training TR1-01 TS1-01 0.6238 0.3667 0.6238 0.7356 0.7521 0.6128
TR1-02 TS1-02 0.5963 0.2749 0.5963 0.6815 0.6999 0.5585
TR1-03 TS1-03 0.6658 0.3857 0.6658 0.7508 0.7890 0.6163
TR1-04 TS1-04 0.5989 0.2868 0.5989 0.6971 0.7143 0.5606
TR1-05 TS1-05 0.6023 0.2859 0.6023 0.6926 0.7141 0.6106
TR1-06 TS1-06 0.5959 0.2629 0.5959 0.6909 0.6939 0.5913
TR1-07 TS1-07 0.6792 0.427 0.6792 0.7638 0.7564 0.6269
TR1-08 TS1-08 0.6636 0.2812 0.6636 0.6896 0.6724 0.5747
TR1-09 TS1-09 0.6532 0.2935 0.6532 0.6861 0.6681 0.5802
TR1-10 TS1-10 0.6289 0.2309 0.6289 0.6605 0.6409 0.5643

Initial training TR0 TS0 0.7002 0.3763 0.7002 0.7393 0.7177 0.6254

Transfer learning TR0 TS1-07 0.7607 0.5523 0.7607 0.8329 0.8519 0.6323
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same trend also appears in the qualitative comparison of class 1 in
Supplementary Figure S3B and Figure 7B. For class 2, the direct
training results (Supplementary Figure S3B) show that the
probability that the model would discriminate the true class is
generally only around 0.4. With transfer learning, the probability
is significantly improved and is typically higher than 0.5
(Figure 7C). As class 2 only represents 10.5% of samples, far
less than the proportions of the other two classes (which are 45.3
and 44.1%, respectively), the model likely fails to fully learn the
features of this class, causing a higher error rate.

The confusion matrixes shown in Supplementary Figure S3D
and Figure 7D show significant improvements in precision
regarding class 2, from 75.3% before transfer learning to
95.2% after. Further, transfer learning achieves 9 and 13.06%
improvements in precision for classes 0 and 1, respectively.
Therefore the misclassification rate of each class drops
significantly after transfer learning. Transfer learning achieves
satisfactory results in the classification of classes 0 and 1, and the
probability distributions for each class of the test data
(Figure 7D) show that 77.9 and 85.1% of the input samples,
respectively, are correctly classified (recall).

Comparison With Other Classifiers
Table 2 and Figure 8D report the performance of our transfer-
learning model (SeqNetQuake-TL) with five other benchmarking
classifiers for the independent test set TS1-07. The performance
of the existing methods ranges from F1 � 0.5757 to 0.7607 and
MCC � 0.2365 to 0.552. However, SeqNetQuake-TL offers the
best performance, improving MCC by 64.2% MCC and F1 by
about 24.5% over those for the next-best CNN model. Figures
8A–C compares the ROC curves obtained for the SeqNetQuake-
TL model with those of the five other classifiers, and
SeqNetQuake-TL again demonstrates the best performance
with a 14.5% improvement in AUC for class 0 and a 12.2%
improvement for class 1 over the second-best CNN model and a
4.4% improvement in AUC for class 2 over the second-best
LSTM model.

Excellent neural network architecture may explain why
SeqNetQuake outperforms all the other predictors. First,
SeqNetQuake’s CNN network layers allows us to extract local
parallel features. Then, the Bi-LSTM layer (composed of multiple
memory modules with a two-cell topological structure) extracts
long-distance dependent features and performs sequence

FIGURE 4 | Receiver operating characteristic (ROC) curves comparing model performance with window sizes of 10, 20, 30, 40, and 50 for (A) class 0, (B) class 1
and (C) class 2. (D) Bar plot curves of Matthews correlation coefficient (MCC), F1 score, and accuracy with window sizes of 10, 20, 30, 40, and 50.
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learning, thereby mitigating the influence of the front and back
features of each attribute feature point. Finally, the model obtains
the classification results through the FC layer and the Softmax
classifier, improving SeqNetQuake’s accuracy and reducing false
positives. Notably, the DNN, CNN, and LSTMmodels performed
better than the RF and GBM models, suggesting that the deeper
neural network models are much more efficient in computation
and the number of the parameters.

Possible Physical Mechanisms of
Earthquake-Induced Ionospheric
Perturbations
Lithospheric-ionospheric coupling is a topic that has been
qualitatively discussed in several papers. Several studies have
investigated the physical mechanisms of ionospheric pre-
earthquake perturbations (Hayakawa et al., 2010; Pulinets and
Ouzounov, 2011;Wu et al., 2012; Ouzounov et al., 2018; De Santis
et al., 2019a; De Santis et al., 2020; Freund et al., 2021).
Hypotheses regarding these mechanisms were presented by
Pulinets et al. (2015) and Kuo et al. (2014), who proposed
complex lithosphere–atmosphere–ionosphere coupling as the

physical basis of the generation of short-term earthquake
precursors. Recently, a detailed mathematical model providing
a quantitative description of the Magnetospheric-Ionospheric-
Lithospheric-Coupling (MILC) was introduced and successfully
tested with data from individual earthquakes (Piersanti et al.,
2020a). A key feature of the MILC model is based on the
development of an Acoustic Gravity Wave (AGW) (Carbone
et al., 2021) interacting mechanically with the ionosphere and
then electromagnetically with the magnetosphere. The AGW
coupling mechanism is quite general and can provide for both
co-seismic and precursor lithospheric-ionospheric coupling. In
the case of co-seismic coupling, the AGW is generated by ground
surface motion (solid, liquid). In contrast, in the case of precursor
coupling, the AGW can be generated by phenomena which
modifying the temperature or the electrical properties of the
atmospheric column above the EQ preparation zone.

One example of such mechanisms is radon release following
by its radioactive decay, emitting alpha particles of 5.2 MeV, a
large value used in comparison to the ionization energy
required for the dissociation of an atmospheric molecule
(32 eV). One alpha particle is sufficient to generate 150,000
pairs of positive and negative ions, thereby creating an excess

FIGURE 5 |Receiver operating characteristic (ROC) curves comparing model performance with different spatial window radii (3°, Dobrovolsky’s formula, 5°, 7°, and
10° for (A) class 0, (B) class 1, and (C) class 2. (D) Bar plot curves of Matthews correlation coefficient (MCC), F1 score, and accuracy.
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of positive airborne ions near the Earth’s surface, which can
influence the ionosphere. Radon gas accumulates with time in
the lower crust and upper mantle and can exhibit large-scale
distribution in the rocks. During the preparation phase of an
earthquake, these gas domains can become hydrostatically
unstable and force their way upward through the

lithosphere. The rapid lithospheric degassing followed by
radon atoms radioactive decays would trigger several
atmospheric processes near Earth’s surface, leading to
changes in air conductivity and temperature and therefore
changes to the near-ground atmospheric electric field
(Ouzounov et al., 2018; Pulinets and Ouzounov, 2018).

FIGURE 6 | Receiver operating characteristic (ROC) curves comparing the performance of initial training, transfer training, and direct training for (A) class 0, (B)
class 1 and (C) class 2. (D) Bar plot curves of Matthews correlation coefficient (MCC), F1 score, and accuracy.

TABLE 2 | Performance of all classifiers on the test set TS1. Data from DEMETER were divided into a training set (TR0) and test set (TS0), and data from CSES were divided
into TR1 (training set) and TS1 (test set). SeqNetQuake-TL, SeqNetQuake-IT, and SeqNetQuake-DT indicate the SeqNetQuake model trained via transfer learning, initial
training, and direct training.

Method Traning
set

Test
set

F1 MCC Accuracy AUC of
class 0

AUC of
class 1

AUC of
class 2

SeqNetQuake-TL TR0 TS1-07 0.7607 0.5523 0.7607 0.8329 0.8519 0.6323
SeqNetQuake-IT TR0 TS0 0.7002 0.3763 0.7002 0.7393 0.7177 0.6254
SeqNetQuake-DT TR1-07 TS1-07 0.6792 0.427 0.6792 0.7638 0.7564 0.6269
Random Forest TR1-07 TS1-07 0.5757 0.2365 0.5757 0.6883 0.6755 0.5399
GBM TR1-07 TS1-07 0.5845 0.2553 0.5845 0.7027 0.6959 0.5477
CNN TR1-07 TS1-07 0.611 0.3364 0.611 0.7274 0.7591 0.5913
LSTM TR1-07 TS1-07 0.6061 0.2973 0.6061 0.6979 0.7134 0.6055
DNN TR1-07 TS1-07 0.5928 0.2896 0.5928 0.6901 0.7059 0.5947
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Crustal strain measurements typically fail to detect any
unusual changes before earthquakes (Soter, 1999), while radon
outgassing has been observed before the earthquake (Gold and
Soter, 1985; Riggio and Santulin, 2015; Fu et al., 2019), and they
are considered as a possible EQ precursor.

DISCUSSION AND CONCLUSION

Previous studies have applied machine learning with the
DEMETER data for earthquake prediction and pre-earthquake
perturbation analysis. Li et al. (2020) statistically investigated
seismo-ionospheric influencing factors; however, the FPR of the
statistical results reached 50.2%. The relationship between
earthquakes and ultralow frequency (ULF) wave activity in the
nighttime ionosphere was investigated by Ouyang et al. (2020).
According to their research, the accuracy of detecting
electromagnetic pre-earthquake disturbances was 34%. Xu
et al. (2010) used a back-propagation neural network to
predict seismic events in 2008 with DEMETER data and

achieved an accuracy of 69.96%. Finally, Wang et al. (2014)
adopted the frequent itemset algorithm to predict earthquakes
of Ms > 5.0 in Taiwan, China, and achieved a maximum
sensitivity of 70.01%.

When the performance of these models was compared, the
SeqNetQuake method outperformed the others. SeqNetQuake
offers three main advantages over those existing methods. First,
hyperparametric optimization is applied for all the engaged
methods, allowing researchers to identify the most suitable
parameters at each step. Therefore, technology can be selected
with high confidence, and the selection of a robust method is
assured. Second, a more advanced deep-learning architecture is
used than that in traditional statistical and data-mining methods.
Finally, the majority of existing techniques are verified using a
limited sample size; this includes the method proposed by Wang
et al. (2014), which may exhibit a significant bias toward results
covering a wider geographic region or a longer time period.
However, in the present study, SeqNetQuake was trained with all
the DEMETER data and nearly 2 years of the CSES data worldwide,
and global features were learned during the training process. Hence,

FIGURE 7 | Ternary probability diagrams showing transfer learning results for (A) class 0, (B) class 1, and (C) class 2 using the test data. Class 0, class 1, and class
2 are shown in blue, red, and green, respectively; the color of the dot itself represents the real class, and the distance projected from each dot to each class axis
represents the probability of that class in the model prediction. (D) Confusion matrix indicating the distribution of the predicted and true values. The normalized count
(overall percentage) is shown in the center of each tile. The column percentage is shown at the bottom of each tile, and the row percentage is shown on the right.
Sum tiles to the right and bottom of the plot show the overall distribution of predictions and targets. Note that the color intensity is based on the counts.
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SeqNetQuake has strong generalizability. One limitation of
SeqNetQuake, however, is its significant computational
complexity owing to its complex network architecture. This issue
may be resolved by increasing the number of processing resources
available, such as additional CPUs or GPUs.

Recent research (Ikuta et al., 2020; Eisenbeis and Occhipinti,
2021) showed that claimed TEC anomalies were actually artifacts.
However, their negative response is mainly based on the
criticisms to some previous papers (Heki, 2011; Heki and
Enomoto, 2015; He and Heki, 2017). In this paper, we do not
define anomalies in the same way the criticized papers define the
TEC anomalies. On the other hand, most seismologists will say
that tectonic plates are always in a state of stress, and the stress is
always present because the tectonic system constantly adjusts to a
state of self-organized criticality, which theoretically would
indicate that when and where the earthquake occurred are
inherently unpredictable (Bak et al., 1987). Nevertheless,
Ramos et al. (2009) proved that earthquakes are preceded by
continuous and detectable changes in the interior of the earth’s
crust, and these changes can be monitored and have been
achieved for prediction purposes: this argument was also

confirmed by De Santis et al. (2019b) and Varotsos et al.
(2020), with statistical and theoretical arguments, respectively.

In our paper, we proposed the use of deep learning for pre-
earthquake ionospheric perturbations identification using the
SeqNetQuake model and identifying optimal training regimes
and parameter settings. The proposed model offers better
performance than five state-of-the-art models. Finally, our
analysis results verify the hypothesis regarding the physical
mechanisms of earthquake-induced ionospheric perturbations.
These results also support that the use of big satellite data
analytics and transfer learning can successfully improve the
pre-earthquake ionospheric perturbation identification
performance. The SeqNetQuake algorithm is useful in the
analysis of precursor effects in electromagnetic satellite data.
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