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Abstract: Investigation of sea-level positions during the highly-dynamic Marine Isotope Stage 3
(MIS 3: 29–61 kyrs BP) proves difficult because: (i) in stable and subsiding areas, coeval coastal
sediments are currently submerged at depths of few to several tens of meters below the present
sea level; (ii) in uplifting areas, the preservation of geomorphic features and sedimentary records
is limited due to the erosion occurred during the Last Glacial Maximum (LGM) with sea level at a
depth of −130 m, followed by marine transgression that determined the development of ravinement
surfaces. This study discusses previous research in the Mediterranean and elsewhere, and describes
new fossiliferous marine deposits overlaying the metamorphic bedrock at Cannitello (Calabria, Italy).
Radiocarbon ages of marine shells (about 43 kyrs cal BP) indicate that these deposits, presently
between 28 and 30 m above sea level, formed during MIS 3.1. Elevation correction of the Cannitello
outcrops (considered in an intermediate-to-far-field position with respect to the ice sheet) with the
local vertical tectonic rate and Glacial Isostatic Adjustment (GIA) rate allows the proposal of a
revision of the eustatic depth for this highstand. Our results are consistent with recently proposed
estimates based on a novel ice sheet modelling technique.

Keywords: Marine Isotope Stage 3; relative sea level; tectonics; GIA; Calabria

1. Introduction
1.1. MIS 3 Sea Level Historical Background

Marine Isotope Stage 3 was a time of strong climatic contrasts, likely in response to
changes in the Atlantic Meridional Overturning Circulation [1]. A precise assessment of
sea level positions for this interstadial has proved to be elusive and controversial (lastly
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revised by Siddall et al. [2]). Indeed, estimates of the global sea-level during MIS 3 range
between −15 and −87 m [3–7]. One major problem concerns reconstructions based upon
indirect proxies, like the widely used stable oxygen stratigraphy that translates into ice
volumes (and related sea-level oscillations) and the geochemical signals incorporated into
benthonic or planktonic foraminifera from core records [3,8].

Oppositely, the advantage of using cores to investigate sea-level positions is repre-
sented by the continuity of their records. This contrasts the discontinuous record offered
by Pleistocene coral reefs and uplifted or buried sedimentary sequences, which have, on
the other hand, the advantage to provide direct physical evidence of former sea levels [2,9].
The highly diverse and variegated nature of available markers, coupled with intrinsic diffi-
culties to precisely date deposits >40 kyr, accounts in recognising MIS 3 as ‘enigmatic’ [2].
From a climatic perspective, MIS 3 is a crucial time interval since it was characterised by
frequent (millennial) and abrupt thermal oscillations, that strongly reverberated in the
variations of sea levels [2,10,11].

It is, therefore, of paramount importance to estimate the sea level position during this
interstadial. Most reconstructions on MIS 3 appear to exclude that the sea level ever reached
depths greater than −60/−50 m [2,6,9,12–14]. The aim of this paper was to discuss MIS 3
position extracted from marine deposits outcropping in Calabria (Italy, Figure 1), a strongly
uplifting area of the central Mediterranean. We selected the Cannitello site in southern
Calabria where uplift rates have been calculated using a flight of raised Pleistocene terraces
that includes the last interglacial terraces [15].

1.2. Regional Setting

Calabria is the emerging part of a forearc terrane belonging to the Ionian subduction
system. The subducting Ionian lithosphere dips ~70–80◦ northwestward down to a depth
of 450–500 km (see inset in Figure 1; [16–19]). The upper plate of the subduction system,
from west to east, consists of back-arc basins that become younger southeastward (Vavilov
and Marsili basins; [20–22]), an arc-shaped volcanic ridge (i.e., Aeolian islands), and a
forearc-accretionary wedge system including the Calabrian Arc (CA) [23,24].

The CA experienced vigorous uplift during the Quaternary [25,26]. Vertical move-
ments cumulate the effects of both regional and local processes. The latter was related
to footwall uplift along extensional faults [27–32]. Hanging-wall subsidence counteracts
the effects of regional uplift, which, in the long-term, prevails [31,33]. The CA has been
stretched by WNW-ESE oriented Quaternary extension [33–35]. Today, belts of active
extensional faults run along the chain axis and the Tyrrhenian side of the northern and
southern CA, respectively.
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Figure 1. Tectonic setting of the Messina Strait region in the southern part of the Calabrian Arc. 
Active faults (thick solid lines barbed on the downthrown side) after Monaco and Tortorici [36] and 
Barreca et al. [37]: AF, Armo Fault; RCF, Reggio Calabria Fault; CF, Cittanova Fault; SEF, S. Eufemia 
Fault; SF, Scilla Fault, and W-Fault. The red balloon indicates the studied Cannitello site. The inset 
shows the location of the study area in the tectonic setting of the Central Mediterranean (from 
Chiarabba et al. [38]). 

1.3. Study Area 
The study area is located on the Calabrian side of the Strait of Messina (southern 

sector of the Calabrian Arc, Figure 1). The strait is a Pliocene–Quaternary basin limited by 
ENE–WSW to NNE–SSW striking normal faults offsetting Palaeozoic metamorphic 
basement rocks and Miocene terrigenous covers [27,28,39,40] (Figure 1). The stratigraphic 
architecture of the basin consists of Lower Pliocene chalks, Upper Pliocene–Lower 
Pleistocene calcarenites, up to the middle Pleistocene Messina Gravels and Sands Fm [41–
43].  

These sequences are unconformably overlain by terraced Pleistocene marine deposits 
[15,26,44–46], ranging in elevation from 40 to 1200 m a.s.l. The marine terraced series is 
partly displaced by the Scilla Fault and by the Cappuccini Fault, which bounds the Piale 
High [27,28,33,47–49] to the north and south, respectively (Figure 2). The terraced deposits 
consist of fossiliferous calcarenites or sublittoral sands and sandy gravels, more or less 
cemented, directly lying on the Palaeozoic metamorphic basement or on the Pliocene-
Pleistocene deposits [26,44,46]. The marine deposits generally pass upwards to 
continental colluvial reddish silt with sands and gravels levels. 

The lowest and youngest terrace extends along the coast, from Villa S. Giovanni to 
Cannitello area, where it seals the western end of the Scilla Fault, with an inner edge at 45 
m a.s.l. Balescu et al. [50] correlated this terrace with the Isotope Stage 3 (60 ka, [51]) based 
on the Thermo Luminescence and Optically Stimulated Luminescence (OSL) ages of 

Figure 1. Tectonic setting of the Messina Strait region in the southern part of the Calabrian Arc.
Active faults (thick solid lines barbed on the downthrown side) after Monaco and Tortorici [36]
and Barreca et al. [37]: AF, Armo Fault; RCF, Reggio Calabria Fault; CF, Cittanova Fault; SEF, S.
Eufemia Fault; SF, Scilla Fault, and W-Fault. The red balloon indicates the studied Cannitello site.
The inset shows the location of the study area in the tectonic setting of the Central Mediterranean
(from Chiarabba et al. [38]).

1.3. Study Area

The study area is located on the Calabrian side of the Strait of Messina (southern sector
of the Calabrian Arc, Figure 1). The strait is a Pliocene–Quaternary basin limited by ENE–
WSW to NNE–SSW striking normal faults offsetting Palaeozoic metamorphic basement
rocks and Miocene terrigenous covers [27,28,39,40] (Figure 1). The stratigraphic architec-
ture of the basin consists of Lower Pliocene chalks, Upper Pliocene–Lower Pleistocene
calcarenites, up to the middle Pleistocene Messina Gravels and Sands Fm [41–43].

These sequences are unconformably overlain by terraced Pleistocene marine de-
posits [15,26,44–46], ranging in elevation from 40 to 1200 m a.s.l. The marine terraced
series is partly displaced by the Scilla Fault and by the Cappuccini Fault, which bounds the
Piale High [27,28,33,47–49] to the north and south, respectively (Figure 2). The terraced
deposits consist of fossiliferous calcarenites or sublittoral sands and sandy gravels, more or
less cemented, directly lying on the Palaeozoic metamorphic basement or on the Pliocene-
Pleistocene deposits [26,44,46]. The marine deposits generally pass upwards to continental
colluvial reddish silt with sands and gravels levels.

The lowest and youngest terrace extends along the coast, from Villa S. Giovanni to
Cannitello area, where it seals the western end of the Scilla Fault, with an inner edge at
45 m a.s.l. Balescu et al. [50] correlated this terrace with the Isotope Stage 3 (60 ka, [51])
based on the Thermo Luminescence and Optically Stimulated Luminescence (OSL) ages of
associated aeolian sands. This paleoshoreline corresponds to the lowest one mapped by
Monaco et al. [15] (Figure 1) and attributed by the authors to the MIS 3.3.
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Figure 2. (a–c) Maps of the terraced sequence (see Figure 1 for location).

The upper terraces extend around the Piale High, extensively outcropping on the
hanging wall of the Scilla Fault northward and along the south-west side with inner edges
at elevations between 60–85 and 205 m a.s.l. The complete sequence outcrops only on the
Piale High (Figure 2), where the oldest terraces show inner edges at elevations between 285
and 520 m a.s.l. These oldest terraces are represented by wave-cut platforms directly resting
on the crystalline substratum and are covered by silts and reddish continental sands.

The absolute dating obtained by Balescu et al. [50], crossed with geomorphological
correlations to deposits containing Thetystrombus latus (Gmelin, 1791) Persististrombus latus
(Gmelin, 1791) Strombus bubonius (Lamarck, 1822) in the Reggio Calabria area [26,45,52,53]
robustly constrain the age of the whole sequence, whose highest terrace has been attributed
to the MIS 11 (405 kyrs, Figure 2). A more elevated terrace, associated with marine deposits
containing Globorotalia truncatulinoides excelsa [54], reaches an elevation of 680 m. It was
attributed to the MIS 25 (~950 ka) by Miyauchi et al. [26], but more likely must be referred
to the MIS 19 (~730 ka). A complete map of Quaternary coastal terraces, obtained from
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Miyauchi et al. [26], is shown in Figure 2 where, following the authors, the highest terraces
are assigned to middle-lower Pleistocene.

2. Previous Studies on MIS 3
2.1. MIS3 in the Global Context

On a global scale, a limited number of studies have specifically considered MIS 3 RSL
records [55]. For instance, deposits and paleoshorelines ascribed to MIS 3 have been found
in Grand Bahamas where Richards et al. [56] found evidence that the MIS 3.3 highstand
exceeded the depth of −18.1 m as speleothem GB-89-25-5C shows a hiatus between 63.7
and 58.5 kyrs. However, the highstand does not exceed the −15 m depth of flowstone
DWBAH [57,58] (Figure 3). The Bahamas flowstone DWBAH may prove to represent a
sea-level marker of utmost global importance, since encompassing a continuous record
from 326 up to 37 kyrs BP, with five hiatuses corresponding to many marine highstands.
The comparison of DWBAH altitude data with the speleothem of Richards et al. [56],
not presenting hiatus for MIS 3 (−18.1 m), sets an upper limit (−16 m) for the MIS 3.3
highstand.

Water 2021, 13, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Constraints on MIS 3 depth from the Bahamas. The submerged speleothem GB-(89) 
sampled in the Blue Hole (Bahamas) at −18.1 m [56] shows a hiatus between 63.7 and 58.5 kyrs. 
Glacial and hydro-isostatic Adjustments (GIA) at Bahamas is similar to that of the Central 
Mediterranean sea [59]. Predicted RSL curves for the ICE-5G (red curves), ICE-6G (green curves), 
and ANICE-SELEN (blue curves) ice sheet models in combination with MVP 1–3 mantle viscosity 
profiles (solid, dashed and dotted lines, respectively) at each site and with respect to the measured 
elevations. 

Lambeck et al. [8] described a MIS 3 deposit at about −50/−60 m along the coasts of 
Bonaparte Gulf and Huon Peninsula. However, such results could be affected by an 
underestimation of the tectonic contribution. An integrated study of the Gulf of Mexico 
offshore using high-resolution seismics, extensive coring, and dating (14C AMS ages and 
stable isotope stratigraphy) supplies considerable evidence of a MIS 3 sea level high-
stand. The shoreline (as a brackish lagoon proxy) likely reached up to −15/−18 m below 
the present sea level at 14C ages of about 37–40 ky BP [4]. Evidence of circum-Antarctic 
emerged marine deposits attributed to MIS 3 was summarised by Berkman et al. [60]. 
Wide shelfal sectors in the Weddell and Ross seas were probably under open-water 
conditions at this time [61,62]. 

Pico et al. [63] refined estimates of the global ice volume during MIS 3 by employing 
sediment cores in the Bohai and Yellow Sea, that recorded the migration of the paleo-
shoreline at 50–37 ka through a transition from marine to brackish conditions, defining a 
peak global mean sea level of 38 ± 7 m during the interval 50–37 ka. 

2.2. A Mediterranean MIS3 Perspective 
In the Mediterranean region, sea-level information for the MIS 3 mainly relates to 

offshore cores ([64–67]) and on combinations of offshore and onland boreholes [68–76]. 
These data chiefly report the position of continental or marine deposits ascribed to MIS 3 
within marginal sequences; however, their value to assess the sea level positions with 
confidence is rather limited. Additional reference to MIS 3 is found in other records, 
including submerged terraces [77] and prehistoric contexts [78]. 

Regarding the eastern Mediterranean, Dogan et al. [79] focused their attention on 
fossilferous units cropping along the Samandag coast, Turkey. They applied the electron 
spin resonance (ESR) method to molluscs to identify MIS 5.1 and MIS 3 deposits. The 
study estimated for the area a fast uplift that is likely related to the vertical component of 
the strike-slip active faults in the Samandag Antakya Fault Zone. Data analysis and 
vertical tectonic movements suggested a −40 m eustatic position of MIS 3 in this coastal 

Figure 3. Constraints on MIS 3 depth from the Bahamas. The submerged speleothem GB-(89) sampled
in the Blue Hole (Bahamas) at −18.1 m [56] shows a hiatus between 63.7 and 58.5 kyrs. Glacial and
hydro-isostatic Adjustments (GIA) at Bahamas is similar to that of the Central Mediterranean sea [59].
Predicted RSL curves for the ICE-5G (red curves), ICE-6G (green curves), and ANICE-SELEN (blue
curves) ice sheet models in combination with MVP 1–3 mantle viscosity profiles (solid, dashed and
dotted lines, respectively) at each site and with respect to the measured elevations.

Lambeck et al. [8] described a MIS 3 deposit at about −50/−60 m along the coasts
of Bonaparte Gulf and Huon Peninsula. However, such results could be affected by an
underestimation of the tectonic contribution. An integrated study of the Gulf of Mexico
offshore using high-resolution seismics, extensive coring, and dating (14C AMS ages and
stable isotope stratigraphy) supplies considerable evidence of a MIS 3 sea level high-stand.
The shoreline (as a brackish lagoon proxy) likely reached up to −15/−18 m below the
present sea level at 14C ages of about 37–40 ky BP [4]. Evidence of circum-Antarctic emerged
marine deposits attributed to MIS 3 was summarised by Berkman et al. [60]. Wide shelfal
sectors in the Weddell and Ross seas were probably under open-water conditions at this
time [61,62].

Pico et al. [63] refined estimates of the global ice volume during MIS 3 by employing
sediment cores in the Bohai and Yellow Sea, that recorded the migration of the paleo-
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shoreline at 50–37 ka through a transition from marine to brackish conditions, defining a
peak global mean sea level of 38 ± 7 m during the interval 50–37 ka.

2.2. A Mediterranean MIS3 Perspective

In the Mediterranean region, sea-level information for the MIS 3 mainly relates to
offshore cores ([64–67]) and on combinations of offshore and onland boreholes [68–76].
These data chiefly report the position of continental or marine deposits ascribed to MIS 3
within marginal sequences; however, their value to assess the sea level positions with
confidence is rather limited. Additional reference to MIS 3 is found in other records,
including submerged terraces [77] and prehistoric contexts [78].

Regarding the eastern Mediterranean, Dogan et al. [79] focused their attention on
fossilferous units cropping along the Samandag coast, Turkey. They applied the electron
spin resonance (ESR) method to molluscs to identify MIS 5.1 and MIS 3 deposits. The study
estimated for the area a fast uplift that is likely related to the vertical component of the
strike-slip active faults in the Samandag Antakya Fault Zone. Data analysis and vertical
tectonic movements suggested a −40 m eustatic position of MIS 3 in this coastal area of
Turkey. Kirci-Elmas et al. [67], based upon floro-faunal arguments, proposed that the Izmit
Gulf was connected with the Black Sea and the Mediterranean Sea at the beginning of
MIS-3 (ca. 52.0–40.0 ky BP).

A borehole drilled by ‘Regione Emilia-Romagna’ in the Po Plain (Italy) onshore the
Adriatic coast encountered, at about 30 m below the surface, sandy layers interpreted
as representing a fluviatile facies [68]. Noticeably, fresh shells of the marine intertidal
gastropod Nassarius circumcinctus (A. Adams, 1852) picked from these sands were 14C
dated at ca. 37 kyr (A. Viesce, pers. com.). Thus, the sandy layer might represent a former
marine shoreline, currently located about 30 m below the surface and ascribable to MIS 3 [78].
This evidence merits further investigation because it may shed new light on sea level
variations during MIS 3.

On the other side of the north Adriatic Sea, in Lošinj (Croatia), Brunović et al. [80]
attributed a deposit found at about −50 m, in a brackish-to freshwater lacustrine body, to
MIS 3. Antonioli et al. [59], in a review paper on the use of submerged speleothems in the
Mediterranean Sea, provided sea level information about MIS 3 for several areas of the
Mediterranean basin. Along the Croatian side of the northern Adriatic Sea, speleothems
collected inside submerged caves proved that MIS 3 never exceeded a −18.8 m depth (after
correction for subsidence affecting the coastal area [81]).

Along the Tyrrhenian sea coastline, submerged stalagmites collected in the Argentarola
Island showed an uninterrupted continental deposition during MIS 3, testifying that the
sea level did not reach values shallower than −21.7 m [82,83]. Along the Ionian coast
of south-eastern Sicily, Dutton et al. [84] analysed several stalagmites found inside caves
developed along paleo shorelines presently submerged at about −20 and −40 m [85].
Samples collected along the deepest paleo shorelines showed a continuous growth of
continental layers inside the speleothems during MIS 3, proving that the sea level has never
been shallower than −38 m (using a tectonic uplift rate of 0.2 mm/y).

Along the Ionian Sea coast of northern Calabria, a flight of eleven terraces dated to the
Middle-Late Pleistocene indicates uplift at ~1 mm/yrs [86–88]. The lowermost terrace (T1),
with an inner edge at an elevation between 11–24 and 17 m at the foot of the Pollino and
Sila mountain ranges, respectively, was attributed to MIS 3.1 by Ferranti et al. [86] based
on a 14C calibrated age of 44 ± 0.4 ka from a ‘Cardium’ shell sampled at the Pollino range
coast. The sample was taken from a conglomerate deposit in the bank of a stream cutting
terrace T1; however, although resedimented in the recent alluvial system, it likely comes
from terrace T1, and thus the existence of MIS 3 was ascertained.

Based on borehole data, Santoro et al. [87] documented a ~10–15 m thickness of T1
coarse marine-transitional deposits and suggested that it includes both MIS 3.3 and 3.1, as
the terrace was sea-flooded during the two peaks of the MIS 3. Santoro et al. [85] indicated,
at the Pollino coast, the existence of a lower terrace (T0) with an inner edge at 5–11 (average
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8 m) and suggested that T1 (average 15 m) formed during MIS 3.3. This attribution would
support that the age from the ‘Cardium’ shell refers to terrace T0 that is, thus, attributed to
MIS 3.1.

With an uplift rate of 0.9 mm/y established by Santoro et al. [88] on the MIS 5.5 terrace
(dated by Ferranti et al. [86]), a 43 ka old terrace with an inner margin presently at +8 m
should have been uplifted of 38 m; thus, it formed at −30 m below the present sea-level.
Further north, raised marine deposits that have been attributed to MIS 3 by means of OSL
age determinations have been recognized along the Ionian coast of Basilicata [89,90].

3. The Cannitello Site
3.1. Geological-Paleontological Description

Several outcrops of fossiliferous sublittoral deposits are found in the Cannitello loca-
tion. The sites were positioned through GPS RTK, and orthometric heights were obtained
using the IGM (Italian Geographic Military Institute) grids for the Calabria area.

The most relevant site (Cannitello 1, elevation 28 m; Figure 2, Table 1) is stratigraphi-
cally located beneath the outer margin of the terrace attributed to MIS 3.3 [15]. The 3 m
thick stratigraphic section (Figure 4a) presents fine sands at the base, with flat parallel
lamination in a marly silty matrix with fine gravel levels (1). This deposit is engraved by a
surface of sub-planar erosion on medium sands in silty matrix in plane-parallel position (2)
characterised at the base by a level of heterometric pebbles (2a) with a thickness of 10 cm. A
Mitylus shell (Sample 1, Table 2) was sampled from one of the levels containing fragments
of bivalves and gastropods (Figure 4a).

Table 1. The Cannitello studied sites altitudes; see also Figure 2.

Site Number Latitude Longitude GPS Altitude m Google Earth
Altitude m

CANNITELLO 1 38.232280 N 15.644851 E 28.382 30

CANNITELLO 2 38.230440 N 15.644630 E 57.201 57

CANNITELLO 3 38.229399 N 15.643769 E 48.122 47

CANNITELLO 4 38.230805 N 15.642728 E 27.282 28
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Table 2. Radiocarbon ages: samples at Cannitello 1 site; see also Figures 5 and 6.

Sample Radiocarbon
Age Years (BP)

Age Years Cal
BP 1sigma δ13C (‰) Fossil Altitude

Satellite m

LTL20153A >48,000 2.5 ± 0.2 Mytilus 28.3 ± 0.2

LTL20327A 40,887 ± 320 43,152 ± 304 4.2 ± 0.4 Gastropod 28.3 ± 0.2

LTL20490A 40,828 ± 300 43,092 ± 273 0.3 ± 0.2 Arca noae 29.3 ± 0.2

In the top part of this level, the plane-parallel lamination resumes, and levels of
lamellibranch fragments are observed. Medium sands with inclined lamination follow
upward above an erosion surface proximal submerged beach environment foreset (3). The
section is sealed at the top by continental deposits represented by a colluvial level (4) and a
stratified slope deposit with poorly elaborated subangular pebbles (5).

The basal sedimentary level (2) of the Cannitello 3 site rests upon an irregular erosion
surface carved within the altered metamorphic bedrock (1). Marine sediments likely
documenting the mesolittoral and infralittoral environment are represented by fine sands
and gravels with flat parallel lamination. This level is characterized by a weakly-cemented
skeletal bryzoan hash dominated by Miriapora truncata (Pallas, 1766) biosomes. These
marine deposits are overlaid by continental scree deposits containing aligned sub-angular
pebbles (3), which are, in turn, blanketed by anthropic fill materials (4).

The site Cannitello 4 exposes a densely-packed shelly rudstone with abundant but de-
graded biosomes and bioclasts pertaining to infra-mesolittoral organisms, such as bivalves,
e.g., Arca cf noe Linnaeus, 1758, cf. Acanthocardia tuberculata (Linnaeus, 1758), gastropods as
Jujubinus cf striatus (Linnaeus, 1758), Alvania sp., naticid, Tritia sp., and scaphopods (Antalis
sp.). Finally, a level of broken Mytilus shells was found. Although a precise bathymetric as-
sessment based upon fossils is problematic; nonetheless, an estimated paleodepth between
10–30 m is not unreasonable (Figures 2 and 4–6).

1 
 

 Figure 5. The Cannitello 4 and 1 outcrops. (a–c) The size and some details of the section. (d) A particular
of Mytilus of Cannitello 1.
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radiocarbon aged (sample LTL20153A of Table 2) Mytilus in situ.

In addition to these sites attributable to MIS3 (see below), we identified older Pleis-
tocene marine deposits. For example, the site named Cannitello 2 (57.2 m elevation), located
above the terrace attributed to MIS 3.3 [15], consists of well-cemented calcarenite encasing
deep-water scleractinian corals, i.e., Desmophyllum dianthus (Esper, 1794), D. pertusum (Lin-
naeus, 1758), and Caryophyllia sp. In all likeness, these facies represent a Late to Middle
Pleistocene bathyal deposit plastering a former submarine cliff, a common case in this
region subjected to important uplift [91].

3.2. Sampling and Radiocarbon Analyses

Dated samples come from silt-sandy deposits at Cannitello 1 site and were easily ex-
tracted from the poorly cemented matrix. Radiocarbon dating analyses were carried out at
CEDAD-Centre for Applied Physics, Dating and Diagnostics, Department of Mathematics
and Physics, University of Salento in Lecce-Italy [92]. The samples were first analysed
at the optical microscope in order to highlight possible macro-contamination such as the
adhering residues of soils. They were then etched with H2O2 to remove the external layer
and rinsed with de-ionized water.

The purified sample was then hydrolysed under a vacuum using H3PO4. The released
CO2 was then cryogenically purified and then converted to graphite by using H2 as a
reducing agent at 600 ◦C on Fe powder acting as a catalyst. For all three samples, ~1 mg
of graphite was obtained, which is considered optimal for the following isotopic analyses.
The obtained graphite was then used to measure the 14C/12C and 13C/12C isotopic ratio at
the AMS (Accelerator Mass Spectrometry) beamline at CEDAD based on a 3 MV Tandetron
(Mod. HVEE 4130HC) accelerator.

The radiocarbon age of the samples was then calculated from the measured 14C/12C
ratios by applying the radiocarbon decays law and after correcting the measured terms for
mass fractionation and processing blanks. In particular, C1 carbonate standards (Carrara
Marble completely depleted in 14C supplied by IAEA (International Atomic Energy Agency,
Vienna Austria) were used to estimate the machine and chemical processing blank during
the whole process. Conventional radiocarbon ages were then calibrated in calendar years
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by using the last released calibration dataset for marine organisms (MARINE20) [93] and
using a local marine reservoir correction term ∆R = −88 ± 50 y as obtained by Siani
et al. [94] and recalculated for the MARINE20 curve (Table 2).

Table 2 lists the radiocarbon dating results. Two samples fall within MIS 3.1, and one
resulted out of the radiocarbon range (>48,000 years).

4. GIA Modelling
4.1. Model Setting

Existing estimations of MIS 3.1 and MIS3.3 RSL depths carry the contribution of
both vertical land and mean sea surface (geoid) variations in response to the ice sheet
fluctuations. Indeed, surface mass transfer from the oceans to the continents, and vice
versa, in addition to altering the global ocean mass and volume (eustatic sea-level change),
trigger solid Earth deformations and gravitational and rotational perturbations that affect
the geoid.

This process is known as glacial- and hydro-isostatic adjustment (GIA) and causes
local RSL changes to deviate from the global mean (eustatic) as a function of the distance
from the ice sheets. Here, we account for the GIA process by solving the gravitationally
self-consistent sea level equation (SLE) [56,57] and using the open-source program SE-
LEN [58–60]. Accordingly, we compute the local RSL curves for prescribed solid Earth
rheological models and ice sheet models.

We assumed a self-gravitating, rotating, spherically symmetric, radially stratified,
deformable but not compressible Earth model. The latter is 1-dimensional, implying
that all the relevant rheological parameters are a function of the Earth’s radius only. The
outer shell of the model is perfectly elastic and represents the lithosphere. Between the
lithosphere and the inviscid core is the mantle, characterised by linear Maxwell viscoelastic
rheology.

We employed a four-layer mantle discretisation where the upper mantle (UM), the
lower upper mantle (LUM), the transition zone (TZ), and the lower mantle (LM) are char-
acterised by uniform viscosity according to the VM2 profile (see Table 3). We combine this
vertical stratification with a lithosphere thickness of 90 km and use it as a reference model.
Furthermore, we consider three mantle viscosity profiles (MVPs) that are characterised by
an increase in the vertical viscosity gradient from MVP1 to MVP3 (see Table 4). We use
these three profiles in combination with a 100 km thick Lithosphere.

Table 3. Parameters of the four-layer mantle discretization; Litosheric Thickness (LT), Upper Mantle
(UM), Lower Upper Mantle (LUM), Transition zone (TZ), and Lower Mantle (LM).

VM2 LT (km) UM
(×1021 Pa·s)

LUM
(×1021 Pa·s)

TZ
(×1021 Pa·s)

LM
(×1021 Pa·s)

90 0.67 0.44 0.46 2.53

Table 4. Vertical viscosity gradient increasing on the three mantle viscosity profiles (MVPs).

MVPs LT (km) UM (×1021 Pa·s) TZ (×1021 Pa·s) LM (×1021 Pa·s)

MVP1 100 1 1 2

MVP2 100 0.5 0.5 5

MVP3 100 0.25 0.5 10

We employed four ice sheet model chronologies that can be divided into two cate-
gories:

1. δ-18O-dependent ice sheet models:

1.1 ICE-5G and ICE-6G [95–98]: These global models describe the ice sheet thickness
variations over North America, Eurasia, Greenland, and Antarctica for the last 123 ka. The
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ice thickness chronology between 26 ka and the present day is constrained by geological
and modern geodetical observations through an iterative procedure that involves the
solution of the SLE for an a priori ice sheet configuration and a prescribed fixed solid
Earth model (mantle viscosity profile and Lithosphere thickness). The ice sheet volumetric
evolution between 123 and 26 ka was tuned to the delta-18O curve [97] and, where possible,
constrained by geological evidences that define the ice sheet coverage and margins.

1.2 ANICE-SELEN [99,100]: This global chronology model is the result of an inverse
forward modelling procedure where the delta-18O stack [97] is decoupled into global ice
sheet volume and deep-water temperature. For this purpose, 3D thermomechanical ice
sheet models for North America, Eurasia, Greenland, and Antarctica, are dynamically cou-
pled to SELEN in order to include all the GIA feedbacks. ANICE-SELEN is not constrained
by geological or instrumental data.

2. δ-18O-independent ice sheet models:

2.1 PaleoMIST 1.0 [101]: This model stems from the combination of simplified 2-
dimensional ice flow modelling and geological data that constrain the ice sheet boundaries
in space and time (2500 years temporal snapshots). The reconstructed ice sheet margins,
once combined with the topography, allow for the calculation of the basal sheet stress that,
for a prescribed ice flow law, yield the 2-dimensional, steady state ice thickness variations
within the ice sheet margins.

The model is then improved by an iterative procedure where the SLE is solved to
account for realistic changes in topography. RSl curves are computed for each iterative step
and compared to dated near-field RSL observations (RSL database). The iterative process
is run until convergence is found. Accordingly, the ice sheet model is independent of the
far-field and global sea-level proxies that are based on deep sea δ-18O records. We employ
two versions of PaleoMIST 1.0: (i) Minimal MIS 3 and (ii) Maximal MIS 3, respectively,
with and without major retreat of the Laurentide Ice Sheet.

Therefore, the eustatic sea-level curves of ICE-5G, ICE-6G, and ANICE-SELEN, which
reflect the ice sheet volume variation in time and expressed in meters of equivalent sea
level, strongly depend on the benthic oxygen curve. The eustatic curve of PaleoMIST 1.0,
instead, depends on the areal extent of the ice sheets, which is constrained by surface
geological indicators and is completely independent of the benthic oxygen curve.

We employ the reference VM2 profile (Table 3) combined with the four ice sheet
models, while the three MVPs (Table 4) are only used for ICE-5G, ICE-6G, and ANICE-
SELEN.

4.2. Numerical GIA Predictions

Numerical RSL predictions for the three ice sheet models that depend on the delta-
18O record are very close to the corresponding eustatic curves, which represent the ice
sheet volume variation in time expressed as meters of equivalent sea level (Figure 7). The
expected GIA variability, i.e., the vertical difference of the GIA-modulated RSL curves
with respect to the eustatic, is ~2.5 m for ICE-5G (red curves in Figure 7) and ICE-6G (blue
curves in Figure 7) and ~5.0–10.0 m for the ANICE-SELEN model runs (green curves in
Figure 7). This confirms previous findings of Antonioli et al. [59,102] and stresses the major
role of glacio-eustasy in this area and during the MIS 3 period.

Data model comparison reveals that the predicted MIS 3.1 and MIS 3.3 RSL elevations
for ICE-5G, ICE-6G, and ANICE-SELEN were significantly lower than the observed values
(corrected for tectonics). The GIA variability cannot explain the differences of 35–60 m and
30–50 m, respectively, at the MIS 3.1 and 3.3.
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The predicted RSL curves for PaleoMIST 1.0 Maximal and Minimal MIS 3 (cyan and
pink curves in Figure 7), both in combination with VM2 mantle profile (Table 3), were
significantly above the ICE-5G, ICE-6G, and ANICE-SELEN curves (Figure 7). This implies
that the PaleoMIST 1.0 ice sheet model was characterised by smaller ice volumes during
the time frame under consideration.

Interestingly, the PaleoMISt 1.0 curves converge towards a minimum at 60 ka, which
is broadly in line with the other models, where the minimum is slightly shifted at ~65 ka.
Accordingly, the predicted RSL elevation at the MIS 3.3 is ~30 m lower than the tectonically-
corrected MIS 3.3 terrace at Cannitello. However, after 60 ka, the predictions for PaleoMIST
1.0 diverge and maximum highstands of −30 and −40 m are obtained at 42.5 ka for,
respectively, the Minimal and Maximal MIS 3 versions. These values are in agreement with
the tectonically-corrected MIS 3.1 elevation at Cannitello (and at the Ionian sea coast).

5. Discussion

The published global information coupled with new field data from southern Calabria
suggests that the quantity of melted ice during MIS 3 could have been underestimated
in the global curves [5,6]. In general, observed sea-level markers are largely consistent
showing a sea level between −18 and −40 m, with a 30–40 m difference with respect to the
global curves. An agreement exists between the predicted sea-level and observed markers
with Gowan et al. [101] for MIS 5.3, 5.1, and 3.1.

The radiocarbon ages (Table 1) of samples collected at 28 m attribute Cannitello 1
stratigraphic section at MIS 3.1. The result is consistent with the age of the overlying marine
terraces (see Table 5, in particular with the MIS 3.3 terrace at 45 metres (64 kyrs [50])).

The sedimentary features of the studied deposits suggest that they formed at the foot
of a cliff in a high-energy environment (slope almost overlooking the sea with a relief that
reaches 5–600 m). Today, the sea-bottom rapidly deepens respectively to −50 and −100 m
at 120 and 230 m offshore Cannitello. For these reasons, it is quite difficult to determine
with great precision the depth of the foot of the paleocliff on which fossils sampled and
aged at Cannitello 1 accumulated.
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Table 5. (1) Elevation of sea level markers from: this paper 1; Monaco et al. [15] 2; and Miyauchi et al. [26] 3. The distinct
inner edges were mapped by these authors with an error margin in the elevation of ±5 m, depending on the erosion and
depositional processes following the emergence of the terraces. An error between 0 and −10 m was applied for the fossil
raised deposits *. This implies that the elevations above sea level of the inner edges must be considered as mean values.
(2) The Marine Isotopic Stage attribution based on dating and geomorphological correlations (see text for explanations).
(3) Age from: this paper 1; Balescu et al. [50] 2; Miyauchi et al. [26] and Monaco et al. [15] 3; Antonioli et al. [103] 4 and
Senegalese fauna; Dutton et al. [83] 5; and Lisieki and Raymo [97] 6. (4) The eustatic sea level from: Gowan et al. [101]; this
paper 1; Waelbroek et al. [5] 2; Dutton et al. [83] 3; and Lisieki and Raymo [97] 4. (5) The uplift rate calculated for each stage
and (6) as the average value for the middle-late Pleistocene.

1 Observed
Elevation of Terraces Inner Margins
or Fossils/Infra/Circalittoral Raised

Deposits * m

2 Marine Isotopic
Stage (MIS)

3 Age
(ka)

4 Eustatic Sea
Level (m)

5 Uplift Rate
mm\y

6 Mean
Uplift Rate

mm\y

* 28 1 3.1 43.1 1 −34 1 1.4–1.7

45 2 3.3 64 2 −48 2 1.4

85 2 5.1 81 3 −16 3 1.2

1.3

120 2 5.3 101 3 −19 4 1.4

165 2 5.5 119 4 +8.35 4 1.3

205 2 7.1 201.5 5 −16 4 1.3

285 2 7.3 217.2 5 −17.5 4 1.1

345 2 7.5 248.9 5 −13 4 1.2

415 2 9 329 6 +4 4 1.3

520 3 11 405 6 +5 4 1.2

680 3 19 760 6 −5 4 0.9 0.9

The bivalves and gastropods are sourced from infralittoral to circalittoral environ-
ments, with some mixing. Important clues come from the observation that: (i) pebbles
within the deposit are covered by algal encrustations, and (ii) there is no evidence of tractive
sedimentary structures. Together, those considerations appear to indicate an environment
at the transition between infralittoral and circalittoral zones below the wave closure depth
(estimated at ca. −10–20 m below the coeval sea level).

In order to frame the studied deposit in the terrace flight in this sector of southern
Calabria, we considered (Table 5): (a) the elevation of inner margin or fossil beaches
associated to the terraces, (b) the age of terraces, and (c) the predicted sea level.

The inner edges of the overlying terraces have been mapped with an estimated error
in elevation of ±5 m [12,23] depending on the phenomena of erosion and/or deposition of
colluvial sediments following the emergence of the terraces. Consequently, the elevations
above sea level of the paleo-shorelines reported in Table 5 must be considered as the mean
values. This uncertainty is, however, negligible in estimating the long-term Quaternary
uplift rates involving time spans of tens to hundreds of thousands of years.

We calculated the uplift rate of distinct terraces by adding the observed elevation to
the coeval eustatic position and dividing it by the age of the deposit or terrace. Table 5
shows that the uplift rates were rather constant during the Middle-Late Pleistocene.

Specifically, a lower long-term value was calculated for the MIS 19 terrace, (older than
730 ka, 0.9 mm/y), and higher uplift rates, between 1.4 and 1.7 mm/y, were estimated for
younger terraces. Uplift rates have undergone an acceleration in the Holocene (last 3–4 ka
Cal BP), reaching values of 1.8–2 mm/y along the coastline at the footwall of the Scilla
Fault [86].

The uplift rate estimated for Middle-Late Pleistocene terraces supports our recon-
struction of the eustatic elevation of the MIS 3.1 deposits from the Cannitello site. For this
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estimation, we used the sea level curve of Gowan et al. [101] (Figure 7) where the average
between PaleoMIST 1.0 maximal (−40 m) and minimal (−29 m) of the curve at 43 kyrs is
−34.5 m. As mentioned before, a rigorous paleobathymetric assessment of the units under
scrutiny proves problematic due to the lack of unquestionable sea level markers. Therefore,
we chose a conservative approach not adopting a bathymetric correction for Cannitello
1 but an error of −10 m. The resulting uplift rate ranged between 1.4 and 1.7 mm/y, in
agreement with the estimation from older terraces.

The uplift rate results are also consistent with our reconstruction of the MIS 3.3
eustatic sea level elevation. Indeed, they confirm that the eustatic value at −48 m derived
by Monaco et al. [15], based on the estimation of Waelbroeck et al. [5], may be valid.

Our numerical results and observational data confirmed that the MIS 3 RSL changes
at Cannitello are governed by glacio-eustasy, whereas GIA plays a secondary role. While
the δ18O dependent ice sheet models result in RSL curves that are always significantly
lower than the observations, PaleoMIST 1.0 is the only model capable of returning a MIS 3.1
elevation that is in agreement with the observations. Indeed, we observe that there is a
discrepancy (of at least 30–40 m) between the eustatic altitude of the MIS 3 of all global
curves and those suggested by observations. Therefore, our results confirm previous
evaluations by Pico et al. [63] and Gowan et al. [101] and support the contention that a
reduction of global ice sheet volumes across the MIS 3, and specifically at the MIS 3.1 and
3.3, is needed.

6. Conclusions

Estimates of the global ice volume during MIS 3 (60–29 ka) can be generally con-
strained between −25 and −87 m. Regarding the maximum altitude reached during this
period, there are few observed data for a comparison between the global curves and the
variations due to the different rheostatic behaviour of the mantle in coastal areas. Uncer-
tainties of the rheostatic behaviour in the near- or far-field from the ice bulk make it difficult
to estimate the local sea level during MIS 3.

Our study illustrated three new outcrops at Cannitello (southern Calabria) where
we found and dated fossiliferous marine sediments deposited on uplifted metamorphic
bedrock. Field evidence, appraised uplift rates of more ancient terraces, and 14C age of
fossil deposits sampled at an elevation of 28 m strongly suggest that such deposits formed
during MIS 3.1.

Given the overall scarceness of MIS 3 marine outcrops that are explorable in coastal
areas subject to important uplift, we consider the southern Calabrian site relevant for the
assessment of past sea levels during this still poorly known interstadial.

The GIA results suggest that the δ18O-based ice sheet models appear to significantly
overestimate the ice sheet volumes during the MIS 3.1 and 3.3. Our data are in agreement
with Gowan et al. [101], raising, by 40 metres, the eustatic contribution to sea level during
interstadials MIS 3.1, 5.1, and 5.3 with respect to the current global sea level curve scenarios.
Further, our reconstruction agrees well with the records proposing MIS 3 sea levels at
depths between −18 and −40 m.
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Abbreviations/Acronyms

MIS Marine Isotope Stage
CA Calabrian Arc
MS Mediterranean Sea
MSL Mean Sea Level
AMS Accelerator Mass Spectrometry
GIA Glacial and hydro Isostatic Adjustment
RSL Relative Sea Level
SLE Sea Level Equation
UM Upper Mantle
LUM Lower Upper Mantle
TZ Transition Zone
LM Lower Mantle
BP Before Present
DWBAH the acronym of a submerged flowstone
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