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Abstract: The eruptions of Campi Flegrei (Southern Italy), one of the most studied and dangerous
active volcanic areas of the world, are fed by mildly potassic alkaline magmas, from shoshonite
to trachyte and phonotrachyte. Petrological investigations carried out in past decades on Campi
Flegrei rocks provide crucial information for understanding differentiation processes in its magmatic
system. However, the compositional features of rocks are a palimpsest of many processes acting over
timescales of 100–104 years, including crystal entrapment from multiple reservoirs with different
magmatic histories. In this work, olivine, clinopyroxene and feldspar crystals from volcanic rocks
related to the entire period of Campi Flegrei’s volcanic activity are checked for equilibrium with
combined and possibly more rigorous tests than those commonly used in previous works (e.g.,
Fe–Mg exchange between either olivine or clinopyroxene and melt), with the aim of obtaining more
robust geothermobarometric estimations for the magmas these products represent. We applied
several combinations of equilibrium tests and geothermometric and geobarometric methods to a
suite of rocks and related minerals spanning the period from ~59 ka to 1538 A.D. and compared the
obtained results with the inferred magma storage conditions estimated in previous works through
different methods. This mineral-chemistry investigation suggests that two prevalent sets of T–P
(temperature–pressure) conditions, here referred to as “magmatic environments”, characterized the
magma storage over the entire period of Campi Flegrei activity investigated here. These magmatic
environments are ascribable to either mafic or differentiated magmas, stationing in deep and shallow
reservoirs, respectively, which interacted frequently, mostly during the last 12 ka of activity. In
fact, open-system magmatic processes (mixing/mingling, crustal contamination, CO2 flushing)
hypothesized to have occurred before several Campi Flegrei eruptions could have removed earlier-
grown crystals from their equilibrium melts. Moreover, our new results indicate that, in the case of
complex systems such as Campi Flegrei’s, in which different pre-eruptive processes can modify the
equilibrium composition of the crystals, one single geothermobarometric method offers little chance
to constrain the magma storage conditions. Conversely, combined methods yield more robust results
in agreement with estimates obtained in previous independent studies based on both petrological
and geophysical methods.

Keywords: geothermobarometry; mineral-melt equilibrium; magma storage conditions; Campi
Flegrei caldera

1. Introduction

The chemical composition of magmatic minerals, combined with the determination
of intensive variables (temperature, pressure) recorded by crystals at equilibrium, allows
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investigation of the chemicophysical conditions of magmatic systems during storage and
prior to eruption (e.g., [1]). The compositional variations in magmatic minerals can be
useful to track chemical and physical changes in the magma from which they grew [2–11].
Using experimentally determined phase relationships, e.g., compositions of minerals in
equilibrium with a melt as a function of pressure, temperature, water content and oxygen
fugacity, the chemical composition of mineral assemblages allows reconstruction of the
crystallization conditions. Determination of pre-eruptive conditions in magma plumbing
systems through equilibrium relationships between melts and coexisting minerals is one of
the major targets of modern petrology. In this context, geothermobarometry allows estima-
tion of crystallization pressure and temperature by applying calibrated equations to the
compositions of minerals, matrix glass, melt inclusions and whole rocks, or a combination
thereof. The fundamental premise of geothermobarometry is that the mineral assemblage
and compositions of a rock are sensitive to pressure and temperature of formation and
that the events subsequent to mineral equilibration have not significantly modified these
properties [12]. The theoretical basis for most geothermobarometers consists of determining
the equilibrium constant for a reaction and estimating the conditions of equilibration based
on that value [12,13]. Many geothermometers and geobarometers have been calibrated
through experimental data and thermodynamic models. These models are mostly based
on exchange reactions between minerals and melt [13–16], cation content in minerals and
coexisting melt [17,18], pressure-dependent variations in crystal lattice structure [19–21]
or phase relations of a set of minerals [22,23]. Since these models are calibrated for certain
mineral phases and restricted magma compositional ranges, the application of a suitable
geothermobarometric method depends on the chemical composition of the analyzed rocks
and their minerals. For mafic magmas, for example, ‘OPAM’ (olivine–plagioclase–augite
melt) geobarometry uses the composition of a melt in equilibrium with plagioclase, clinopy-
roxene and olivine to estimate a pressure of ‘last equilibration’ [22,24]. Some models make
use of clinopyroxene components, such as geobarometers based on equations describ-
ing the pressure-dependent jadeite-liquid (Jd-liq) reaction, as well as geothermometers
based on equations considering the temperature-dependent Jd into diopside–hedenbergite
(Ca(Mg,Fe)Si2O6; Di-Hd) and calcium Tschermak’s components (CaAlAlSiO6; Ca-Ts) into
Di-Hd exchange reactions [13–15]. Temperature can be determined from coexisting alkali
feldspar and plagioclase [13,23,25] and from clino- and orthopyroxene solid solutions [26].
Most of the commonly used geothermometers are based on the modeling of entropy
and volume changes occurring in equilibrium reactions between melts and crystals [27].
Clinopyroxene-melt (e.g., [15]) and plagioclase-melt (e.g., [28]) geothermobarometers are
well-known and commonly used by petrologists. Based on the composition of the volcanic
rocks of interest, when applicable, multiple geothermobarometric models can be employed
to provide independent tests. Clinopyroxene-melt geothermobarometry has been used for
specific active Italian volcanoes, for example, to define magma storage conditions under
Mt. Etna [29]. Likewise, Masotta et al. [30], with the aim of improving the suitability
of clinopyroxene-liquid geothermobarometers for evolved alkaline systems, developed
and applied recalibrated geothermobarometric equations to Mt. Vesuvius and Campi
Flegrei products.

In this work, the geothermobarometers of Putirka [13] and Masotta et al. [30] have been
used to estimate pressures and temperatures of crystallization of olivine, clinopyroxene and
feldspar crystals from volcanic products belonging to different periods of Campi Flegrei
activity. In the last decades, various studies that used different geological, geochemical
and/or geophysical information have tried to estimate the depths of magma storage below
Campi Flegrei (e.g., [31–50]). Moreover, geothermometric estimates have been performed in
several studies (e.g., [51–58]) in order to reconstruct the pre-eruptive temperature conditions
of the magmas feeding different eruptions (e.g., Campanian Ignimbrite, Agnano–Monte
Spina, Astroni). The temperature values obtained in these studies show largely variable
ranges even for rocks of similar composition; moreover, apart from a few studies [30,58],
geobarometric estimates are scarce.
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The Campi Flegrei volcanic field represents an interesting case study where different
geothermobarometers can be applied in order to: (i) estimate the storage depths at which
the magmas stationed before single eruptive events or a cycle of events; (ii) reconstruct
periods of shift in magma storage conditions; and (iii) unravel the evolution through time
of its magmatic feeding system. All these outcomes would have a deep impact on the
understanding of the behavior of the magmatic plumbing system that feeds Campi Flegrei,
one of the highest-risk active volcanic areas on Earth for its high population density.

2. The Campi Flegrei Volcanic Field

The Campi Flegrei volcanic field, together with the Somma–Vesuvius stratovolcano
and Ischia volcanic island, is one of the three active volcanoes of the Neapolitan area. Its
morphology is dominated by a 12 km-wide caldera depression (Figure 1), resulting from
multiple collapses related to two highly explosive volcanic eruptions: the Campanian
Ignimbrite (CI) occurring c. 40 ka [59,60] and the Neapolitan Yellow Tuff (NYT) occurring c.
15 ka [61].
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Figure 1. Simplified geological map of the Campi Flegrei caldera showing the traces of regional faults
and main morphological structures such as caldera, crater rims and faults (modified after [62]).

The volcanic activity has been dominantly explosive through time and has mostly
led to the emplacement of pyroclastic rocks with subordinate lava flows and domes. The
age of the beginning of volcanism in the area is not well-constrained. Old ignimbrites,
even if highly altered, at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley (245.9
and 289.6 ka) and Taurano–Acqua Feconia (157.4, 183.8, 205.6 and 210.4 ka) localities,
in different sites of the Campania Plain, have been characterized by De Vivo et al. [63],
Rolandi et al. [64] and Belkin et al. [65]. At least twelve pre-CI units are recognized at
the Trefola Quarry [66] spanning the 59–39 ka period [67]. The CI, emplaced during a
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catastrophic explosive event having a magnitude of 7.2 [68], is considered the most powerful
eruption ever to occur in the Neapolitan area. The CI Plinian eruption emplaced a large
volume (~80 to 300 km3 dense rock equivalent; [68–71]) of pyroclastic fall and pyroclastic-
density-current products, which resulted in a very complex sequence in proximal, medial
and distal outcrops [69,72–78], as well as a co-ignimbrite ash fall dispersed in the eastern
Mediterranean Sea and eastern Europe (e.g., [75,79,80]). Post-CI/pre-NYT volcanic activity
was confined inside the CI caldera and the majority of the eruptions were produced by
explosive, mostly hydromagmatic activity [66]. 40Ar/39Ar-dated eruptions range in age
from 30.3 ka to 14.6 ka [67]. Moreover, Albert et al. [81] recently revealed the high magnitude
(M 6.6 or VEI 6) of one of the pre-NYT deposits: the Masseria del Monte Tuff, dated at
29.3 ± 0.7 ka. The NYT (14.9 ka; [61]) was produced during the last largest eruption of
the Campi Flegrei caldera, and it is by far the largest trachytic phreatoplinian deposit
known to date. The NYT outcrops in scattered localities over an area of ~1000 km2, with a
conservatively estimated volume of ~40 km3 (DRE; [82–84]).

During the last 15 ka, intense volcanism and deformation affected the caldera. This
period has been divided into three epochs of activity: epoch 1—c. 15–10.6 ka; epoch 2—c.
9.6–9.1 ka; and epoch 3—c. 5.5–3.5 ka [85]. During epoch 1, at least 32 magmatic-to-
phreatomagmatic explosive eruptions took place, with a mean frequency of one eruption
every 70 years [86]. Among these, the Minopoli 1, Soccavo 4, Minopoli 2, Fondo Riccio and
Montagna Spaccata eruptions have been subject of recent studies (e.g., [87–89]). Close to
the end of this phase, the Plinian deposit of the Pomici Principali eruption was emitted
from the Agnano area (11.9–12.1 ka; [85]). During epoch 2, six low-magnitude explosive
eruptions took place with a mean frequency of 65 years [86,90]. During epoch 3, an intense
monogenetic explosive and subordinate effusive activity took place; the principal events
that modified the morphological setting of the volcanic field were the emplacements of
Solfatara (4.1–4.3 ka; [85]), Astroni (4.1–3.8 ka; [85–91]), Averno (5.4–4.1 ka; [85,92,93]),
Nisida (4.1–3.2 ka; [85,94]) and Monte Nuovo (1538 AD; [48,95–97]) pyroclastic cones,
the Agnano Monte Spina (4.4–4.6 ka; [85,98–102]) Plinian magmatic-to-phreatomagmatic
eruption and Monte Olibano and Accademia lava domes (4.36 ± 1.13 ka; [103]). The last
event took place in 1538 AD, with the formation of Monte Nuovo scoria cone ([48] and
reference therein).

The intense fumarolic activity and the ground deformation episodes that occurred in
recent decades (e.g., [104]) testify to the persistent activity of the Campi Flegrei magmatic
system that remains in a state of unrest (e.g., [105–107]). The presence of 350,000 inhabitants
in the central part of the caldera raises the risk level to very high [108,109].

The Campi Flegrei volcanic field erupted alkaline potassic rocks ranging in composition
from trachybasalt to phonotrachyte, with a predominance of trachyte (Figure 2; [67,110,111]).
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Figure 2. TAS (Total alkali vs. silica) diagram for the classification of the Campi Flegrei (a) whole
rocks, melt inclusions and (b) matrix-glasses. Whole-rock, melt-inclusion and matrix-glass analysis
of rocks that were erupted in different periods of Campi Flegrei’s volcanic activity are plotted. Data
from Melluso et al. [51], Orsi et al. [83], Civetta et al. [52], de Vita et al. [98], Signorelli et al. [112],
Pappalardo et al. [72,113], Webster et al. [114], Fulignati et al. [53], Munno and Petrosino [115],
D’Oriano et al. [116], Marianelli et al. [117], Piochi et al. [95], Cannatelli et al. [87], Fowler et al. [118],
Fedele et al. [69,119], Mangiacapra et al. [88], Arienzo et al. [94,101,120], Formentraux et al. [121],
Tomlinson et al. [122], Belkin et al. [65], Forni et al. [55,56,89] and Iovine et al. [57]. Whole-rock
analyses of the old ignimbrites are affected by alteration.

Most of the products older than 15 ka, except for a few rocks that were erupted during
the pre-NYT period (Torregaveta and Masseria del Monte Tuff), exhibit the most evolved
compositions (trachytes and phonotrachytes; Figure 2). At the end of the first epoch of
the last 15 ka of activity, less-differentiated magmas (trachybasalt and latite) were erupted
along NE–SW regional tectonic structures (e.g., [66,110]).

3. Materials and Methods

New compositional data on olivine, clinopyroxene, plagioclase and K-feldspar phe-
nocrysts from products representative of some pre-CI eruptive units and of the last 5 ka’s
Agnano–Monte Spina and Astroni eruptions have been collected (Supplementary Materials
Table S1). Major- and minor-element (Si, Ti, Al, Fe, Mn, Mg, Ca, Na and K) contents of
phenocrysts were acquired at the HP-HT Laboratory of Experimental Volcanology and
Geophysics of the Istituto Nazionale di Geofisica e Vulcanologia in Rome (Italy), using a
Jeol-JXA8200 electron microprobe equipped with five wavelength-dispersive spectrometers.
Crystals in carbon-coated resin mounts were analyzed under high-vacuum conditions,
using an accelerating voltage of 15 kV, with a beam diameter of 5 µm. The electron-beam
current was set at 7.5 nA. Elemental counting times were 10 s on the peak and 5 s on each
of two background positions. Corrections for interelemental effects were made using a
ZAF (Z: atomic number; A: absorption; F: fluorescence) routine. The range of standards
for calibration was taken from Micro-Analysis Consultants (MAC) and variable diffraction
devices: albite (Si-PET, Al-TAP, Na-TAP), forsterite (Mg-TAP), augite (Fe-LIF), apatite
(Ca-PET), orthoclase (K-PET), rutile (Ti-PET) and rhodonite (Mn-LIF). Accuracy was better
than 1–5% except for elements with abundances below 1 wt%, for which it was better than
5–10%. Precision was typically better than 1–5% for all analyzed elements.

For the aim of this work, the newly acquired data were integrated with a suitably
created database of the chemical composition of mineral phases from different periods
of Campi Flegrei’s volcanic activity. We retrieved major and minor element contents of
olivine, clinopyroxene, plagioclase and alkali-feldspar phenocrysts and microphenocrysts
from previous works [51–53,55–57,65,69,72,83,87–89,94,95,98,101,113–122] in which these
mineral phases were analyzed. When available, the whole-rock, matrix-glass and melt-
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inclusion compositions have been also included in the database. These were used as
representative of melt compositions for the evaluation of equilibria and for the application
of geothermobarometers.

The collected data belong to different periods of activity of the Campi Flegrei vol-
canism, that have been divided into: old ignimbrites—c. 290–115 ka [65]; pre-CI—c.
59–47 ka [67,103]; CI—c. 40 ka [59,60]; pre–NYT—c. 30–16 ka [67,103]; NYT—c. 15 ka [61].
As for the recent period of activity (last 15 ka), since there are no data on volcanic products
erupted during the 15–13 ka time interval, we consider the last 12 ka, starting with the
Pomici Principali eruption (12.1–11.9 ka; [85]).

4. Results
4.1. Mineral Chemistry
4.1.1. Olivine

Olivine crystals mostly occur in the products belonging to the last 12 ka of volcanic
activity. In particular, this mineral phase is found in volcanic rocks emplaced during the
Minopoli 1, Pomici Principali, Minopoli 2, Fondo Riccio and Astroni eruptions. Their MgO
and FeO contents range from 50 to 43 wt% and from 19 to 10 wt%, respectively. Their CaO
contents range between 0.5 and 0.2 wt%. The olivine phenocrysts range in composition
from Fo90 to Fo80 (Forsterite mol %; Figure 3), showing a limited compositional variation.
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Figure 3. Forsterite (mol %) contents of the Campi Flegrei olivine and Fo (mol %) frequency histogram
showing the distribution of olivine compositions.

The Forsterite (mol %) contents of olivine show a bimodal distribution (Figure 3),
characterized by (1) the most frequent compositional population ranging between Fo87
and Fo84 and (2) a less frequent compositional population ranging between Fo90 and Fo88.
On the other hand, olivine microlites occurring in the groundmass of several lava domes
(Cuma; 45.9 ±3.6 ka; Wu et al. [103]; Punta Marmolite; 47 ka; Accademia; 3.9 ka; Melluso
et al. [111] and references therein) show a wider compositional range (Fo90–1) with respect
to those of the phenocrysts belonging to explosive volcanic activity, studied in this work.
The olivines belonging to such relatively scarce Campi Flegrei effusive products also show
fayalite- and tephroite-rich compositions [111].
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4.1.2. Clinopyroxene

Clinopyroxene occurs in all volcanic products belonging to the Campi Flegrei erup-
tions, and mostly classifies as diopside and Fe-rich diopside (Wo52–41En51–29Fs25–4;
Wollastonite–Enstatite–Ferrosilite; Figure 4a–c). Those belonging to rocks erupted after the
NYT eruption show compositions also richer in Fe (Wo53–44En50–14Fs32–4), e.g., hedenbergite.
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Figure 4. Di-Hd-En-Fs (a–c) classification diagram and (d) Mg# frequency histogram showing
the distribution of Campi Flegrei clinopyroxene composition. Di = diopside; Hd = hedenbergite;
En = enstatite; Fs = ferrosilite.

The Mg# [molar Mg2+/(Mg2+ + Fetot) × 100] ranges from 92 to 40 (Figure 4d). This
parameter reflects a compositional polymodality in the clinopyroxene phenocrysts of
volcanic rocks belonging to all periods of activity. Clinopyroxenes of rocks belonging to
the different periods of activity show variable range of Mg# (Table 1), in particular those
from rocks emplaced during the last 12 ka cover the whole range of values (Mg# = 92–41;
Figure 5).

Table 1. Ranges of Mg# values of clinopyroxene crystals belonging to different periods of Campi
Flegrei activity.

Eruptive Period Clinopyroxene Mg#

Old ignimbrites 89–67

Pre–CI 91–61

CI 92–62

Pre–NYT 91–55

NYT 92–61

Last 12 ka 92–41

The correlations between Mg# and Al, Ti, Na, Mn and Cr contents show some
changes/kinks along the whole continuous compositional variation. Moreover, the clinopy-
roxenes of rocks erupted during the last 12 ka show chemical variation trends different to
those of clinopyroxenes of rocks erupted during previous periods (Figure 5). These features
are described in detail below.

TiO2 and Al2O3 contents of clinopyroxenes range from 2.90 to 0.10 wt% and from 9.62
to 0.73 wt%, respectively (Figure 5a,b). Na2O and MnO contents range from 1.36 to 0.03
wt% and from 3.23 to 0.01 wt% (Figure 5c,d). Cr2O3 content ranges from 1.00 to 0.01 wt%
(Figure 5e). Na2O, TiO2 and MnO contents increase with the decrease in Mg#. In particular,
the Na2O and MnO contents increase linearly with the decrease in Mg# from 92 to 80 and
then increase exponentially with the decrease in Mg# from 80 to 55 (Figure 5c,d). An
exception are some clinopyroxenes belonging to rocks of the last 12 ka, in which the Na2O
and MnO contents are on average lower and continue to increase linearly with respect to
the whole Mg# range. Cr2O3 and SiO2 contents decrease as Mg# decreases (Figure 5e,f).
The Cr2O3 contents decrease exponentially with the decrease in Mg# from 92 to 80 and
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then decrease linearly as Mg# decreases from 80 to 41. The Al2O3 contents increase with
the decrease in Mg# from 92 to 80, then decrease with the decrease in Mg#, except for
the crystals of volcanic products belonging to the last 12 ka, in which the Al2O3 contents
continue to increase as Mg# decreases (Figure 5a).

Minerals 2022, 12, x FOR PEER REVIEW 8 of 34 
 

 

 
Figure 5. (a) Mg# vs TiO2, (b) Mg# vs Al2O3, (c) Mg# vs Na2O, (d) Mg# vs MnO, (e) Mg# vs. Cr2O3, 
and (f) Mg# vs SiO2 of clinopyroxene crystals from volcanic products belonging to different periods 
of Campi Flegrei’s activity. 

The correlations between Mg# and Al, Ti, Na, Mn and Cr contents show some 
changes/kinks along the whole continuous compositional variation. Moreover, the clino-
pyroxenes of rocks erupted during the last 12 ka show chemical variation trends different 
to those of clinopyroxenes of rocks erupted during previous periods (Figure 5). These fea-
tures are described in detail below. 

TiO2 and Al2O3 contents of clinopyroxenes range from 2.90 to 0.10 wt% and from 9.62 
to 0.73 wt%, respectively (Figure 5a,b). Na2O and MnO contents range from 1.36 to 0.03 
wt% and from 3.23 to 0.01 wt% (Figure 5c,d). Cr2O3 content ranges from 1.00 to 0.01 wt% 
(Figure 5e). Na2O, TiO2 and MnO contents increase with the decrease in Mg#. In particular, 
the Na2O and MnO contents increase linearly with the decrease in Mg# from 92 to 80 and 
then increase exponentially with the decrease in Mg# from 80 to 55 (Figure 5c,d). An ex-
ception are some clinopyroxenes belonging to rocks of the last 12 ka, in which the Na2O 
and MnO contents are on average lower and continue to increase linearly with respect to 
the whole Mg# range. Cr2O3 and SiO2 contents decrease as Mg# decreases (Figure 5e,f). 
The Cr2O3 contents decrease exponentially with the decrease in Mg# from 92 to 80 and 
then decrease linearly as Mg# decreases from 80 to 41. The Al2O3 contents increase with 
the decrease in Mg# from 92 to 80, then decrease with the decrease in Mg#, except for the 

Figure 5. (a) Mg# vs. TiO2, (b) Mg# vs. Al2O3, (c) Mg# vs. Na2O, (d) Mg# vs. MnO, (e) Mg# vs.
Cr2O3, and (f) Mg# vs. SiO2 of clinopyroxene crystals from volcanic products belonging to different
periods of Campi Flegrei’s activity.

Similarly to olivine, the clinopyroxenes occurring in the groundmass of the Campi
Flegrei lavas show wide compositional variations (Mg# = 89–1), covering the complete
spectrum from Mg- to Fe-rich compositions and reaching Na- and Zr-rich compositions
(e.g., aegirine; [111]).

4.1.3. Feldspars

Feldspar is a ubiquitous phase in the volcanic products of Campi Flegrei. K-feldspar is
the most abundant phase in the pyroclastic rocks, belonging to all periods of activity, mostly
in trachytes. Plagioclase mostly occurs in volcanic rocks representative of poorly evolved
magmas. The plagioclase and alkali-feldspar crystals belonging to the different periods of
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activity cover wide compositional ranges, except for plagioclases from the pre-NYT and
NYT periods (Figure 6a–c; Table 2).
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Table 2. Plagioclase and K-feldspar composition of products emplaced during different Campi Flegrei
periods of activity. An = anorthite; Ab = albite; Or = orthoclase.

Eruptive Period Plagioclase Composition K-Feldspar Composition

Old ignimbrites An88–49Ab44–10Or6–1 Or74–50

Pre-CI An82–24Ab64–16Or11–2 Or67–54

CI An90–25Ab62–8Or14–1 Or88–42

Pre-NYT An89–76Ab20–9Or3–1; Or87–51

NYT An86–47Ab43–12Or8–2 Or86–72

Last 12 ka An94–40Ab51–5Or18–1 Or87–39

The Campi Flegrei plagioclase shows a bimodal distribution, reflected in the An
(mol %) content, characterized by a main compositional population exhibiting An90–63 and
a second population exhibiting An62–40 (Figure 6d). Likewise, the frequency histogram of
sanidine composition (Or mol. %; Figure 6e) shows two main compositional populations:
the most frequent is in the range Or88–68, whereas a second population is characterized by
composition in the range Or67–40.

4.2. Mineral-Melt Equilibrium

The equilibria between melt and selected minerals were investigated using (i) the
Fe-Mg exchange coefficient for olivine and clinopyroxene, hereafter referred to as equi-
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librium test 1; (ii) the comparison between observed and predicted normative diopside–
hedenbergite (DiHd) components for clinopyroxene, hereafter referred to as equilibrium
test 2; (iii) the Or-Ab partitioning coefficient for alkali feldspar, hereafter referred to as
equilibrium test 3; and (iv) the An-Ab partitioning coefficient for plagioclase, hereafter
referred to as equilibrium test 4. For the evaluation of the equilibrium, Campi Flegrei
melt-inclusion, whole-rock and matrix-glass analyses were used as representative of the
composition of various melts.

4.2.1. The “Classic” Method for Assessing Equilibrium between Olivine or Clinopyroxene
and Their Melt: The Fe-MgKdmin-liq Exchange Coefficient (Test 1)

Equilibrium test 1 is the most commonly used test for assessing equilibrium between
clinopyroxene or olivine and melt pairs. It consists of the evaluation of the Fe-Mg parti-
tioning between mineral and liquid, known as the Fe-Mg exchange coefficient, defined as
Fe-MgKdmin-liq = (MgOliqFeOmin)/(MgOminFeOliq), where “liq” is the liquid; “min” is the
mineral; and MgO and FeO are molar fractions (e.g., Roeder and Emslie, 1970; Putirka,
2005, 2008). In this case, the equilibrium conditions are verified when the Fe-Mg partition-
ing between olivine and host rock (Fe/MgKdOl-liq) is 0.30 ± 0.03 [123,124], and when the
Fe-Mg partitioning between clinopyroxene and host rock (Fe/MgKdCpx-liq) is 0.27 ± 0.03
(e.g., [15,125]). In a Rhodes diagram (Mg#mineral vs. Mg#melt), the lines joining points
satisfying these conditions define the theoretical equilibrium field (Figure 7).

Concerning the Campi Flegrei olivines, only a few olivines from Fondo Riccio and
Minopoli 2 are in the equilibrium field (Figure 7a). As for the clinopyroxenes, a few crystals
from rocks belonging to different periods of activity are in equilibrium with their melts
(Figure 7b–i).

4.2.2. An Alternative Equilibrium Test for Clinopyroxene: The Measured versus Predicted
Components (Test 2)

An alternative and more robust test for assessing the equilibrium between a mineral
and coexisting melt is what we call equilibrium test 2, which consists of the comparison
between normative mineral components predicted for a mineral phase from melt compo-
sition, and those measured in the analyzed crystals (e.g., [13–126]). Since all the studied
clinopyroxenes are diopsidic in composition, we take into account the Di and Hd compo-
nents. These were calculated following the scheme proposed by Putirka et al. [14] and
Putirka [13]. The predicted clinopyroxene components based on melt composition were
calculated using equation 3.1a in Putirka [127]: ln [DiHdcpx] = −9.8 + 0.24ln [Caliq (MgO +
FeOliq)(Siliq)2] + 17,558/T + 8.7ln(1670/T) − 4.61 × 103 [(EnFscpx)2/T].

Only one crystal from the old ignimbrites (Taurano ignimbrite) results in equilibrium
(Figure 8a); nevertheless, we discarded these products since they were altered and, therefore,
the rock composition was almost surely affected by intense weathering processes [65]. A
few clinopyroxenes from all deposits belonging to the pre-CI period are in equilibrium
with their melts (Figure 8b). Some crystals from the CI also are in the equilibrium field
(Figure 8c). For the pre-NYT period, some clinopyroxenes result in equilibrium conditions
(Figure 8d). Several crystals from the NYT are also in the equilibrium field (Figure 8e). For
the last 12 ka, some crystals from Minopoli 1, Minopoli 2, Soccavo 4, Averno and Monte
Nuovo eruptions and a few crystals from Pomici Principali, Fondo Riccio, Capo Miseno,
Agnano–Monte Spina, Astroni and Nisida eruptions are in equilibrium with their melts
(Figure 8f–h).
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Figure 7. Equilibrium test 1 based on the Fe-Mg partitioning between olivine or clinopyroxene and
melt (Fe-MgKdol-liq = 0.30 ± 0.03 and Fe-MgKdcpx-liq = 0.27 ± 0.03 [13,15,28,123,125] for Campi Flegrei
products of variable age. (a) olivine-melt equilibrium test; clinopyroxene-melt equilibrium tests for
products belonging to Old ignimbrites (b), Pre-CI (c), CI (d), Pre-NYT (e), NYT (f) and last 12 ka (g–i).
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Figure 8. Equilibrium test 2 based on the comparison between measured and predicted clinopyroxene
components, i.e., Di + Hd between crystal and melt from equilibrium values [126] for Campi Flegrei
products belonging to Old ignimbrites (a), Pre-CI (b), CI (c), Pre-NYT (d), NYT (e) and last 12 ka (f–h).

4.2.3. Equilibrium Tests for Alkali-Feldspar and Plagioclase (Tests 3 and 4)

For K-feldspar, equilibrium test 3 used here is based on Or–Ab partitioning between
K-feldspar and melt (e.g., [13,128]), known as the Or-Ab exchange coefficient, defined
as K-feld-meltKdOr-Ab = NaFeld × XAlliq × XCaliq/XCaFeld × XNaliq × XSiliq vs. predicted
K-feld-meltKdOr-Ab = −0.67 + (Kliq/KFeld

2 + ln (exp (Kliq
2/Naliq + Kliq)/10, according to

the approach by Mollo et al. [128]. In a measured vs. predicted KdOr-Ab diagram, the
equilibrium field is shown inside the 1:1 line ± 0.25 (Figure 9).
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Figure 9. kfeld−liqKdOr-Ab equilibrium test 3 based on Or-Ab exchange between K-feldspar and
liquid [128] for Campi Flegrei feldspars belonging to Old ignimbrites (a), Pre-CI (b), CI (c), Pre-NYT
(d), NYT (e) and last 12 ka (f–h); the equilibrium field is inside the 1:1 line ± 0.25.

We do not consider the equilibrium relationships between K-feldspars and host rocks
from the old ignimbrites that are altered (Figure 9a). For the pre-CI period, crystals from
the S. Severino 1 and S. Severino 2 eruptions are in the equilibrium field, whereas those
from the Torre di Franco eruption are not (Figure 9b). Several crystals from the CI eruption
are in equilibrium with their melts (Figure 9c). All K-feldspars erupted in the pre-NYT
period, except those from Belvedere Miliscola 1 and some from Trentaremi eruptions, are in
the equilibrium field (Figure 9d). All K-feldspars from the NYT eruption are in equilibrium
with their melts (Figure 9e). For the products erupted during the last 12 ka, apart from
some crystals from the Montagna Spaccata, Astroni and Monte Nuovo eruptions, all the
K-feldspars are in equilibrium conditions (Figure 9f–h).

The equilibrium conditions for plagioclase were tested via equilibrium test 4, which is
based on the partitioning of An-Ab between mineral and melt. This is known as An-Ab
exchange coefficient defined as pl-meltKdAb-An = (XNaPlag × XAlliq × XCaliq)/(XCa Plag ×
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XNaliq × XSiliq) where “liq” is the liquid composition, “Plag” is the plagioclase composition,
and all components are expressed as molar fractions (e.g., [13]). The variation diagram of
An (mol %) vs. calculated pl-meltKdAb-An shows the plagioclase-melt stability field drawn
using a value for pl-meltKdAb-An of 0.1 ± 0.05 (Figure 10; [13]).
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Campi Flegrei plagioclases belonging to Old ignimbrites (a), Pre-CI (b), CI (c), Pre-NYT (d), NYT
(e) and last 12 ka (f–h). The plagioclase-melt stability field was drawn using a value for pl-meltKdAb-An

of 0.1 (continuous line) ± 0.05 (dotted lines; e.g., [13]).

Even in this case, we do not take into account the plagioclase-melt equilibria for the
old ignimbrites (Figure 10a). For the pre-CI period, all crystals from the S. Severino 1
and S. Severino 2 eruptions and a few crystals from other pre-CI units are in equilibrium
with their melts (Figure 10b). Several plagioclases from the CI are also in the equilibrium
field (Figure 10c). For pre-NYT units, all crystals belonging to the Torregaveta eruption
are in equilibrium, whereas those from Trentaremi eruption are not (Figure 10d). Most of
plagioclases in the range An85–50 from the NYT eruption are in equilibrium (Figure 10e).
For the products of the last 12 ka, some plagioclase crystals from Minopoli 1, Minopoli 2,
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Pomici Principali, Montagna Spaccata, S. Martino, Agnano–Monte Spina, Averno, Astroni
and Nisida eruptions result in equilibrium with their host melts (Figure 10f–h).

4.3. Geothermobarometric Estimates

We applied various geothermometers and geobarometers to all the mineral-melt cou-
ples which passed the equilibrium tests based on the Fe-MgKdmin-liq (olivine and clinopyrox-
ene) and on the comparison between measured and predicted components (clinopyroxene
and feldspar). Some geothermobarometers require the H2O (wt%) content as an input
parameter, which can affect the output T–P estimates. Hence, in cases where melt-inclusion
compositions have been used as representative of melts in equilibrium with crystals, the
volatile contents used are exactly those detected in melt inclusions of the erupted products;
in cases where the whole-rock or matrix-glass compositions have been used as represen-
tative of melts, the H2O analyzed in the whole rock or the water content obtained by
difference has been used.

As shown before (Section 4.2), a few olivine crystals passed the equilibrium test. On
these, we applied Equation (4) [T = (15,294.6 + 1318.8P + 2.4834 (P)2)/(8.048 + 2.8352 ln
Dol-liq

Mg + 2.047 ln 1.5 (XMg
liq + XFe2+

liq + XCa
liq + XMn

liq) + 2.575 ln (3XSi
liq) − 1.41 7/2ln(1

− XAl
liq) + 7ln(1 − XTi

liq) + 0.222 H2Oliq + 0.5 P] of the olivine-melt geothermometer of
Putirka et al. [129], commonly used for hydrous melts, and whose standard error of estimate
(SEE) is 29 ◦C (e.g., [13]). Two olivine-melt pairs from Minopoli 1 yield temperatures of
1065 and 1060 ◦C (Figure 11a). The output temperature estimates for the Minopoli 2
olivines range between 1122 and 1045 ◦C, with an average of 1102 ± 20 ◦C. The Fondo
Riccio olivines in equilibrium with their melts yield temperature estimates in the range of
1175–922 ◦C, with an average of 1005 ± 84 ◦C.

For clinopyroxenes resulting in equilibrium with their melts via equilibrium test 1, we
used the geothermobarometers of Putirka [13] and Masotta et al. [30]. Specifically, we applied
the Equation (33) [104/T = 7.53 − 014 ln (Xcpx

JdXliq
CaOXliq

FeO+MgO/Xcpx
DiHdXliq

NaXliq
Al) +

0.07 (H2Oliq) − 14.9 (Xliq
CaOXliq

SiO2) − 0.08ln (Xliq
TiO2) − 3.62 ln (Xliq

NaO0.5 /Xliq
KO0.5 ) − 1.1

(Mg#iq) − 0.18ln (Xcpx
EnFs) − 0.027P] of Putirka et al. [13], which is a clinopyroxene-liquid

geothermometer based on Jd-DiHd exchange and has been implemented with respect to the
previous models of Putirka [14,15] through a larger experimental dataset and an increased
number of regression parameters; the SEE for this geothermometer is 31.4 ◦C. For pressure
estimates, we used Equation (32c) [P = −57.9 + 0.0745 T − 40.6(Xliq

FeO) − 47.7(Xcpx
CaTs) +

0.0676 (H2Oliq) − 153(Xliq
CaO0.5 Xliq

SiO2 ) + 6.89(Xcpx
Al/Xliq

AlO1.5 )] of Putirka et al. [13] which
represents a geobarometer based on the partitioning of Al between clinopyroxene and
liquid and whose SEE is 2.9 kbar. The estimated temperatures and pressures (Figure 11b)
are reported in Table 3.

Table 3. Temperature and pressure output obtained from the Putirka [13] geothermobarometers
applied to clinopyroxene-melt couples whose equilibrium has been verified with equilibrium test 1.

Eruptive Period Melt Composition T (◦C) Average, s.d. P (kbar) Average, s.d.

Pre-CI trachyte-phono-trachyte 994–874 946 ± 34 10.6–3.4 6.2 ± 2

CI trachyte-phono-trachyte 1015–894 953 ± 28 10–1.8 6.9 ± 1.6

Pre-NYT latite-trachyte 1043–891 964 ± 42 12.5–3.8 8 ± 2.2

NYT trachyte-phono-trachyte 1018–914 983 ± 23 9.2–3.3 6.9 ± 1.5

Last 12 ka shoshonite-latite- 1110–884 976 ± 46 14.6–2.9 7.6 ± 2.1

trachyte-phono-trachyte
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Figure 11. Temperature and pressure output results obtained for the Campi Flegrei minerals through
the use of different combinations of geothermobarometric methods and equilibrium tests: (a) Mg#
vs. T output of the olivine-melt geothermometer applied to olivine-melt couples whose equilibrium
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has been tested with the equilibrium test 1; (b) T-P output of the clinopyroxene-melt geothermo-
barometer of Putirka [13] applied to clinopyroxene-melt couples whose equilibrium has been tested
with the equilibrium test 1; (c–e) T-P output of the clinopyroxene-melt geothermobarometer of Ma-
sotta et al. [30] applied to clinopyroxene-melt couples whose equilibrium has been tested with the
equilibrium test 1; (f) T-P output of the clinopyroxene-melt geothermobarometer of Putirka [13]
applied to clinopyroxene-melt couples whose equilibrium has been tested with the equilibrium
test 2; (g) T-P output of the clinopyroxene-melt geothermobarometer of Masotta et al. [30] applied to
clinopyroxene-melt couples whose equilibrium has been tested with the equilibrium test 2; (h–k) k-feld

Ab (mol %) vs. T output obtained from the two-feldspar geothermometer applied to plagioclase- and
K-feldspar-melt couples resulted in equilibrium with equilibrium tests 3 and 4.

The geothermometer of Masotta et al. [30] was applied by using the equations Talk2012
[104/T = 2.1 − 0.4 ln (Xcpx

JdXliq
CaXliq

FeO+MgO/Xcpx
DiHdXliq

NaXliq
Al) + 0.038 (H2O) − 1.64

(Xliq
Mg/Xliq

Mg + Xliq
Fe/Xcpx

DiHd) + 1.01 (Xliq
Na/Xliq

Na + Xliq
K) − 0.22 ln (Xliq

Ti) + 0.47
ln (Xcpx

Jd/Xliq
NaXliq

Al(Xcpx
Si)2) + 1.62 (KD

liq-cpx
Fe-Mg) + 23.39 (Xliq

CaXliq
Si)] and Palk2012

[−3.89 + 0.38 (Xcpx
Jd/Xliq

NaXliq
Al(Xcpx

Si)2) + 0.074 ((H2O) + 5.01 (Xliq
Na/Xliq

Na + Xliq) +
6.39 (KD

liq-cpx
Fe-Mg)], for estimating temperatures and pressures, respectively, which exhibit

SEE lower than those of previous models (SEETalk2010 = 18.2 ◦C and SEEPalk2012 = 1.15 kbar).
For each eruption, we plotted the T–P estimates obtained through this geothermo-

barometer specific for alkaline magmas (Figure 11c–e). The geothermobarometers of
Masotta et al. [30] combine 10 clinopyroxene compositions with 10 melt compositions;
in this case, we calculated P-T estimates only for a numerically appropriate set of data,
i.e., only for those eruptions whose products have at least 10 mineral-melt couples in
equilibrium. For example, for the pre-CI period, we applied geothermobarometry only to
the Torre di Franco products (Figure 11c). Moreover, this geothermobarometer was used
only for evolved compositions, since—as stated by Masotta et al. [30]—any attempt to use
it on compositions different from those of their calibration dataset would produce high
errors in estimation. The estimated temperatures and pressures are reported in Table 4.

Table 4. Temperature and pressure output obtained from the Masotta et al. [30] geothermobarometers
applied to clinopyroxene-melt couples whose equilibrium has been verified with equilibrium test 1.

Eruptive Period Eruption Melt Composition T (◦C) Average, s.d. P (kbar) Average, s.d.

Pre-CI Torre di Franco trachyte 994–958 978 ± 8 2.6–0.4 1.7 ± 0.6

CI CI trachyte-phono-trachyte 1055–921 992 ± 22 4.0–0.1 1.3 ± 0.8

Pre-NYT Trentaremi trachyte 1081–968 1025 ± 24 5.3–0.3 1.8 ± 1.14

NYT NYT trachyte-phono-trachyte 1058–973 1023 ± 22 1.9–0.1 1.0 ± 0.4

Last 12 ka Averno trachyte-phono-trachyte 1014–933 960 ± 16 2.8–0.5 1.6 ± 0.5

Nisida trachyte-phono-trachyte 1027–961 994 ± 15 3.2–0.1 1.3 ± 0.8

We also applied the same two geothermobarometers (Putirka, [13] and Masotta et al., [30])
to the clinopyroxene-melt couples that resulted in equilibrium through equilibrium test 2.
When using Equations (33) and (32c) of the Putirka [13] geothermobarometer, a few
clinopyroxene-melt couples yield negative values of the output pressures, which have
not been taken into account. The estimated temperatures and pressures (Figure 11f) are
reported in Table 5.
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Table 5. Temperature and pressure output obtained from the Putirka [13] geothermobarometers
applied to clinopyroxene-melt couples whose equilibrium has been verified with the equilibrium
test 2.

Eruptive Period Rock Composition T (◦C) Average, s.d. P (kbar) Average, s.d.

Pre-CI trachyte-phono-trachyte 918–823 946 ± 34 7.5–0.1 2.4 ± 2

CI trachyte-phono-trachyte 886–811 848 ± 19 5.3–0.1 2.0 ± 1.4

Pre-NYT latite-trachyte 996–830 892 ± 38 5.4–0.2 2.8 ± 2.3

NYT trachyte-phono-trachyte 961–819 892 ± 42 4.8–0.1 2.2 ± 1.2

Last 12 ka shoshonite-latite- 1179–817 946 ± 92 8.5–0.1 1.9 ± 1.5

trachyte-phono-trachyte

When using the Talk2012 and Palk2012 equations of the Masotta et al. [30] geother-
mobarometers, most of the obtained pressures are negative, hence these values must
be considered meaningless. In fact, the overall estimated pressures range from 4.9 to
−1.6 kbar, with most of the values being <0 kbar (Figure 11g). The estimated temperatures
and pressures are reported in Table 6.

Table 6. Temperature and pressure output obtained from the Masotta et al. [30] geothermobarometers
applied to clinopyroxene-melt couples whose equilibrium has been verified with the equilibrium
test 2.

Eruptive Period Rock Composition T (◦C) Average-s.d. P (kbar)

Pre-CI trachyte-phono-trachyte 1055–889 945 ± 43 1.9–(−1.6)

CI trachyte-phono-trachyte 963–900 934 ± 16 1.6–(−0.8)

Pre-NYT trachyte 1022–875 937 ± 47 1.6–(−0.9)

NYT trachyte-phono-trachyte 1105–961 1031 ± 31 1.5–(−1.3)

Last 12 ka trachyte-phono-trachyte 1125–875 953 ± 70 4.9–(−1.3)

Lastly, Equation (27b) [T = (−442− 3.72P)/(−0.11 + 0.1ln(XK-feld
Ab/Xpl

Ab)− 3.27(XK-feld
An)

+ 0.098(XK-feld
An) + 0.52(Xpl

An Xpl
Ab))] of the two-feldspar geothermometer of Putirka [13]

was used on alkali feldspars and plagioclases resulting in equilibrium through tests 3 and
4, respectively. The estimated temperatures (Figure 11h,i) are reported in Table 7.

Table 7. Temperature output obtained from the two-feldspar geothermometer applied to plagioclase-
and K-feldspar-melt couples resulted in equilibrium.

Eruptive Period Eruption Melt Composition T (◦C) Average, s.d.

Old ignimbrites Taurano - 1193–1022 1071 ± 79

Pre-CI S.Severino 1 trachyte 879–833 855 ± 8

S.Severino 2 trachyte 880–828 853 ± 20

CI CI trachyte-phono-
trachyte 1066–713 829 ± 70

Pre-NYT Torregaveta latite 1064–881 944 ± 45

NYT NYT trachyte-phono-
trachyte 992–790 883 ± 30

Last 12 ka Minopoli 1 shoshonite-latite 1093–959 1035 ± 43
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Table 7. Cont.

Eruptive Period Eruption Melt Composition T (◦C) Average, s.d.

Pomici
Principali

shoshonite-latite-
trachyte 959–826 870 ± 33

Soccavo 4 trachyte 928–842 871 ± 37

Minopoli 2 shoshonite-trachyte 1047–952 1007 ± 27

Montagna
Spaccata latite-trachyte 1068–807 871 ± 67

S.Martino trachyte 920–839 864 ± 14

A-MS trachyte-phono-
trachyte 928–812 857 ± 23

Paleoastroni 3 trachyte 964–905 930 ± 16

Averno trachyte-phono-
trachyte 923–772 858 ± 30

Astroni latite-trachyte 1032–817 879 ± 29

Nisida trachyte-phono-
trachyte 923–738 862 ± 21

5. Discussion
5.1. Magmatic Environments Reconstructed Based on Campi Flegrei Mineral Compositions

Mineral compositions strongly depend on pre-eruptive (i.e., P-T) conditions in magma
(e.g., [10,11,130]). Hence, crystals can preserve information about the set of parameters
(pressure, temperature, oxygen fugacity and volatile content) of the environment where
they formed. The chemical composition of the Campi Flegrei olivines, clinopyroxenes
and feldspars show a polymodal distribution. This is evident in the forsterite (mol %)
contents of olivines (Figure 3), in the Mg# of clinopyroxenes (Figure 4d), in the orthoclase
(mol %) contents of alkali feldspars (Figure 6e) and in the anorthite (mol %) contents of
plagioclases (Figure 6d). The occurrence of two main compositional populations detected
in the Campi Flegrei minerals suggests two prevalent “magmatic environments” in which
crystals have grown. A “magmatic environment” does not necessarily represent a physical
environment and can be defined as a specific set of intensive thermodynamic variables
(e.g., [131]) which determines the composition of a mineral. Among these two prevalent
compositional populations, one, pertaining to olivines with Fo90–88, clinopyroxenes with
Mg# in the range 90–78, plagioclases with high anorthite content and K–feldspars with
low orthoclase content, can be ascribed to mafic or poorly differentiated magmas; whereas
the other, pertaining to clinopyroxenes with Mg# in the range 77–40 and K-feldspars
with Or88–68, can be associated with evolved magmas. The latter is the most abundant
component and represents the typical magmatic environment in which minerals found in
the Campi Flegrei trachytes and phonotrachytes form. The compositional bimodality occurs
in the olivine, clinopyroxene and feldspar crystals from Campi Flegrei rocks emplaced
over all the periods of activity, without significant differences. This suggests that through
time, magmas formed reservoirs located at two different, barely constant depths in the
Campi Flegrei plumbing system, where they stagnated/equilibrated. All the studied
olivine, clinopyroxene and feldspar crystals show similar ranges of chemical variation
over the different periods of activity. For clinopyroxene, the element variations (Figure 4)
define continuous compositional trends that are consistent with fractional crystallization
processes, responsible for most of the detected compositional variations. The element
variation diagrams show a deviation in the correlation trends between Mg# and other
elements, specifically when Mg# decreases below the 80 threshold. These deviations are
likely due to the beginning of crystallization of other mineral phases that determines the
different partition of elements into different phases. As an example, when feldspar begins
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to crystallize together with the pre-existing clinopyroxene, the Al content of the melt is
preferentially distributed in the feldspar. Furthermore, the Al2O3, TiO2, Na2O, Cr2O3 and
MnO contents of clinopyroxenes from rocks belonging to the last 12 ka show different
trends with respect to those of clinopyroxene from rocks of previous periods (Figure 4). In
addition to the concomitance of crystallization of various phases, other processes able to
determine the decoupling of elements should be considered. With respect to the previous
periods, during the last 12 ka mafic magmas of deeper origin more frequently reached the
upper crustal reservoirs. In fact, it is known that Mg-olivine-bearing (Section 4.1.1) mafic
magmas (trachybasalt and latite) were erupted at Campi Flegrei only during the last period
of activity, through vents located along a NE–SW regional fault system that probably tapped
the deeper least-evolved reservoir (e.g., [66,110,120,132]). Diffusional modifications due to
mixing between less and more evolved magmas can explain the observed different trends
in the chemistry of minerals. The interaction between mafic and pre-existing evolved
magmas or between melts and crystal mushes [94,133] would also explain part of the
mineralogical disequilibria observed in the Campi Flegrei minerals (Figures 7–10). Open-
system magmatic processes such as mixing/mingling (e.g., [94,98,101,110,134]), crustal
contamination (e.g., [135]) and CO2 flushing [88,101] have been hypothesized for the Campi
Flegrei magmas, especially during the last 12 ka of activity. Such pre-eruptive processes
could have decoupled earlier-grown crystals from their equilibrium melts. These findings
are supported by the equilibrium tests themselves. In particular, in some of these (e.g.,
Figure 10), the linear and parabolic trends are possibly due to the occurrence of closed- and
open-system processes, respectively. In fact, similarly, in addition to providing information
on the possible occurrence of these processes, the Fe-MgKdmin-liq equilibrium test is also
useful for the identification of xenocrysts and/or antecrysts, late crystallization, crystal
removal and closed-system crystallization (e.g., [13,136]).

5.2. Reliability of the Equilibrium Tests for the Campi Flegrei Minerals

For clinopyroxene, two different approaches (equilibrium test 1 and equilibrium test 2)
were used here to test equilibrium between minerals and their melts. By applying equilib-
rium test 1 based on the Fe-Mg exchange coefficient to all the Campi Flegrei clinopyroxenes
and screening all the mineral-melt pairs resulting in equilibrium (Figure 12a), we observe
that almost all these couples are not in equilibrium, if they are tested by comparing the
measured and predicted components (equilibrium test 2; Figure 12b).

Vice-versa, by applying this last method to the entire clinopyroxene-melt dataset and
taking into account only clinopyroxene-melt couples in the 1:1 ± 0.05 line, it is possible to
observe again a misfit with the method based on the Fe-MgKdcpx-liq (Figure 12c,d).

The mismatch between the two tests can be explained in terms of the different pa-
rameters used in these methods. It is well-known that the equilibrium test based on the
Fe–Mg exchange coefficient has certain limitations, and alone it is not sufficient to testify
equilibrium crystallization: the Fe-MgKdmin-liq takes into account the behavior of the Fe-Mg
exchange without considering that of minor elements, i.e., Al, Ca, Na, Ti, that can exhibit
a wide range of variation in clinopyroxene (e.g., [13,126,137]). Putirka [13] showed that
Fe-MgKdcpx-liq is not a suitable tool for assessing equilibrium for a wide range of composi-
tions. Similarly, the Fe-MgKdol-liq is sensitive to melt composition and hence fixed values for
such coefficients cannot be applied (e.g., [138]). Therefore, an alternative and more suitable
test for assessing equilibrium at the time of crystallization is based on the deviation of
mineral components measured in a mineral such as clinopyroxene (Di, Hd, En, Fs, CaTs,
CaTiTs, CaCrTs and Jd) from those predicted from the melt composition (e.g., [127]). Using
this model, Putirka [13] and Mollo et al. [126,137] suggested that the difference between
predicted and observed components provides a more robust test for equilibrium with
respect to the method which takes into account the Fe-MgKdmin-liq.
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In this regard, equilibrium test 2 represents a more adequate tool for the evaluation of
equilibrium conditions. Nevertheless, the obtained pressure estimates on clinopyroxene-
melt pairs resulting in equilibrium through this method cast some doubt on its reliability.
In fact, for clinopyroxene-melt pairs whose equilibrium conditions have been verified
by equilibrium test 2, negative values of the pressure estimates (Table 6) are obtained by
applying the Equation (32c) of Putirka [13] and the Palk2012 of Masotta et al. [30]. This latter
geobarometer has been chosen because it is specific for alkaline magmas and, in theory,
more suitable for Campi Flegrei rocks; moreover, Equation (33) of Putirka [13] overestimates
the temperature below 850 ◦C [30]. Still, a great number of negative pressure values have
been obtained with the use of the Palk2012 equation. Such results raise doubts on the
appropriateness of using this test for equilibrium coupled with the geothermobarometers of
Masotta et al. [30]. On the other hand, both geobarometers, when applied to clinopyroxene-
melt pairs in which the equilibrium has been verified through the Fe-MgKdcpx-liq, do not
yield negative pressure estimates.

5.3. Reliability of the Temperatures Estimated for the Campi Flegrei Minerals

A reliable magma temperature estimate goes beyond the information on how hot that
magma was. The determination of temperature is critical, for example, in the application of
diffusion modeling for timescale estimates. This allows for the retrieving of information on
the residence times of crystals in subvolcanic plumbing systems with an important impact
on the assessment of the current state of an active volcano during unrest (e.g., [57,139–143]).
In particular, the obtained duration is exponentially dependent on the temperature value,
since the latter is the crucial parameter used to calculate the diffusion coefficient (e.g., [144]).

For the temperature estimated through the geothermometers used in this work, regard-
less of the combination of equilibrium tests and geothermometer usage, the mineral-melt
couples of the last 12 ka rocks always yield the widest temperature ranges. This is probably
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due to the occurrence of rocks with poorly differentiated compositions besides those with
evolved compositions, unlike previous periods (Figure 2).

In order to evaluate the robustness of the geothermometer–equilibrium test combina-
tions, we compare the temperature output values obtained here with those estimated in
previous studies. Forni et al. [55] estimated a pre-eruptive temperature for the CI in the
range 1070–879 ◦C through the clinopyroxene-liquid geothermometers of Masotta et al. [30].
In previous works, the pre-eruptive temperatures of the CI magma were estimated in the
range 980–800 ◦C, based on various methods: (i) comparing whole-rock compositions with
the Nepheline (Ne)–Kalsilite (Ks)–Quartz (Qz) system [51,145]; (ii) two-feldspar geother-
mometry [51–53]; and (iii) homogenization temperatures of melt and fluid inclusions in
clinopyroxene and K-feldspar [53]. The variable results obtained by different studies high-
light the necessity to find a method allowing precise estimates of the temperatures for the
Campi Flegrei minerals. Those obtained here for the CI are various, depending on the
geothermometer used, the equilibrium test and combination thereof: the clinopyroxene-
melt geothermometer of Putirka [13] based on equilibrium test 1 yielded temperatures in
the range of 1015–894 ◦C; the geothermometer of Putirka [13] based on equilibrium test 2
yielded temperatures in the range of 886–811 ◦C; the geothermometer of Masotta et al. [30]
based on equilibrium test 2 yielded temperatures in the range of 963–900 ◦C; the geother-
mometer of Masotta et al. [30] based on equilibrium test 1 yielded temperatures in the
range 1055–921 ◦C; the two-feldspar geothermometry yielded temperatures in the range of
1076–713 ◦C. Compared to the previous estimates, the application of the clinopyroxene-melt
geothermometers to mineral-melt couples whose equilibrium has been verified through
the equilibrium test 2 narrows the temperature ranges. On the other hand, the two-feldspar
geothermometer yields a wide range of temperatures. Nevertheless, it should be kept in
mind that the equilibrium temperature of feldspars can be lower with respect to that of
clinopyroxene, in the crystallization sequence. Regardless, the temperature ranges obtained
with clinopyroxene-melt geothermometers based on equilibrium test 1 in this work are
similar to those obtained in previous studies.

In Orsi et al. [83], at P of 1 kbar, the ternary-feldspar geothermometer [146] applied to
the NYT magmas gave temperature estimates of 838–746 ◦C. More recently, Forni et al. [89]
estimated a pre-eruptive temperature for the NYT magmas in the range of 1095–910 ◦C
through the clinopyroxene-liquid geothermometers of Masotta et al. [30]. Even in this case,
our results are different, depending on the used methods and combination thereof: the
clinopyroxene-melt geothermometer of Putirka [13] based on equilibrium test 1 yielded
temperatures in the range 1018–914 ◦C; the geothermometer of Putirka [13] based on equilib-
rium test 2 yielded temperatures in the range of 961–819 ◦C; the geothermometer of Masotta
et al. [30] based on equilibrium test 2 yielded temperatures in the range 1105–961 ◦C; the
geothermometer of Masotta et al. [30] based on equilibrium test 1 yielded temperatures
in the range of 1058–973 ◦C; the two-feldspar geothermometer yielded temperatures in
the range of 992–790 ◦C. Hence, even in this case, the temperature ranges that most match
the literature estimates are those obtained by geothermometers applied to mineral-melt
couples whose equilibrium has been verified through equilibrium test 1.

For the Agnano–Monte Spina eruption trachytes, temperatures are constrained by both
experimental petrology [54] and two-feldspar geothermometry [57] between 973 and 870 ◦C.
In this work, no Agnano–Monte Spina clinopyroxene-melt couple passed equilibrium
test 2. Hence, our estimates for pre-eruptive temperatures come from the clinopyroxene-
melt geothermometer [13] applied to clinopyroxene-melt couples whose equilibrium has
been verified with the Fe-MgKdcpx-liq and from the two-feldspar geothermometer: the
temperatures estimated with these geothermometers are in the ranges of 946–893 ◦C and
928–812 ◦C, respectively. The former estimates are in agreement with those of previous
works, whereas the latter only partly fit. However, our results are more robust because
we used a greater amount of data with respect to those of previous studies, in which the
equilibrium conditions were not verified before applying geothermometry.
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Astbury et al. [58] applied the Masotta et al. [30] geothermobarometers to clinopyrox-
ene crystals of the Astroni eruption and obtained temperatures in the range of 980–960 ◦C
and pressures in the range of 2.2–0.2 kbar. They also applied two-feldspar geothermom-
etry (Equation (27); [13]) to feldspar rims that gave temperatures ranging from 970 to
800 ◦C. Here, we obtained T–P estimates for the Astroni eruption through the Putirka [13]
clinopyroxene-melt geothermobarometers. The latter method, when applied to mineral-
melt couples which passed equilibrium test 1, yielded temperatures in the range of
981–884 ◦C and pressures in the range of 13.4–5.8 kbar, while when applied to mineral-melt
couples resulted in equilibrium via test 2 yielded temperatures in the range of 919–830 ◦C
and pressures in the range of 1.4–0.7 kbar. The estimated T partially match the values
obtained by Astbury et al. [58]. Nevertheless, the pressures obtained with the Putirka [13]
geobarometer applied to mineral-melt couples that resulted in equilibrium via test 1 are
unrealistically high (13.4–5.8 kbar).

D’Oriano et al. [116], Piochi et al. [95] and Arzilli et al. [47], based on phase relations
and geothermometry, estimated that in the magma(s) feeding the Monte Nuovo eruption,
phenocrysts formed at equilibrium temperatures of ~890–800 ◦C, whereas the microlite
equilibrium temperatures were even higher (~1100–900 ◦C). Since no clinopyroxene-melt
couple of Monte Nuovo rocks passed equilibrium test 1, our temperature estimates come
from the two clinopyroxene-melt geothermometers applied to mineral-melt couples whose
equilibrium has been verified through test 2. In particular, the Putirka [13] geothermometer
yielded temperatures in the range of 899–834 ◦C and the Masotta et al. [30] geothermometer
yielded temperatures in the range of 911–895 ◦C. Since our estimates are based on phe-
nocrysts only, we can observe a good fit of the temperature values obtained through the
Putirka [13] geothermometer with those of the literature.

5.4. Reliability of Pressures Estimated for Campi Flegrei Minerals

Calculated pressures together with bedrock density allow for the estimation of depths
of crystallization, and hence, potential magma storage depth. Determining magma storage
depths is essential for various reasons. For example, understanding the distribution of
magma storage depths is important for linking magmatic processes to the expressions of
ongoing unrest such as seismicity, ground deformation and gas emission, especially in
volcanically active areas [147–149], as well as to provide information about mechanisms of
crustal formation [150–152].

Regarding pressure estimates, in order to evaluate the reliability of the different
equilibrium test–geobarometer couples used here, we compare our results with those
obtained with different methods used in literature (e.g., geophysical investigations, melt
inclusions, phase equilibria) to infer the storage depth of Campi Flegrei magmas. In
recent decades, geochemical and geophysical investigations allowed for the assessment
that the Campi Flegrei plumbing system is characterized by deep and shallow reser-
voirs, [31–34,36–45,47,49,87,88,95,101,121,132,135,153–162]. However, although the detach-
ment of magma at a depth ≥ 8 km is widely accepted, there is no consensus about the
structure of the plumbing system at shallower levels. In fact, some authors hypothesized
the presence of permanent small magma chambers feeding the last 5000 years of activity,
including the last event, at ~4–1 km of depth (Monte Nuovo eruption; [48,58,163]), while
other authors suggested the development of an ephemeral localized storage zone during
the magma ascent, where magma shortly resides until erupting or cooling (the so-called
failed eruptions, e.g., [97]).

Regarding the large-volume CI eruption, Fabbrizio and Carroll [35] estimated that the
magma reservoir was stored between 5 and 8 km below the surface, through experimen-
tal constraints on phase relations. Using thermodynamic modeling, Bohrson et al. [164]
revealed that in the magmas feeding the CI eruption, major element variations were
dominated by crystal–liquid separation at pressures corresponding to ∼7–5 km. Melt
inclusions in crystals from CI analyzed by Marianelli et al. [117] yield a relatively wide
range of pressure for the magmatic storage and degassing located at 2–6 km depth. Sim-



Minerals 2022, 12, 308 24 of 33

ilarly, the phase-equilibria calculations performed by Fowler et al. [118] on CI glass and
mineral compositions indicate isobaric fractionation at 0.15 GPa (∼6 km depth). Pap-
palardo et al. [72], using geochemical and textural analyses, suggested that a wide sill-like
trachytic magma chamber was active under the Campanian Plain at ca 2.5 kbar before
CI eruption. Fanara et al. [46], through a combination of natural and experimental data,
proved that the CI magma could have been stored or ponded during its rising path at
two different levels: a deeper one corresponding to a depth of about 8 to 15 km and a
shallower one at about 1 to 8 km. Moretti et al. [165], through melt-inclusion-based studies
of gas-melt saturation, pointed out that the huge volume of magma that extruded during
the CI eruption differentiated and mixed at ∼6–3 km.

Hence, several studies provided different estimates of the storage conditions for the
Campi Flegrei magmas that are also very variable for the same case study (e.g., the CI
eruption). In most of these studies, the main inferred estimates range between ∼12 and
∼4 km, corresponding to a pressure range of ∼3–1 kbar, using a crustal density of 2.6 g/cm3

according to Berrino et al. [166]. This estimate is not precise and there is no possibility to
really discriminate among two or more main magma storage depths, considering the SEE
of the geobarometers. However, this pressure range seems reasonable since the anomalous
layer with the shape of a wide sill extending below the Campi Flegrei area at ∼11–7 km
depth identified in different geophysical studies (e.g., [31–34,36–38]) is generally accepted
as the main storage region of Campi Flegrei magmas. By considering the wide range of
pressures (~14.7–1 kbar) obtained with the Putirka [13] geobarometer based on equilibrium
test 1, we cannot consider it as a good method for estimating the crystallization pressures
of Campi Flegrei magmas. In fact, the most frequent pressure value obtained with this
method is ∼7.5 kbar (Figure 13a), which corresponds to a depth of ∼29 km, by using a
crustal density of 2.6 g/cm3, which is quite unreasonable for evolved magmas.
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Figure 13. Comparison of the estimated pressures (kbar) obtained through the various methods
combining equilibrium tests and geobarometers; (a) frequency (%) histogram of pressure estimates
obtained through the equation 32c of the Putirka [13] geobarometer applied to clinopyroxene-melt
couples whose equilibrium has been verified with equilibrium test 1; (b) frequency (%) histogram of
pressure estimates obtained through the equation Palk2012 of the Masotta et al. [30] geobarometer
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applied to clinopyroxene-melt couples whose equilibrium has been verified with equilibrium test 1;
(c) frequency (%) histogram of pressure estimates obtained through the equation 32c of the Putirka [13]
geobarometer applied to clinopyroxene-melt couples whose equilibrium has been verified with
equilibrium test 2; (d) frequency (%) histogram of pressure estimates obtained through the equation
Palk2012 of the Masotta et al. [30] geobarometer applied to clinopyroxene-melt couples whose
equilibrium has been verified with equilibrium test 2.

Equation (32c) of Putirka [13] applied to clinopyroxene-melt couples resulting in
equilibrium with test 2 yields estimates that are more in agreement with those obtained
in the literature. In this case, the pressures range from ∼5.6 to 0.1 kbar, with two outsider
values at 8.4 and 7.5 kbar (Figure 13c). The pressure values show a bimodal distribution
characterized by two main peaks at 1.5 kbar and 4.1 kbar. These values correspond to
depths of ∼6 km and 16 km, by using a crustal density of 2.6 g/cm3. The first value is in
agreement with depths of shallow reservoirs (≤8 km) frequently estimated in previous
studies. The second value could be attributed to region of magma storage below 8 km
depth. Nevertheless, it should keep in mind that precise depth estimates can be under- or
over-estimated for the uncertainty due to the lack of reliable data on the average density of
rocks at various depths (km).

5.5. Reliability of the Different Geothermobarometers Based on Different Equilibrium Tests for the
Campi Flegrei Minerals

Based on the comparison with T–P estimates published in the literature, we can
evaluate which combination of geothermobarometer–equilibrium test can be most suitable
for the Campi Flegrei magmas. For temperatures, the two-feldspar geothermometer yields
values commonly slightly lower compared to those obtained in the literature through
independent studies. Overall, the geothermometers applied to clinopyroxene-melt couples
whose equilibrium has been tested through test 2 do not yield temperature values fitting
those estimated in previous works. On the other hand, the geothermometer of Putirka [13]
applied to clinopyroxene-melt couples whose equilibrium has been tested through the
Kd can be considered the most reliable combination of methods, being able to match the
pre-eruptive temperature values obtained in previous studies. This finding is valid for all
the eruptions fed by compositionally heterogeneous magmas, such as CI, NYT, Agnano-
Monte Spina and Astroni 6, which show evidence of pre-eruptive interaction between
less- and more-differentiated magmas (e.g., [55,56,59,83,88,91,94,98,101,120]). For magmas
showing homogeneous and highly differentiated compositions (e.g., Monte Nuovo), the
clinopyroxene-melt geothermometers applied to mineral-melt couples whose equilibrium
has been verified through equilibrium test 2 can be considered the most adequate tool for
the estimation of temperatures.

For the pressure estimates, as previously shown, when coupled with the equilibrium
test 2, the geobarometer of Masotta et al. [30] yields a great number of negative output
pressures. The most reliable pressure estimates, not affected by negative values and reason-
able being comparable to those obtained through independent studies, are those obtained
with the geobarometer specific for alkaline magmas [30] applied to clinopyroxenes-melt
couples, whose equilibria have been verified with test 1. However, this geobarometer was
calibrated on a set of experimental data at low pressures; this allows for the investigation
of crystallization depths only in the shallower part of the Campi Flegrei magmatic system,
casting doubts on depth estimates of its deeper portion. In this regard, the use of such a
geobarometer can be an efficient tool for estimating crystallization pressures of minerals
in shallow reservoirs and for obtaining useful information about syn-eruptive conditions
(magma degassing, magma rising velocity, e.g., through study of microliths, crystal size
distribution, etc.), but it does not give the possibility to investigate processes occurring at
high depths.
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6. Conclusions

Most of the findings which are discussed are based on the comparison between our
geothermobarometric estimates and those obtained in other works through different meth-
ods, i.e., melt inclusion and phase relation studies. However, it is largely demonstrated
that melt-inclusion data can be affected by post-entrapment modification, as well as that
the inclusion-bearing crystals can have a wide range of origins and ages, further com-
plicating the interpretation of magmatic processes [167]. Thus, melt inclusions’ volatile
contents do not univocally record pre-eruptive storage depth but can follow syn-eruption
degassing paths.

The mineral chemistry of the Campi Flegrei olivine, clinopyroxene and feldspar is
characterized by two main compositional populations that are recurrent over all the periods
of activity. Moreover, the chemical variation trend detected in minerals belonging to the last
12 ka and their numerous mineral-melt disequilibria testify, during this period, to a frequent
occurrence of open-system processes (mingling/mixing, crustal assimilation, CO2 flushing)
able to produce diffusive effects and to decouple crystals from their equilibrium melts.
Nevertheless, such prevalent compositions suggest that two main sets of thermodynamic
variables (T, P) rule the growth of crystals and, hence, the storage conditions of the Campi
Flegrei magmas. These two magmatic environments can be ascribed to mafic and evolved
magmas, which presumably characterize deep and shallow reservoirs, respectively. Nev-
ertheless, the current geothermobarometric methods do not allow precisely constraining
and distinguishing the depth and temperature of the two main magmatic environments.
Interestingly, the combination of equilibrium tests considered less robust with geothermo-
barometric methods considered less appropriate for the Campi Flegrei magma compositions
yields estimates that are in agreement with results obtained in independent studies. In fact,
our results highlight that (i) there is a low reliability for the combinations of the most recent
equilibrium tests and geothermometric and geobarometric methods, which theoretically
are the most suitable for the Campi Flegrei alkaline magmas; (ii) although equilibrium
test 1 has certain theoretical limitations and is considered less suitable than equilibrium
test 2, the mineral-melt couples resulting in equilibrium with the former test produced
geothermobarometric estimates that are more in agreement with previous work estimates;
(iii) the right choice for the best approximation of the geothermometric and geobarometric
estimates depends, case by case, on the compositional features of the erupted products. In
fact, the occurrence of frequent open-system magmatic processes, which influenced the
chemical-physical conditions (temperature, volatile content, etc.) of the plumbing system,
makes the application of classic geothermobarometric approaches critical.

From all these considerations, it is clearly possible to obtain information on the archi-
tecture of the Campi Flegrei magmatic system from the geothermobarometric estimates,
but the critical issues highlighted in this work suggest that in complex systems such as the
Campi Flegrei one, the application of combined methods must be preferred over the single
approach.
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