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Bayesian Monitoring of Seismo Volcanic Dynamics
Angel Bueno, Carmen Benı́tez, Luciano Zuccarello, Silvio De Angelis, and Jesús M. Ibáñez

Abstract—Methods for volcano monitoring - based on the
analysis of geophysical data - often rely on deterministic ap-
proaches without considering the complex and dynamical nature
of volcanic systems. In order to detect subtle changes within
seismic sequences associated with volcanic unrest, specialized
workflows for data classification and analysis are required. Here,
we present an inference framework based on Bayesian Deep
Learning as a probabilistic proxy, which allows monitoring con-
tinuous changes in seismic activity at volcanoes. This architecture
has been designed and trained with the specifc purpose to detect
and classify individual earthquake transients from continuous
seismic data recorded in volcanic environments. Here, we test this
new data analysis framework by analysing seismic data associated
with eruptions at Bezymianny volcano (Russia) during 2007. Our
study demonstrates efficient signal detection and classification
accuracy, and effective detection of changes in the volcanic system
in the hours preceding eruptive activity. Our results can be
extended to other volcanoes and earthquake-prone areas, and
demonstrate new applications of Deep Learning in the field of
seismic monitoring.

I. INTRODUCTION

FORECASTING of volcanic eruptions is grounded in the
ability to identify changes in metrics derived from the

analysis of geophysical time series, and successful implemen-
tation of such data analysis frameworks for pattern recognition
in real or quasi-real-time, [1]. Volcano seismology remains the
most popular tool for volcano monitoring. Volcanic activity is
known to generate a variety seismic signals, which represent
evidence of multiple complex processes acting within volcanic
systems. Changes in the style of seismicity, its rates of occur-
rence and magnitude, are frequently recognized as precursors
to eruptions [2]. Recent technological advances, lower costs
of equipment and improved open access policies for access to
scientific data have meant that more information has become
available. Research efforts in recent years have, thus, focused
on improving our ability to process large amounts of seismic
data efficiently, in particular exploiting the feature learning
capabilities of Deep Learning: [3], [4], [5], [6], [7], [8], [9].
Pre-trained deep neural networks (DNNs) and recurrent neural
networks (RNNs) have been explored in multi-class discrimi-
native frameworks [10], [11], showing good performances in
well-studied, selected periods of seismic unrest (snapshots):
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they are selected time-interval associated with well-identified
volcanic activity, used to fine-tune monitoring algorithms [12],
[13], [14], [15]. These workflows were, however, implemented
without consideration for the assessment of uncertainty, which
can affect their performances in adverse conditions [16].
These algorithms can experience significant performance drops
due to limitations in the use of training seismic databases
and procedures that do not account for the non-stationary
evolution of volcanic unrest and its seismic fingerprint. These
issues can be partly mitigated through constant updating of
the training datasets, an arduous task that involves continual
manual inspection of large amount of seismic data and re-
training of the neural networks. A probabilistic approach to
Deep Learning can helps to partly tackle these challenges [17].
Recent work by [18] has demonstrated the capabilities of Deep
Learning to operate as a multi-volcano classifier by re-using
accumulated seismic knowledge throughout time. The uncer-
tainties derived from the Bayesian formulation in [18] serve as
an indicator of changes in the frequency content distribution
of the seismic signal, casting differences in eruptive periods
as transfer learning scenarios. Although this approach helps
to mitigate some of the previous issues it still requires expert-
validated, manually segmented training datasets.

In the field of seismo-volcanic monitoring, the concept of
uncertainty can be associated with the result of a measurement
that characterizes the dispersion of the values that could
reasonably be attributed to the monitored process. In this
context, aleatory uncertainty refers to the notion of random-
ness, that is, the variability in the outcome due to inherently
random, unforeseen effects. As opposed to this, epistemic
uncertainty refers to uncertainty caused by the model´s lack
of knowledge about the complete data distribution. In other
words, epistemic uncertainty refers to the reducible part of the
(total) uncertainty, whereas aleatory uncertainty refers to the
non-reducible part. The application of epistemic and aleatory
uncertainty concepts to the field of seismo-volcanic monitoring
can be defined as a measure of how much data resembles
known conditions, aiding in the discovery of data variations
and the temporal evolution of a physical system. Therefore,
the concept of uncertainty can be used to control the quality
of the physical measurements of a volcanic system and as an
indicator of the evolution of these physical measurements over
time. A homogeneous volcanic system generates waveforms
that resemble one another and lie within the known support
data distribution. When we deploy a trained system for seismo-
volcanic monitoring, the uncertainty will vary according to
whether there is an increase in the homogeneity of the data or,
on the contrary, the data cease to resemble known conditions.
It is well known that this evolution is associated with changes
in the characteristics of seismo-volcanic signals, for example,
increase of the energy, the existence of volcanic tremor, shift
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of the frequency of the signals, among many others. In this
case, an increase in seismic noise, for example, would make
a signal stop looking like another of the same class because
a random noise level has been added to it. In this case, it is
evident that the aleatory uncertainty will have to grow, but
as we have seen, the growth of epistemic uncertainty will
be more evident and more useful to define a change in the
volcanic system. However, the nominal value of the aleatory
uncertainty and the difference with respect to the previous
period can tell the volcanologist about the significance of the
produced change; that is, if the variations in the epistemic
is due to new data heterogeneities (mild increments of the
SNR noise) or to more significant internal variations (volcanic
inflation, change in seismic impedance, ...). For this reason, the
randomness in the monitoring implies a change of data and the
environment, always conditioned to the available training data.
If an analyst can expand the volcanic knowledge by taking
more refined measurements, it may be sensible to consider
variables that exhibit dependence on those measures and can
explain stochasticity in the data.

In this study, we introduce a new Bayesian Deep Learning
(BDL) method for detection, segmentation and classification
of seismo-volcanic data streams, with uncertainty quantifi-
cation. We will introduce a new hybrid architecture that
combines segmentation and temporal sequence classification
for the simultaneous identification and separation of seismic
signal from background noise. We will test and confirm the
capabilities of our model on a well-known, short-lived and
high-energy eruption at Bezymianny volcano in 2007 (Russia)
[19], recorded by a near-field seismic station. Finally, we will
discuss the potential future use of Bayesian uncertainty in
volcano monitoring.

The remainder of this paper is organized as follows: Section
2 introduces the designed hybrid architecture and the Bayesian
methodology. Section 3 connects Bayesian theory and volcano
monitoring is presented. Section 4 summarizes the eruptive
phases studied. In section 5, we introduce the experimental
methodology. Section 6 presents the obtained segmentation
and classification results. Finally, section 7 closes the study
with the conclusions and future research directions.

II. BAYESIAN MONITORING

In volcano monitoring, learning the seismic background
tremor is motivated by its presence as a natural continuous
process implicitly related to volcanic unrest [15], [20]. The
separation of seismic signals from the background noise
remains a challenging task, as they are located in a very nar-
row frequency band, overlapping many other seismo-volcanic
events [21], [22]. However, learning the levels of seismic
background tremor can i) help to perform seismo-volcanic
event separation, segmenting only those signals caused by
volcanic unrest, even if noise levels prevail over the target
events ii) bound the classification of seismic events to the
retrieved frequencies in the trace iii) use frequency masks to
gain direct knowledge of potential volcanic sources and the
environment in which the seismograms are recorded.

To this end, our model learns two mapping operations

(figure 1). First, the network parses a time-frequency repre-
sentation of the seismic data stream (spectrogram), which we
note as X1, into a segmentation mask. The learn mask Y1 is
overlapped with the input spectrogram to generate an enhanced
feature map representation M1; this feature map contains
the broad spectra of the seismic events and the background
noise. The second mapping operation performs continuous
event recognition with M1 as the input, generating Y2, the
output sequence of geophysical labels. The Bayesian approach
permits to quantify the total uncertainty of the model in both,
classification and segmentation tasks, to frequency variations
of the data streams, and potential data drift.

A. Segmentation network module
The learning of target frequencies from other background

signals has been applied in different context, where back-
ground could have very diverse meanings. For example, vocal
or music [23], speech denoising [24] and very recent work in
seismic signals for earthquake seismology [25]. Yet, in volcano
seismology, the word background might have an implication
of rapid magma ascent, among many other interpretations
that requires end-to-end methodologies that can exploit the
learn mask in the monitoring outcome [22]. Our segmentation
framework adopts these approaches and proposes an en-
coder/decoder architecture, designed to retrieve the frequency
range of seismo-volcanic events from copious and sustained
tremor noise, applying multiple array-wise convolution oper-
ators at a given frequency range [26]. We cast the problem
of learning the seismic background tremor as a segmentation
task; with S(t, f) the seismo-volcanic signal, and T (t, f) the
seismic background tremor. The magnitude spectrum of the
short-time Fourier transform (STFT), size (freq, time), is
forwarded to a neural network to output the segmentation
mask Y1, size (freq, time, pevent), with pevent the index to
the target seismo-volcanic events or noise. As a final step, this
learned representation Y1 is forwarded to a masking operation,
that is later used by the classification module.

The training target of this segmentation module is given
by the ideal ratio mask (IRM) [27]; defined as the ratio of
the given seismo-volcanic monitoring event, S|(t, f)|2 and
the mixed noisy representation of the data stream spectrum,
S|(t, f)|2 + T |(t, f)|2. From the ground truth label, the IRM
is obtained at the frequencies corresponding to the trace, and
later, mixed with noise. The complementary mask yields the
noise mask. A final binary operation is applied to compose
the Y1 target mask for both events.

The encoder (figure 1, contractive path C), is based on a
CNN with three successive convolutional layers, containing
two convolutions each. The number of filters in each convolu-
tional layer is doubled from the previous one: from the first to
the last layer in C, 16, 32 and 64 filters are used respectively,
with a kernel size (3x3). The latent path, noted in this work
as Z, is a single layer CNN with two convolutions operations,
kernel size (3x3) and 128 filters. This Z path contains the set of
sparse feature maps with refined frequency information from
the input feature matrix X1.

The decoder, noted in figure 1 as the expansive path, E, is
built to keep the symmetry with the contractive path C. The
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Fig. 1. Diagram of the proposed hybrid architecture to perform seismic event detection, A, and continuous sequence classification B, of seismo-volcanic
events. The input is given by the two-dimensional spectrogram, X1, size (freq, time). The outputs are given by the segmentation mask Y1 of size
(freq, time, pevent) and Y2 the labeled sequence (time, class). The X1 matrix is embedded into a latent representation Z, in which the network learn to
untangle frequencies from noise. This representation is later upsampled and decoded through the expansive path, E, into an event detection mask highlighting
the active frequencies of the data stream, X1. The TCN probes this representation to perform seismo volcanic sequence recognition, producing Y2, size
(t, nclasses), the per-frame classified data stream.

decoding steps comprises three up-sampling operations and
three convolutional layers that transform the latent features
Z into a segmentation map, Y1. The up-sampling operation
halves the number of feature maps from the Z path, to permit
tensor concatenation of upsampled maps with convoluted
feature maps from the encoder via skip connections. These
connections transmit the convoluted feature maps in each
layer of the encoder as an effective means of providing more
informative fine-grained features with the decoding steps.
Further, the successive skip connections and up-sampling
operations help to reassemble the time and frequency matrix
dimensions of the input Y1, later used by the classification
network component.

Each of the three layers in E mirrors the number of
convolutions and filters from C: two convolutional operators
with kernel size (3x3), and with 64, 32, and 16 filters, from
first to last decoding layer, respectively. A 1x1 convolution
is applied to assign per-class frequency probability, producing
the output segmentation mask Y1. This output Y1 is a map
of interconnected frequencies of all the seismic events in our
continuous trace. The network automatically indexes those
frequencies and performs an overlapping operation with the

input feature X1, resulting in a masked matrix M1:

M1 = Y1[:,1] �X1 (1)

with [:, 1] the indexes over the detected frequencies, and �
the Hadamard product. The distilled map M1 contains all
the original frequencies from X1 and can be interpreted as
an enhanced version of the input spectrogram. The back-
ground noise has been eliminated from the trace, and the
presence/absence of events in the full seismic frequency range
is marked. These feature representation masks, M1, compose a
structured representation of the input data suitable for temporal
modelling by the TCN component.

B. Temporal Seismo-Volcanic Classification

The seismo-volcanic sequential module is a two-block
temporal Convolutional Neural Network (TCN) with causal
constraint dilated convolutions, a convolutional operator that
considers past contextual information without extensive com-
putations [28] [29]. The causality property refers to the math-
ematical property that temporally bounds future information
to past frames. Therefore, given the enhanced frequency map
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M1 = (mt0,mt1, ...,mt) as a sequence of temporal frames,
causal convolution operators assume that the prediction at
any time t for Y2 = (yt0, yt1, ..., yt), depends only from
previous frames, mt0,mt1, ...,mt, but not from future inputs
mt+1, ....mt. The causal property analyses the past sequence
linearly, expanding the number of processed past frames with
increasing network depth. The dilated convolution operator
F (t), permits exponentially larger receptive fields with broader
past frame sequence contextualization. It is defined as:

F (t) =

k−1∑
i=0

f(i)Mt−d·i (2)

with f(i) the inth filter in layer i, k the filter size and d
the dilation factor. Note that equation 2 bounds each frame
to consider t− d · i past frames in the sequence M1, for any
given dilation d. Hence, per-class prediction at time t depends
solely on the number of past frames, and no future frames
from the seismic sequence are analyzed. This framework is
employed in online seismic sequence classification from the
denoised representation M1. To this end, our convolutions are
made causal as in equation 2, with a kernel convolution size
3, 32 filters and exponential dilation rates of [2, 4, 8] to cover
the full segmented sequence. A final 1-D convolutional layer
is added before the final softmax layer with a small kernel
size of 3 to improve prediction smoothness of the sequence
results. Dropout is added after each dilated convolution for
regularization and learning stabilization.

C. Bayesian Deep Learning
Bayesian Neural Networks (BNNs) define its weights as

probability distributions, ω = (ω1, ω2, ..., ωn), also known as
prior ω ∼ p(ω). Given our seismic dataset D, as the set of
pairs data samples (x, y), with x the processed input data
stream and y the target labels, this probabilistic approximation
allows the computation of the posterior distribution of the
network weights, p(w|D) as:

p(w|D) =
p(y|x, ω) ∗ p(ω)

p(y|x) (3)

with p(y|x) known as the evidence. The predictive distribution
for new input data (x∗, y∗) is given as:

p(y∗|x∗, D) =

∫
p(y∗|x∗, w)p(ω|D) dω (4)

However, equation 4 is not analytically calculable, as the
second term of the integral requires the evaluation of the
posterior p(ω|D). In this regard, variational Inference (VI)
has emerged as the preferred choice in Bayesian inference: the
posterior approximation is cast as an optimization procedure
designed to find the closest tractable distribution qθ(ω) by
minimizing the Kullback-Leibler divergence (KL) to the true
posterior, KL(qθ(ω)||p(ω|D). Recent research work by [30]
has connected dropout regularization with VI in any arbitrary
convolutional network structure to approximate the posterior
distribution of weights. The KL-divergence for approximant
q(ω) is formulated as:

KL(q(ω)||p(w|D) ∝ −
∫

q(ω)log p(y|x, ω)) +KL(q(ω)||p(ω))
(5)

?

Monitoring
Algorithm

Fig. 2. The standard seismo-volcanic monitoring architectures are based on
static supervised learning. In practice, when an unforeseen change in a volcano
alter the seismograms, this translated into a potential data shift that can
compromises the performance of the monitoring algorithm. Our framework
integrates Bayesian theory with CNNs to monitor and perceive data changes
due to Uwav and Usrc from seismo-volcanic data streams.

Note that the second term of the KL divergence acts a regular-
izer over the weights, keeping q(ω) from extreme deviations of
the prior p(ω) but bounding the approximant towards p(ω|D).
The nexus of q(ω) to the regularization term in equation 5
is the dropout technique. This approach, formally known as
Monte Carlo dropout (MC-dropout), formulates qθ(ω) to the
network posterior as ω, the set of weight matrices in lth layer
(ω = {Wl}Ll=1), and θ as the variational approximate in which
the optimisation has to be performed:

qVl
(WL) = Vl · diag[pl,i]Ki

i=1 (6)

with Vl the set of variational parameters, dimension Ki×Ki−1,
pl,i the distribution of Bernouilli parameters. This mathemati-
cal formulation yields a VI foundation to approximate equation
5 with an optimization target function and a regularization
term [30]. Therefore, applying dropout in our convolutional
architecture can produce an approximant q(ω) for predictive
equation 4 that can be approximated by sampling the param-
eterised weights at T stochastic forward passes:

p(y∗|x∗, D) =

∫
p(y∗|x∗, ω)p(ω|D) dω ≈∫

p(y∗|x∗,Wl)q((Wl)) ≈
1

T

T∑
t=1

p(y∗|x∗, (Wl)t) (7)

with (Wl)t ∼ q(Wl). This approximation leverages the perfor-
mance prowess of deep learning with a Bayesian uncertainty
quantification framework, which has been demonstrated to
achieve outstanding performance in earthquake location [17]
and isolated seismo-volcanic waveform classification [18].

III. SEISMO-VOLCANIC UNCERTAINTIES

The recorded seismograms gather a set of informative
parameters related to the seismic wavefield and the volcanic
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environment in which they are generated, i.e., spectral content,
P/S waves amplitude, coda length, among many others. Figure
2 depicts the studied problem from a machine learning per-
spective: the data used to fine-tune seismo-volcanic monitoring
systems may not represent the situations later encountered.
This situation, defined as data drifts, arises if the data samples
(seismograms) from an initial data support distribution are
altered due to unforeseen changes in the volcano. Under
these new conditions, we can estimate the uncertainty in the
segmentation and classification module to determine if the new
recorded seismograms departed from the initial distribution
of frequencies. This section describes the uncertainty quan-
tification approach for classification tasks in seismo-volcanic
monitoring applications.

A. Statistical uncertainties

The sources that could drive changes in a volcano are
composed by an unknown number of latent, heterogeneous
variables that contribute to the overall alteration on the seismic
observable [2], [21]. From statistics, the uncertainties can be
categorized as epistemic or aleatoric, based on whether more
data can reduce their estimated values [31]. The Bayesian
framework proposed in section II can gauge both uncer-
tainties by exploiting the mathematical relationship between
covariance and mean vector. This approach, derived by [32],
decomposes the model uncertainty in aleatoric and epistemic,
offering a probabilistic proxy to uncertainty estimates without
additional network parameterization. Hence, given the realized
sampled dropout-masked model weights after T stochastic
forward passes {ω̂t}Tt=1, and the predictive probability distri-
butions for realization of each step, p̃t = p(ω̂t); the aleatoric
and epistemic uncertainty can be computed as:

Ut =
1

T
(

T∑
t=1

diag (p̃t)− p̃t2) +
1

T
(

T∑
t=1

(p̃t − p)2) (8)

with p the averaged pt over all the T stochastic forward
passes from the dropout variational distribution. The sum both
terms composes Ut, the total uncertainty of the model. In
a monitoring system, estimates of Ut can be used to infer
shifts from the initial data distribution, that is, changes in the
frequency content of the events, or the volcanic medium.

B. Monitoring uncertainties

A monitoring framework can probe the estimated uncertain-
ties as a proxy to detect if the recorded seismograms depart
from the initial data distribution. Hence, the total statistical
uncertainty Ut of a seismo-volcanic monitoring algorithm
comprises two terms, the observed seismogram variability, and
the inherent randomness of the monitored seismic wavefield:

Ut = Usrc + Uwav (9)

with Uwav the uncertainties associated with the seismic wave-
field, and Usrc the uncertainties linked to the monitoring
process. This equation 9 intersects with previous equation 8 of
statistical uncertainties and is based on whether the algorithm
can identify reducible sources of uncertainties. In this context,

epistemic uncertainty arises if continuous seismograms are
not affected by unexpected changes; gathering more data can
refine the original data space approximation. The uncertainty
linked to the unforeseen changes driving the observed process
corresponds to the aleatory uncertainty. In this described
framework, the aleatory uncertainty estimates a single value
that reflects the aggregated contribution of all the overall
irreducible sources of uncertainties, ranging from the inherent
unpredictability of the eruption itself to how seismic signals
interact with the environment [16] [33]. From a monitoring
perspective, we can link these uncertainties to data changes:
when evident alterations in the seismic wavefield are recorded,
increments in Usrc and Uwav must be observed, which can be
leading to different seismograms, and thus, assume that the
volcano has changed.

IV. BEZYMIANNY DATASET

In order to study the potential changes in the uncertainty
according to the eruptive and non-eruptive stages of the
volcano and to observe possible similar behaviour in the seis-
mic wavefield, we have selected the 2007 eruptive sequence
at Bezymianny volcano, with three well-identified eruptions:
25th September, 14th to 16th October and 5th November.
Figure 3 summarises the whole eruption chronology of this
work. This eruptive crisis represents a non-stationary en-
vironment with seismic re-activations, eruptions, structural
failures and generic unrest in a short period. The seismic
network at Bezymianny volcano is composed of numerous
seismic stations, and from them, we selected the BELO station
according to the well-tested quality of its seismic records
for the 2007 eruption [19], [34]. The BELO station is ideal
for recording potential changes in the waveforms, as it is
placed 1.7 kilometers afar from the eruptive centre and can
be considered a very near field seismic station with negligible
attenuation [34].

Following the volcanological observatory bulletins and pre-
vious reports about eruptive timelines [19], [34], [35], the
seismic dataset is divided into four well-differentiated periods:
Quiescent Period (QP), Eruption 1 (E1), Eruption 2 (E2) and
Eruption 3 (E3). Figure 3 depicts a detailed overview of
the dataset organisation, covering unrest periods and volcanic
evolution across three different scenarios. This dataset organ-
isation manages the sheer volume of seismic streams while
offering a well-defined chronological structure for a monitor-
ing testing, and chronological uncertainty framework based on
a well-known, historical eruption. The QP period corresponds
to a segment of twenty days long in which ordinary volcanic
activity is registered. The definition of eruption E1, E2 and
E3 were arranged according to the mentioned reports, and
are used to compare potential changes when a volcanic crisis
occurs. Each eruption is further subdivided into pre-, post-
eruptive periods to reach fine-grained precision on uncertainty
estimates before and after the main eruptions.

A. Bezymianny seismic events categorization
Based on preliminary geophysical knowledge of this vol-

cano, the whole dataset has been curated with precise an-
notations and temporal onsets at the waveform level. Active
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Fig. 3. 2007 eruptive chronology at Bezymianny volcano. We subdivided the eruptive sequence into four minor groups: Quiescent Period (QP), Eruption
1 (E1), Eruption 2 (E2) and Eruption 3 (E3). The QP period covers a time-span of usual background seismic data. The unrest periods E1, E2 and E3 are
subdivided into pre-, post- and eruption themselves. This division correlates with past geophysical bulletins and is motivated to obtain a better insight into
the statistical links of seismic wavefield evolution and uncertainty quantification.

volcanic systems generate a full extent of seismo-volcanic
signals. They receive different labels according to their gener-
ative volcanic sources, not always homogeneous or standard
(a comprehensive summary of naming conventions and as-
sociated source models are given in [18]). Nevertheless, the
past decade has adopted a novel classification scheme to ease
source terminology in favor of an unified data taxonomy. This
categorization scheme, based on signal duration and frequency
content [36], includes high and low-frequency earthquakes,
volcanic tremor and other superficial signals (e.g. rockfalls, la-
hars, pyroclastic flows). By adopting this geophysical criterion,
the label of an event can be assigned using the frequency index
(FI), a logarithmic interpretation of the spectral frequency ratio
(FR), given as:

FI = log10(FR) = log10

(
Ahigh
Alow

)
(10)

with Alow and Ahigh the mean amplitude of high and low
spectral bands, respectively. We adopt the labelling criteria
by [19], with Alow and Ahigh defined as [1 − 5] Hz and
[6 − 13.5] Hz. Each extracted event is labelled according
to the FI value (FR = 0.5) and duration into high- (HF)
and low-frequency (LF) events, seismic background tremor
(SBT) and debris processes (DP). Note that the logarithmic
spectral ratio forces high values of the FI to be associated
with higher frequency mechanism (i.e., brittle fracture). In
contrast, lower values correspond to seismic events with
narrow lower frequency band (i.e., soft ruptures [37]). The
full eruptive dataset is curated in two main steps. First, a
semi-supervised segmentation and categorisation at the stated
FI frequency bands are performed using an entropy-based
algorithm, REMOS [38]. This first procedure generates a
set of preliminary event onsets and associated classes. Then,
all events are translated back into their original sequences
and visually inspected and corrected using PICOSS (Python
Interface for the Classification of Seismic Signals); a data-
curator graphical interface that allows to manually confirm or
modify the annotated labels, along with the onset times of any
detected events [39]. The expert-reviewed data catalogue from

TABLE I
DATASET ORGANIZATION FOR THE BASELINE SYSTEMS, B-QP, B-E1,

B-E2 AND B-E3

(a)
Baseline
system

Dev.
Set

Training
(hrs) Nevents Blind

test
Testing

(hrs) Nevents

b-QP QP 480 3844 post-1 312 1941
b-E1 pre-1, post1 384 2422 post-2 288 9060
b-E2 pre-2, post-2 384 10295 post-3 264 1369
b-E3 pre-3, post-3 576 4681 QP 480 3844

(b)
Dev. set isolated events Blind-test isolated events

Baseline
system HF LF DP HF LF DP

b-QP 1825 1241 778 303 1130 508
b-E1 415 1306 701 3698 2383 2979
b-E2 3984 2883 3428 138 2254 920
b-E3 768 2839 1074 1825 1241 778

September to November 2007 is compiled into a sequence-
level dataset.

V. EXPERIMENTAL METHODOLOGY

This section describes the two main experiments to investi-
gate how the proposed hybrid framework performs in a non-
stationary seismo-volcanic monitoring application. The first set
of experiments aim to obtain a broad understanding of the
performance of the method. By establishing a baseline for each
of the chronological periods as independent data-snapshots,
we simulate the generic situation in which an algorithm, fine-
tuned for initial monitoring conditions, is evaluated after major
changes had happened in the volcano (eruption). This can help
to determine if the error rate decreases as a potential indicator
of data drift. Table I (a) depicts the dataset organization with
the continuous baseline systems, which we defined as b-QP, b-
E1, b-E2 and b-E3. The total number of hours of each training
baseline period, along with the total number of detected events
Ntot in the seismic data stream, are also given in table I.
In table I (b), we depict the overall per-class extracted and
isolated events from the continuous trace, for each baseline
system. The training of each baseline system is done separated
and isolated from the others baselines, with no data leakage
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from past or future periods (see figure 3) during the training
stage. Thus, each baseline system is trained and tested on each
continuous data-snapshots, independently, with 75-25% data
cross-validation split, and report the test set results. Then, we
blind-test with the whole post-eruptive period after the next
eruption in time (see figure 3). Hence, for the b-QP, b-E1 and
b-E2, we blind-test with the post-1, post-2 and post-3 periods.
For the b-E3 system, the blind test set corresponds to the entire
QP period, where the monitoring conditions differ after three
eruptions [19].

In the second experiment, we aim to determine if our
framework, starting from the quiescent period, can detect when
a data drift is happening and how severe affect the performance
of monitoring systems, for the whole eruptive chronology. To
this end, we select the best model from the QP period, (25%
of the whole Bezymianny dataset) and blind-test with the rest
of the eruptive periods, on each temporal sub-partitions of the
dataset. This testing strategy is motivated to provide the model
with a highly granular resolution of the data partitions to refine
the time interval in which data change can be detected. We
introduce the monitoring uncertainty maps as visual means
to provide monitoring interpretability about the connections
between waveforms and uncertainty. As a final step, regardless
of how the dataset is organized, we evaluate the temporal
evolution of the uncertainty for the whole dataset with a
broadly used monitoring tool (energy), to link the monitored
process with the estimated uncertainty.

A. Feature extractions

For each day in the eruptive chronology, the seismic data
streams (100 Hz) are filtered in the range [1 − 13.5] Hz,
and windowed with a five-minute window (30000 samples),
with overlapping of two and a half minutes. From these
windows, we compute the input magnitude spectrograms X1,
using windows of 2.5 seconds with 1.5 seconds overlapping.
As a final result, each X1 is characterized by a matrix of
dimensions (freq, time), in our case, (256, 256). We create
the target mask Y1 from the estimated IRM as explained in
section II. A matrix of size (freq, time, pevents), with pevents;
the index for the noise or frequencies masks, composes the
input Y1. The per-class target sequence classification Y2 of
size, (time, event) is also given during training time, with
event belonging to any of the classes described in section IV.
In this work, we consider SBT as a single class, part of the
mask.

B. Optimization procedure.

The training is perform as a multitask approach, in which
a double loss function Lt is used: Lseg for segmentation and
Lclass for classification, with a softmax with a cross-entropy
respectively. In the case of Lseg , the softmax layer is applied
over the frequency map of the target Y1, whereas Lclass is
applied frame-wise. We selected Adam [40] optimiser with ini-
tial learning rate of 0.01, ReLU activation function and mini-
batch size of 64. The dropout probability is set to p = 0.25.
We use early-stopping with a patience interval of 5 epochs
over 300 training epochs to prevent over-fitting. A random

search over the most promising hyper-parameters derived from
a Bayesian optimization procedure towards best classification
and segmentation performance [41]. The Bayesian Inference
procedure has been implemented as described in Section II,
with T=20 MC-dropout sampling steps. We followed this
optimization procedure for all the system trained on each
period, independently. Our entire experimental methodology
is simulated in an NVIDIA Tesla P40 GPU (24 GB GPU
memory) on a 64 GB RAM computer.

C. Monitoring metrics

The implemented volcano-seismic segmentation framework
can be formulated as a multi-class classification and binary
segmentation problem. The model is trained to identify the
frequency ranges of seismo-volcanic events whilst categorizing
seismic sequences. For the classification TCN module, the
accuracy (Acc) measures the overall effectiveness. Precision
(PR) quantifies the positively classified event rate, whereas the
recall (RC) measures the sensibility of the system to recognize
correct frames. The F1 score is a weighted average between
the precision and recall, computed as:

F1score =
2 ∗ (RC ∗ PR)
(RC + PR)

∗ 100% (11)

Thus, F1 stands as an informative balance between the
refinement of our classifier (PR), and the number of correctly
detected events (RC), for any number of specific classes.
These are standard metrics in sequence classification [42]. The
goodness of a model to correctly identify class-boundaries is
based on segmentation metrics. In this work, we report the IoU
(Intersection Over Union); a standard metric in segmentation
to compute the overlap between the target T and predictive
mask P :

IoU(T, P ) =
‖T ∩ P‖
‖T ∪ P‖

(12)

with ∩ the intersection between the pixels in the target and
prediction mask, and ∪ the union of pixels between both masks
[26]. An IoU score of 1.0 is a perfect segmentation that fully
overlaps the target and predictive masks.

VI. RESULTS AND DISCUSSION

A. Segmentation Baseline Performance

This subsection evaluates the monitoring capabilities of the
proposed model to perform continuous seismic event recog-
nition. Table 2 depicts the attained metrics for each selected
eruptive periods and test sets. The implemented systems b-QP,
b-E1, b-E2 and b-E3 present high performance segmentation
IoU and classification PR, RC and F1, with consistent gen-
eralization for the blind-test partitions. The segmentation IoU
remains above 96% for all the test sets and 94% for the blind-
test partitions. Such IoU generalization capabilities are due to
the capacity of the segmentation module to isolate the set of
frequencies that composes the seismic events in the continuous
data stream. However, the IoU metric decreases a 4% for the
blind test period of the b-QP and 1% for the b-E1 systems.
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TABLE II
OVERALL SEGMENTATION IOU AND CLASSIFICATION METRICS (PR, RC, F1, ACC) FOR THE BASELINE SYSTEMS AND BLIND-TEST PERIODS.

Test set Blind test
Period IoU PR RC F1 Acc IoU PR RC F1 Acc
b-QP 0.98 0.97 0.95 0.96 0.97 0.94 0.94 0.92 0.93 0.92
b-E1 0.98 0.96 0.94 0.95 0.95 0.97 0.86 0.84 0.85 0.85
b-E2 0.96 0.91 0.87 0.89 0.89 0.98 0.90 0.85 0.86 0.87
b-E3 0.97 0.91 0.86 0.88 0.87 0.98 0.96 0.92 0.94 0.94

In terms of classification metrics, the performance gap in the
b-QP system is less evident, with only 3% less in F1, PR, and
RC for the blind-test partition.

Similarly, the b-E2 system experience a performance drop of
1%, 2% and 3% for PR, RC and F1, respectively. However,
all the classification metrics drop 10% for the b-E1 system
when blind-tested on the post-eruptive 2, which may be a
mild indicator that a change has occurred in the volcano. Note
that PR, RC and F1 metrics are calculated from the enhanced
M1 spectrogram representation, and hence, a change in the
frequency spectra of the post-eruptive events, despite the good
segmentation metrics (above 97% in b-E2 system), can be
perceived by the classification module, which is fine-tuned
to the initial distribution of frequencies from the previous
eruptive period of the b-E1 system. For example, changes in
the physical properties of the medium (i.e: seismic impedance)
can shifts the frequency spectra of events, compromising the
performance of the model. The attained results in the blind-test
for b-E2 evidence that predictions become less accurate after
significant eruptions, pointing towards potential data drift.

B. Visualizing predictions

Previous results have highlighted that our hybrid framework
can segment and classify seismic events from continuous data
streams. From top to bottom, figure 4 displays the raw wave-
form, the STFT magnitude spectrum, the retrieved frequencies
of events (M1) and continuous predictions are displayed
for a set of volcano-seismic events. Overall, segmentation
results suggest that the proposed architecture can provide
accurate classification and segmentation for each event. The
main frequency spectra of each seismo-volcanic event are
highlighted retrieved from the main trace. For example, in
Fig. 4 (a) we can notice the clear low-frequency band of
the LF earthquakes; ranging from 1.0 to the 3.5 Hz for the
second LF earthquake. In Fig. 4 (b) we can observe the
high frequency of spectra of the DP and the HF classes.
The detection of target frequencies components from a broad
spectra yields a denoised feature representation for the con-
tinuous TCN to perform enhanced seismic event segmentation
and classification. Our network generalizes for data streams
containing seismic events with copious background tremor
noise as well. The classification prowess is evidenced in Fig.
4 (c) and Fig. 4 (d); the segmenter traces the intra-dynamic
frequency range of the seismic events from the background,
tailoring frequency segmentation towards accurate boundary
detection and classification performance. The TCN correctly
marks the time boundaries of the seismic signals, even for
long events such as the cigar-shaped DP class. This larger

contextual predictive power is due to the increased receptive
fields and the stack of dilated causal convolutions, yielding
a network that keeps looking forward for potential longer
events; considering a broad time-span that incorporates a larger
number of contextual past frames for the prediction at time t.

C. Evaluation of eruption uncertainties

Table 3 presents the performance metrics, along with the
epistemic and aleatory uncertainty; the situation in which
an observatory would not have time to analyze the sheer
volumes of eruptive/post-eruptive data, given the substantial
annotation effort required to provide new data to retraining
any monitoring system. The estimated RMS of the background
tremor and the spectral frequency ratio (FR) in the studied
frequency bands (Ahigh = [6−13.5] and Alow = [1−5.0] Hz,
equation 10) are also reported for each sub-partition of the
dataset.

Overall, the segmentation metric IoU remains above 96%
thorough all the test-set periods. The classification perfor-
mance attains high PR and F1 score, with RC being at
an adequate level, above 80%. For the pre- and post-eruptive
periods, the system has a performance gap of 10% after the
main October eruption; a seismological situation in which the
volcano had suffered a significant explosion and is recovering
towards stability [19]. Nonetheless, the system experiences a
generalization gap in segmentation and classification metrics
for all the eruptions E1, E2 and E3, up to 31% in the F1
classification metric for the E2 eruption. Hence, the changes in
the eruptive periods are evidenced in the lowered performance
and can be used as an indirect measurement to indicate the
severity of data drift. If learning accuracy has diminished
significantly, this can be a potential indicator of change.
Yet, the metrics alone do not offer information about what
is generating these changes, since the estimated uncertainty
provides this information.

The uncertainties Uep and Ual in both, segmentation and
classification modules, act as a coupled mechanism. Higher
uncertainty values correspond to lower monitoring perfor-
mances. The variation of Ut with the eruptive chronology can
thus be explained by comparing the variations in frequency
and noise levels for each time-lapse. Note that even if the FR,
the initial frequency distribution, remains approximately the
same, the uncertainty is amenable to the RMS levels of seismic
background tremor. For example, the post-eruptive period 3
presents a very similar FR but higher RMS than the initial data
period QP. Yet, our model emits higher Ut values and lower
performance metrics. The most elevated Ut values correspond
to the eruptions, with E2 attaining the highest uncertainty
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Fig. 4. Normalised waveform, input magnitude spectrum, retrieved frequencies and continuous recognition of the signal. We can notice that the network can
segment the events onset, and produce a segmentation mask highlighting the active frequencies in the trace. The seismic background noise is learnt efficiently,
and the TCN can track the events despite copious background noise. Besides, the network boundary segmentation for larger like DP is tight with event onsets
and frequencies onsets.
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TABLE III
CHRONOLOGICAL PERFORMANCE, FREQUENCY RATIOS, NOISE RMS AND OVERALL UNCERTAINTY QUANTIFICATION FOR BEZYMIANNY 2007 DATASET.

Geophysical params. Monitoring metrics Segmentation Classification
Period FR RMSnoise IoU PR RC F1 Acc Epistemic Aleatory Epistemic Aleatory Ut

QP 0.34 10.01 0.98 0.97 0.96 0.96 0.96 0.016 0.00021 0.014 0.0008 0.0310
pre1 0.56 9.95 0.97 0.91 0.89 0.90 0.90 0.021 0.00034 0.016 0.0011 0.0384
E1 0.55 77.16 0.95 0.83 0.81 0.82 0.81 0.034 0.00059 0.020 0.0018 0.0564

post1 0.22 15.17 0.98 0.94 0.92 0.93 0.93 0.021 0.00034 0.017 0.0011 0.0394
pre-2 0.5 97.94 0.96 0.90 0.88 0.89 0.88 0.035 0.00056 0.019 0.0017 0.0563
E2 0.58 405.34 0.93 0.68 0.64 0.65 0.66 0.057 0.00110 0.026 0.0032 0.0873

post-2 0.42 16.34 0.96 0.88 0.85 0.86 0.86 0.039 0.00072 0.022 0.0019 0.0636
pre-3 0.38 14.79 0.97 0.91 0.89 0.90 0.89 0.027 0.00046 0.018 0.0013 0.0467
E3 0.40 143.1 0.96 0.85 0.84 0.83 0.84 0.037 0.00073 0.021 0.0017 0.0604

post-3 0.30 12.11 0.97 0.88 0.87 0.87 0.88 0.027 0.00047 0.018 0.0012 0.0466

in Ut, linked to peak RMS levels and FR changes. The
epistemic uncertainty Uep in table 3, has slightly larger values
than the computed aleatory Ual, for all the eruptions, but is
significantly greater than its counterpart in the classification
module. The larger values in segmentation Uep are due to
the learning of the intra-frequency range of the volcanic
tremor and seismic signals, on a very narrow spectrum which
can overlap. The evolving wavefield yields seismograms and
noise levels dependent on geophysical parameters, in which
frequency, energy, or duration could have changed due to
volcanic sources evolution.

Consequently, changes in the sequences of data streams are
connected to metric variations, consistent with the estimated
epistemic and aleatory uncertainties. A volcano changes its
physical state from one eruptive process to another, which
means that the relevance of the seismic data is not applicable
to a new eruptive period in a few days. Most seismic events
are the consequence of fluid interaction (magma). A change in
magma rheology, position, gas content, surface temperature or
differences in the open or closed conduit will imply a change
in the waveform and the spectral content, with substantial
differences between signals within days. The proposed frame-
work demonstrates that the predictive uncertainty estimates are
meaningful as they are amenable to emerging power patterns in
the seismic background tremor and noise levels. The difference
of the power level in the tremor and noise conditions across
eruptive periods is equivalent, by analogy, to the distortion
of images varying the corruption intensities to evaluate the
predictive uncertainty. Hence, the uncertainty evolves for each
eruptive period, being an indicator of how and where the
system evolves.

D. Visual uncertainty interpretation

In the previous experiment, we have gathered numerical
evidence that volcanic changes imply changes in the data space
of the signals. We take one step further to decompose equation
9 and associate waveforms to seismo-volcanic uncertainties.
The visual interpretation of the uncertainty can help post hoc
seismic analysis and intuitive understanding of the monitored
situation. Our framework can provide an estimation of the
total epistemic and aleatory uncertainty, Uwav and Usrc, to
generate a matrix representation of each uncertainty source as
part of the monitoring outcome. We call these representations
monitoring uncertainty maps.

Figure 5 displays four seismo-volcanic events, along with
epistemic Uwav (middle) and aleatoric Usrc (bottom) monitor-
ing uncertainty maps. First, note that both uncertainties, Uwav
and Usrc, are consistently emitted through time. The most
significant uncertainty phases are on the low detected energies,
which is expected as it is a very narrow spectral band carrying
the information about the continuous volcanic tremor. For this
volcano, Uwav and Usrc presents as a coupled, synchronous
mechanism with the input waveform: Uwav displays notable
uncertainty levels at the abrupt transition from background to a
seismic event. The uncertainty Usrc is linked to the potentially
co-existent sources in the seismic wavefield that the model has
learnt to detect. Figure 5 (a) illustrates the seismic uncertainty
maps at two LF earthquake boundaries. At the onset of the LF
earthquakes, the epistemic uncertainty is emitted in the SBT
and LF classes; and switches immediately to LF class up to
event offset. On parallel, the aleatoric uncertainty tracks the
SBT and LF classes simultaneously. Figure 5 (b) depicts a
cigar-shaped rockfall (DP class) and an HF earthquake with
similar behaviors in Uwav and Usrc uncertainty maps.

Figure 5 (c) and (d) depicts the uncertainty maps of co-
existent events with copious seismic noise background. In
figure 5 (c), the three first HF earthquakes exhibit a low-
frequency component in uncertainty Usrc; the uncertainties
can identify simultaneous frequency components of events,
even if the system is trained to recognize single categories,
or classes, from the seismic data stream. Similarly, the DP
class shows this behavior in the low-frequency SBT. The
uncertainties follow the same pattern in Figure 5 (d): the
aleatoric uncertainty tracks the high spectra component of the
HF earthquakes whilst assigning high uncertainty to the LF
class. These maps contrast with Figure 5 (a) and (b), where the
amount of background noise is much lower, but the uncertainty
exhibit a similar behavior on frequency components, high or
low, that are concurrent with the event.

These monitoring uncertainty maps serve as an inter-
pretable, multi-source activation map that highlights potential
co-existent events at any given time. The maps reflect the
intrinsic non-linearity about seismic energy release, providing
refined visual information about the behavior of Uwav and
Usrc in the seismo-volcanic wavefield. The seismic monitoring
uncertainty maps complements the segmentation mask Mt and
the classification outcome, enriching the details on the aspects
of seismo-volcanic monitoring.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 11

100

0

100

Co
un

ts

Raw Waveform [1.0, 13.5] Hz.

SBT
HF
LF
DP

Cl
as

se
s

Epistemic uncertainty Uwav

0 50 100 150 200 250

Time (s)

DP
LF
HF

SBT

Cl
as

se
s

Aleatory uncertainty Usrc

(a)

200

100

0

100

Co
un

ts

Raw Waveform [1.0, 13.5] Hz.

SBT
HF
LF
DP

Cl
as

se
s

Epistemic uncertainty Uwav

0 50 100 150 200 250

Time (s)

DP
LF
HF

SBT

Cl
as

se
s

Aleatory uncertainty Usrc

(b)

200

0

200

Co
un

ts

Raw Waveform [1.0, 13.5] Hz.

SBT
HF
LF
DP

Cl
as

se
s

Epistemic uncertainty Uwav

0 50 100 150 200 250

Time (s)

DP
LF
HF

SBT

Cl
as

se
s

Aleatory uncertainty Usrc

(c)

100

50

0

50

100

Co
un

ts

Raw Waveform [1.0, 13.5] Hz.

SBT
HF
LF
DP

Cl
as

se
s

Epistemic uncertainty Uwav

0 50 100 150 200 250

Time (s)

DP
LF
HF

SBT

Cl
as

se
s

Aleatory uncertainty Usrc

(d)

Fig. 5. Raw waveform (up), epistemic (middle) and aleatoric (bottom) uncertainty seismic maps. The association uncertainty-energy, for each event, is clearly
visible. All uncertainties are associated to both, seismic energy release and signal onset.

E. Monitoring seismic wavefield

The previous sections have demonstrated how uncertainty
can detect drift, for each period, independently. In this sec-
tion, investigate if the estimated uncertainty is correlated to
other geophysical parameters, and it evolves through time.
Figure 6 depicts the normalised temporal variation of Uep
and Ual, along with the RMSE (energy). The x-axis of figure
6 represents time-units (TU); time scales over which the
uncertainty has been estimated. On all three main eruptions,
the estimated short-term evolution of the uncertainty exhibit
similar temporal behaviour with the RMSE seismic energy.
The sustained energy exchange from the volcano with the
medium depends on the waveform propagation and signal
frequency, thus being an independent parameter of the esti-
mated uncertainty. In a non-stationary environment, changes
in the medium or the seismic sources are associated with
variations in the seismograms. These waveform distortions
translate into an alteration of the monitored variable and
thus into higher uncertainties 6. These graphs indicate when
the data drift is happening. The accurate identification of
such drifts is an essential input to improve monitoring adapt-

ability to indicate the requirement to re-train the algorithm
with data from the new period. These empirical uncertainty
observations are in good agreement with previous scientific
reports in seismological bulletins [19]; E1 was preceded by
minor increases in seismicity, moving towards a sustained,
but smaller eruption E1. Note that this sustained seismicity
is reflected in the gradual data drift. The principal, classic
eruption E2, which is the highest peak for Ut, corresponds
to the maximum release of seismic energy during the 2007
eruptive cycle, with high rates of seismic events recording
and a massive, longer explosion. Further, previous research has
reported steady increments in the background tremor energy
[34]. The seismic activity leading to eruption E3 was shallow,
which can be noticed in the almost constant temporal evolution
of the uncertainty. Eruption E3 was a relatively small energy
release that the seismological observatory could not visually
verify due to poor atmospheric conditions, but only via thermal
camera anomaly detection over the dome and RMSE measures
[19] [35]. Therefore, the continuous trend in the uncertainty
abruptly rises simultaneously as the RMSE, thus indicating an
explosion in the volcano that changed the monitored conditions
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Fig. 6. Hourly normalised plots of the overall epistemic (green), aleatoric (blue) and RMSE energy (red), for the pre-eruptive and eruptions E1 (a), E2 (b) and
E3 (c). There is a direct correspondence across energy and uncertainties, aligned as a coupled mechanism, as a rise of both uncertainties is simultaneous to
rising in the seismic energy. Finally, we can see drift is noticeable as suddenly (c) or gradually (a) (b) for each eruption, which demonstrates drift traceability
through time.

abruptly, thus confirming past seismological bulletins.

VII. CONCLUSION

We have applied Bayesian theory to continuous seismo-
volcanic recognition to create new connections between non-
stationary environments and monitoring uncertainties. The
proposed model departs from established approaches based
on supervised learning with modest datasets, not capable of
detecting data drifts as part of the monitored outcome. We
performed simulations on three eruptive time-periods to gain
insight into the generalization and performance of the model.
We group our findings in three main points. First, the designed
convolutional network can learn and detect the full intra-
frequency dynamic range of seismo-volcanic events whilst
performing seismic event recognition.

Second, the designed framework is a probabilistic surrogate
to estimate the total uncertainty Ut as the summation of
the seismic wavefield variations (reducible with more data)
and the randomness of the monitored volcanic process. The
severity of the drift can be evaluated from the computed
metrics, yet this assessment is incomplete without knowing
what is driving change. This formulation has allowed us
to introduce monitoring uncertainty maps as a supportive
tool about the presence or absence of simultaneous sources.

The epistemic uncertainty acts as a complementary onset
detector, whereas the aleatory uncertainty proxy multi-source
identification, greatly enhancing the monitoring outcome.

Last, we have shown that principled uncertainty estimates
are useful for categorizing changes in the seismic signals. The
estimated short-term evolution of the uncertainty connects with
the RSEM, a direct waveform parameter independent from the
estimated uncertainty.
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