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Abstract: Reliable seismic hazard analyses are crucial to mitigate seismic risk. When dealing with
induced seismicity the standard Probabilistic Seismic Hazard Analysis (PSHA) has to be modified
because of the peculiar characteristics of the induced events. In particular, the relative shallow
depths, small magnitude, a correlation with field operations, and eventually non-Poisson recurrence
time. In addition to the well-known problem of estimating the maximum expected magnitude, it is
important to take into account how the industrial field operations affect the temporal and spatial
distribution of the earthquakes. In fact, during specific stages of the project the seismicity may be
hard to be modelled as a Poisson process—as usually done in the standard PSHA—and can cluster
near the well or migrate toward hazardous known or—even worse—not known faults. Here we
present a technique in which we modify the standard PSHA to compute time-dependent seismic
hazard. The technique allows using non-Poisson models (BPT, Weibull, gamma and ETAS) whose
parameters are fitted using the seismicity record during distinct stages of the field operations. As a
test case, the procedure has been implemented by using data recorded at St. Gallen deep geothermal
field, Switzerland, during fluid injection. The results suggest that seismic hazard analyses, using
appropriate recurrence model, ground motion predictive equations, and maximum magnitude allow
the expected ground-motion to be reliably predicted in the study area. The predictions can support
site managers to decide how to proceed with the project avoiding adverse consequences.

Keywords: seismic hazard analysis; induced seismicity; non-Poisson model; ETAS model

1. Introduction

Mitigation of seismic risk basically depends on the reliability of seismic hazard anal-
ysis. When dealing with induced seismicity, however, standard approaches, such as
Probabilistic Seismic Hazard Analysis (PSHA) e.g., [1,2] cannot be applied as they have
been originally conceived. They need to be modified to consider the specific features
of the induced seismicity e.g., [3–5]. The main differences are related to both temporal
and spatial distribution of the induced seismicity compared to natural seismicity. Indeed,
induced seismicity tends to cluster in limited volumes near the wells where field oper-
ations (e.g., fluids injection, extraction, fracking, etc.) are performed. From a temporal
point of view, earthquake occurrence, in some cases, may be not stationary over small
time-windows such as the extent of the geoengineering project (e.g., [5–8]). Hence, the
homogeneous Poisson recurrence model can be used under some assumptions that can
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impact the final hazard estimates. In the context of the induced seismicity, non-Poisson
models have been proposed, for example, by Langenbruch et al. [6] who considered the
generalized Poisson model in which the process intensity (i.e., earthquakes frequency) is
not constant and can vary with time. Bachmann et al. [7] used the Reasenberg and Jones
Epidemic Type Aftershock Sequence (ETAS) models e.g., [9]. Baker and Gupta [10] used
a gamma distribution in a Bayesian updating approach for seismic hazard. Broccardo
et al. [11] integrated the approach proposed by Mignan et al. [12] in a hierarchical Bayesian
modelling, which relates the seismicity rate of a non-homogeneous Poisson process to the
injection flowrate.

Furthermore, the magnitude of induced events generally ranges in tighter intervals
with respect to natural seismicity. In this regard, one of the most challenging questions is the
identification of the expected maximum magnitude to be used in the hazard computation
e.g., [13–15].

Finally, as noted by Van Eck et al. [16], due to the extent of the catalogues and in
general of the duration of Enhanced Geothermal Systems (EGSs) operations the exposure
and return periods to be considered have to be different from those used in standard PSHA.

In the present study we propose a technique aimed at facing the above-mentioned
modifications of the standard PSHA. Following the approach proposed by Convertito and
Zollo [17] and modified by Convertito et al. [5], we use data—events’ location and peak-
ground velocities (PGVs)—collected during a specific phase of a project, to define a proper
seismogenic volume, the maximum magnitude and, through the analysis of the inter-
arrival times distribution, the recurrence model. This latter can then be used to perform
a time-independent or a time-dependent seismic hazard analysis by considering specific
probability density functions to compute the seismicity rate. The study also implements
the ETAS model to obtain time-dependent rates of exceedance of PGV values and compares
the results both to the time-dependent and time-independent seismic hazard assessments.

With the aim of testing if and how the proposed approach predicts what should be
observed as a consequence of the current field operations, we compare the estimated PGV
values for selected probabilities of exceedance, with the observed values. The procedure has
been implemented by using data recorded at St. Gallen (Switzerland) deep geothermal field
during fluid injection. The network managed by Swiss Seismological Service (SED; [18,19])
originally consisted of one short period borehole sensor at 205 m depth and five additional
broadband surface stations operated within a 12 km radius around the borehole. In July
2103 the network was additionally densified with seven short period surface stations [20].
Overall, the data analyzed in the present study were recorded by 10 stations (Figure 1).

The target of the project was a carbonate aquifer at a depth of 4 km b.s.l. to produce
electricity and heating. As described by Moeck et al. [21] and Zbinden et al. [22], the project
started with a stimulation phase on 14 July 2013. Water was injected at about 3.6 km depth
b.s.l, at a rate of 53 L/s for a total amount of 175 m3 in 2 hrs. During the stimulation
phase only microseismicity with magnitude lower than 0.2 was induced. From 14 July 2013
through 19 July 2013 acid stimulations were performed involving about 290 m3 of fluids,
which broke seal to gas reservoir and caused a gas kick (95% CH4). Afterwards, well control
operations were done by injecting ~700 m3 of water and heavier liquids, which probably
induced the largest event in the sequence with ML 3.5. Well control operations ended on
24 July 2013. Despite this adverse consequence, in August 2013 a decision was made to
continue the field operations with a high feeling of solidarity from the public. In September
2013 fishing operations (that is removing lost or stuck objects from the wellbore) were
done together with a cleaning of the well [21]. As reported by Diehl et al. [20], overall,
the induced seismic sequence counted 346 locatable events with magnitude in the range
(−1.2, 3.5) and depths ranging between 4.4 and 4.7 km (Figure 2).
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Figure 1. Plan view of the analyzed earthquakes. Circles representing earthquakes location are 
proportional to the magnitude of the event. Seismic network layout is indicated in the right bottom 
frame where the location of the two nearest urban areas from the well and the two sites (SGT03 and 
SGT09) selected for site-specific seismic hazard analysis is also indicated. The grey dashed line 
indicates the GT-1 well trajectory. The upper left inset indicates the location of the St Gallen study 
area in Switzerland. 

  

Figure 1. Plan view of the analyzed earthquakes. Circles representing earthquakes location are pro-
portional to the magnitude of the event. Seismic network layout is indicated in the right bottom frame
where the location of the two nearest urban areas from the well and the two sites (SGT03 and SGT09)
selected for site-specific seismic hazard analysis is also indicated. The grey dashed line indicates
the GT-1 well trajectory. The upper left inset indicates the location of the St Gallen study area in
Switzerland.
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Figure 2. Upper panel: well head pressure (black dots) and injectivity rates (green dots) during the 
different phases of the project as reported by Moeck et al. [21]. Lower panel: temporal evolution of 
seismicity from 2013-07-14 to 2013-10-22. Earthquakes are color coded according to the depth. 

  

Figure 2. Upper panel: well head pressure (black dots) and injectivity rates (green dots) during the
different phases of the project as reported by Moeck et al. [21]. Lower panel: temporal evolution of
seismicity from 2013-07-14 to 2013-10-22. Earthquakes are color coded according to the depth.
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Similar to almost all the statistical approaches [5,7], our approach does not directly
deal with the details of the physics of the ongoing processes that are inducing earthquakes.
It focuses on the possibility of predicting the expected ground-motion levels in proper
calibrated future time windows. Specifically, for distinct stages of the project, we compare
observed PGVs at two sites with predictions obtained selecting the best fitting probabil-
ity density function on inter-arrival times with respect to the standard Poisson process.
Moreover, we propose not only to employ specific recurrence models but also to use up-
dated ground motion prediction equations (GMPEs) when new and more robust data are
being collected [23–25]. This is a critical issue, indeed, for several aspects: (i) the range
of magnitude of induced seismicity, in general, is not covered by GMPEs developed by
using strong-motion data; (ii) empirical ground motion relations may not work well when
source-to-site distances are small (aka. the “near source” issue); (iii) the fact that field oper-
ations may produce time dependent variations in the propagation medium and seismic
source properties that can modify the observed peak-ground motion values and should
be thus included in the GMPEs e.g., [25]. Finally, taking into account for the timescale
is particularly important since, as noted by Baish et al. [26], the most hazardous events
frequently occur post-injection. Thus, decisions on reducing/stopping or continuing field
operations should not be based solely on what is currently observed but also on what is
expected.

2. Method

In order to estimate seismic hazard for induced earthquakes, by considering their
main features, that is, relative shallow depths, small magnitude, a dependence on the field
operations, and eventually non-Poisson recurrence time, we implement some modifications
to the standard hazard integral formulation. For a point source, the hazard integral leads to
the frequency of exceeding a given reference value of the selected ground motion parameter
and its general formulation is as it follows (e.g., [1,2]):

Ei(A > Ao) = αi

∫
M

∫
R

∫
ε

I[A > Ao|m, r, ε ] f (m) f (r) f (ε)dmdrdε (1)

where I[.] is an indicator function, which equals 1 if A is larger than a given reference
value Ao for a given distance r, a given magnitude m, and a given ε. As for distance
and magnitude, a minimum and a maximum value must be defined based on a-priori
information (e.g., the minimum damaging magnitude value, the maximum expected
magnitude value, the relative source-to-site distance). The variable ε represents the residual
deviation of the A parameter related to the median value provided by the selected GMPE
e.g., [27,28]. By definition it corresponds to the number of logarithmic standard deviations
by which the the ground motion deviates from the mean on a logscale. The associated
probability density function (PDF), f (ε), is assumed to be the normal PDF e.g., [27].

The PDF for m, f (m), depends on the selected earthquake recurrence model whereas
the PDF for the distance r, f (r), depends on the source geometry and position of site. The pa-
rameter αi is the mean annual rate of occurrence of the earthquakes having magnitude
larger than the cut-off magnitude Mct for each selected source zone and is estimated by
analysing the earthquake catalogues or by adopting spatio-temporal seismicity models like
ETAS.

Assuming that, for a given site, the event A > Ao is a selective process and that
seismicity is stationary (or piece-wise stationary for non-homogenous Poisson processes)
with rate αi, for a given time-interval t, Equation (1) allows to compute the probability of
exceedance P as:

P(A > A0, t) = 1− e
−

N
∑

i=1
Ei(A>A0)

(2)
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where N the number of the sources that contribute to the hazard. When the analysis is
done for a set of sites in an area of interest for selected values of the exposure time and the
probability of exceedance, a hazard map can be obtained [29,30].

In this study, we propose a specific formulation for the PDF of distance, and a tech-
nique to estimate the expected maximum magnitude and to compute the mean annual
rate of occurrence. In particular, we identify a proper recurrence model from the analysis
of the inter-arrival times distribution and adaptively fit a spatio-temporal ETAS model
(e.g., [31–33]) to the catalogue of induced earthquakes.

Moreover, to compute the indicator function in Equation (1), as found by De Matteis
and Convertito [23] and Convertito et al. [25], we assume that also GMPEs should be
recalibrated to account for the medium propagation and source variations produced during
the field operations. To this aim, for each phase of the geo-energy project, we infer a specific
GMPE. Next, through an F-test, we verify if it can be used instead of the previous model or
this latter can be still used.

As for the PDF of distance fR(r), we use the hypocentral distance as distance metric
and use a volume seismogenic source instead of an aerial source. In particular, we cover the
entire volume of interest by a 3D grid and, among all the elementary volumes, we consider
only those containing at least one earthquake. A possible advantage is that the seismogenic
potential is not fixed a-priori but can evolve during the geo-energy project.

Several techniques are available to estimate the maximum magnitude value to be
used for seismic hazard analysis. They can be based on information about current field
operations (e.g., injected volumes, shape and extent of the seismicity cloud, etc.) as
those proposed by McGarr [15] or Shapiro et al. [14] or can be purely statistical approach.
The latter approach comprises those proposed by Kijko [34] and Kijko and Singh [35].

While the techniques proposed by McGarr [15] or Shapiro et al. [14] can be used
if the required information are available or planned for the future, those proposed by
Kijko [34] and Kijko and Singh [35] requires data inversion procedures that cannot be
enough stable when applied to events with magnitude in a limited range. In addition to the
previous techniques, in the present study, we propose an approach that is based only on
the current recorded seismicity and an assumed a-priori value of probability of exceeding
some magnitude threshold. We provide an analytic expression that can be used in near
real time approaches. In particular, we aim at computing the conditional probability:

P
(

Mmax > M∗
∣∣∣Mobs

max < Mmax < MTOT
max

)
(3)

which corresponds to the probability that the maximum magnitude, Mmax, is larger than
a given value M* (between Mobs

max and MTOT
max ) given that the current observed largest

observed magnitude in the catalogue is Mobs
max, and that overall the magnitude it is not

expected to be larger than MTOT
max . If one assumes that the PDF on magnitude is a lower

truncated exponential PDF, it can be demonstrated that the above conditional probability
results in:

P
(

Mmax > M∗
∣∣∣Mobs

max < Mmax < MTOT
max

)
=

e−βM∗ − e−βMTOT
max

e−βMobs
max − e−βMTOT

max
(4)

Thus, for a set of M* values, it is possible to compute the probability that they are
not exceeded. Finally, the value assumed as Mmax can be the value that is not exceed at a
selected probability value (e.g., 80%, 90%, 95% . . . ).

Lastly, in order to account for non-Poisson nature of the induced seismicity, we propose
to analyse the inter-arrival times distribution of the current seismicity, and to test it against
several PDFs generally used to model the recurrence models with memory e.g., [36–40].
Particularly, in addition to the exponential PDF (corresponding to the Poisson recurrence
model) we use the Brownian Passage Time model [41], the Weibull PDF, the Gamma
PDF, and the Gaussian PDF. For each period, given that a sufficient number of events is
available, we use the Kolmogorov-Smirnov test to infer the best fit PDF. Once the best
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PDF has been obtained, following Petersen et al. [42], we compute the equivalent annual
rate r = −ln(1 − P)/t. The parameter P is the time-dependent probability of interest,
which corresponds to the conditional time-dependent probability of having an event in a
specified time interval ∆t—corresponding to the selected exposure time t that can be used
in the hazard integral—given that the time te when the last event has occurred is known.
P is given by:

P = P(te < T < te + ∆t|T > te) =
P(te < T < te + ∆t)

P(te < T < +∞)
(5)

The equivalent rate r of exceeding the cut-off magnitude is then substituted by αi in
Equation (1). Furthermore, a spatio-temporal epidemiological model of the ETAS family
(e.g., [31–33]) is used to predict the daily rate of exceeding the cut-off magnitude assuming
a non-homogenous Poisson process for the inter-arrival times. In such a model, the process
is assumed to be piece-wise stationary in the forecasting interval (e.g., here assumed to be
24 h). For a given forecasting interval, the seismicity rate αi in Equation (1) can be estimated
with expected value of N(m|seq,Mct). The latter represents the number of events having
magnitude equal to or larger than m, M ≥ m, conditioned to the sequence of previous
events (denoted as seq including the events up to the starting time of the forecasting
interval) and lower cut-off magnitude Mct. Assuming that the horizontal projection A of
the seismogenic volume is divided into cell units Ai with centroids (xi, yi), the expected
value E[N(m|seq,Mct)] can be estimated from the following equation:

E[N(m|seq, Mct)] ∼= ∑
(xi ,yi)∈A

E[N(xi, yi, m|seq, Mct)] (6)

where E[N(xi,yi,m|seq,Mct)] is the expected value of the conditional number of earthquakes
with M ≥ m occurred in the cell unit with centroid (xi,yi). A robust estimate [43–46] of
N(xi,yi,m|seq,Mct) can be obtained by integrating over the domain of the ETAS model
parameters:

E[N(xi, yi, m|seq, Mct)] = Nb(xi, yi, m|Mct) +
∫

Ωθ

(
Tend∫

Tstart

λETAS(t, xi, yi, m|θ, seq, Mct)dt

)
· p(θ|seq, Mct )dθ (7)

where p(θ |seq, Mct) is the conditional joint PDF for ETAS model parameters θ given the
seq and the lower cut-off magnitude Mct; Nb(xi,yi,m|Mct) is the contribution of background
seismicity to the number of events with M ≥ m for the ith; λETAS(t, xi, yi, m|θ, seq, Mct)
is the rate of occurrence of events in the forecasting interval [Tstart, Tend] (e.g., one day
here) at time t (since an arbitrary time reference) with the time of origin at To, having
M ≥ m, and occurring in the cell unit centered at (xi, yi)∈A. The rate is conditioned on
the observation history seq, which is the sequence of No events taken place before the
forecasting interval, i.e., in the interval [To, Tstart) and the lower cut-off magnitude Mct.
That is, seq can be expressed as seq = {(tj, xj, yj, mj), To ≤ tj <Tstart, mj ≥ Mct, j = 1:No},
where tj is the arrival time of the j-th event with magnitude mj and location (xj, yj)∈A.
The rate λETAS is expressed as a function of vector θ = [b, K, a, c, p, d, q, Kt, Kr] of ETAS
model parameters:

λETAS(t, xi, yi, m|θ, seqt, Mct)

= e−β(m−Mct) · ∑
tj<t

K eα(mj−Mct) · Kt

(t−tj+c)
p · Kr(

r2
ij+d2

)q (8)

The integral in Equation (7) over the domain of model parameters θ is solved numer-
ically by using an adaptive Markov Chain Monte Carlo Simulation (MCMC) procedure
(see [45–47] for more details).



Energies 2021, 14, 2747 7 of 17

3. Data Analysis and Results

Data analyzed in this study have been collected by Swiss Seismological Service in 2013
(from 2013-07-14 to 2013-10-22) during the well control measures after drilling and acidizing
the GT-1 well (see Figure 1). The project started on 14 July 2013 with a stimulation phase during
which a test of injection with flow rates of up to 53 l/s was performed. The resulting maximum
pressure increase was 9.8 MPa e.g., [21,22]. For this phase 175 m3 of water were injected into
the reservoir over a 2 h period. On 17 July 2013, an acid stimulation was performed with a
290 m3 of fluid injected. Well head pressure and injectivity rates during different phases of
the project as reported by Moeck et al. [21] are shown in Figure 2 together with the temporal
evolution of seismicity.

Overall, the induced seismicity counts 346 earthquakes with magnitude (ML) in the
range (−1.2, 3.5) and depth ranging between 4.4 and 4.7 km. Events’ location corresponds
to the double-difference location provided by Diehl et al. [20]. Three component recordings
(sampled at 200 Hz) are available at 10 stations (Figure 1).

Based on the temporal evolution of the seismicity, we divide the whole catalogue in
six different periods or phases whose duration is listed in Table 1. The selection criterion is
subjective but guarantees that at least 20 events for each phase of the project are available
to infer GMPE coefficients and the best inter-event PDF.

With the aim of evaluating the prediction capabilities of the proposed technique,
when inferring the GMPE, we do not consider PGVs recorded at stations SGT03 and SGT09,
which are located at different distance (about 11 km and 5 km, respectively) and azimuth
with respect to the injection well location (Figure 1). The PGVs at these two selected stations
are used to compare the observed data with the predictions of the computed seismic hazard
analysis at different probability of exceedance.

As for the GMPE we use the following formulation:

lnPGV = a + bM + clnR (9)

where PGV is in m/s, M is the magnitude (corresponding to ML here), R is the hypocentral
distance in km. The GMPE is also associated with a logarithmic standard deviation σlnPGV
corresponding to the total standard error, describing uncertainty in the value of lnPGV
given the predictive relationship. Original waveforms are band-pass filtered (using a
4-poles Butterworth filter) in the range 2–90 Hz. The PGV correspond to the vector compo-
sition of the maximum value measured on the three components. The coefficients of the
GMPE have been inferred by using the Levenberg–Marquardt least squares algorithm [48].

Since for the first phase of the project the number of recorded events could not be
enough, we consider two options: (i) using a GMPE obtained from previous studies in
the zone (as close and similar as possible in terms of tectonic regime) where the project is
going to be developed; (ii) using a GMPE inferred from similar projects but in different
areas. For the present study we use as reference model the GMPE proposed by Douglas
et al. [49], which has been inferred by analyzing data recorded in several geothermal areas
and spanning similar magnitude and distance ranges as those considered in our application.
The corresponding equation is:

lnPGV = −9.99 + 1.964ML − 1.405ln
√

R2 + 2.9332 − 0.035R (10)

where PGV is in m/s, R is the hypocentral distance expressed in km, ML is the magnitude,
and the total standard error is σlnPGV = 1.863.

Thus, using data from the first phase of the project we infer the parameters of Equa-
tion (9) and test if the model can be used instead of the GMPE in Equation (10). We assume
that the current GMPE model can be used if it passes a one-side F-test at 95% level of
confidence, that is, if the updated model has a statistically significant lower variance with
respect to the previous model (see Table 1).
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Table 1. Inferred coefficients together with the uncertainty of the GMPE by using data relative to the considered phases of the project. The duration of each phase is listed in the second
column. Nd indicates the number of used PGVs. F-value is the value of the statistic used in the F-test and is governed by the Fisher distribution. Prob is the probability of finding an
F-value equal or larger than the one observed value in the assumption that the null hypothesis (Ho: No difference in variances between old and new model) is true. More specifically, the
probability that the obtained results could have happened by chance. Probabilities in bold indicate that the new inferred model can be used instead of the previous one. As for phase 1, the
current model is compared with the reference model reported in Equation (10).

Phase Duration A ± σa b ± σb c ± σc σlnPGV Nd F-Value Prob

1 2013-07-14
2013-07-18 −8.462 ± 0.417 1.469 ± 0.172 −2.489 ± 0.197 0.911 260 4.185 1.81 × 10−28

2 2013-07-19
2013-07-20 −7.766 ± 0.175 2.111 ± 0.044 −2.794 ± 0.083 0.827 1190 1.212 0.0413

3 2013-07-21
2013-07-24 −7.873 ± 0.191 1.983 ± 0.057 −2.799 ± 0.091 0.820 942 1.017 0.789

4 2013-07-26
2013-09-11 −8.333 ± 0.458 1.542 ± 0.121 −2.355 ± 0.219 1.012 272 1.522 7.191 × 10−6

5 2013-09-16
2013-09-25 −9.689 ± 0.325 1.769 ± 0.111 −1.726 ± 0.153 0.857 404 1.395 2.473 × 10−3

6 2013-09-29
2015-05-19 −8.713 ± 0.337 1.810 ± 0.095 −2.183 ± 0.161 0.975 472 1.295 5.613 × 10−3
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The PGVs as function of the distance are depicted in Figure 3 together with the GMPEs.
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Figure 3. Peak-ground velocities (PGVs) as function of the hypocentral distance for each of the six
phases of the project analyzed in the present study. In each panel, the continuous lines refer to the
GMPEs whose coefficients are listed in Table 1 evaluated for ML = −1.0, 0.5, 1.0, 2.0 and 3.0.

Table 1 contains the number of available PGVs for the specific period, the inferred
coefficients (together with the uncertainties), the total standard deviation, the F-value
(i.e., the value of the statistic used in the F-test) and the corresponding probability. This
latter is the probability of finding an F-value equal or larger than the one observed value in
the assumption that the null hypothesis (Ho: No difference in variances between old and
new model) is true. For each phase, we estimate the minimum magnitude of completeness
(Mc) by using the maximum curvature approach [50]. The results are listed in Table 2.
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Table 2. Minimum magnitude of completeness (Mc), b-value, maximum magnitude and the best fit
PDF for the analyzed periods. Concerning Mmax the values in parenthesis are obtained by using the
approach proposed by McGarr [15]. For the second period, we report three different estimates since
two distinct operations were done involving 290 m3 and 700 m3 of injected fluids, respectively. The
first number in parenthesis is the magnitude corresponding to the first volume 290 m3, the second to
the 700 m3 volume, and the third to sum of the volumes (990 m3). Mobs

max corresponds to the observed
maximum magnitude in each phase.

Phase Mc b-Value Mmax PDF Mobs
max

1 −0.5 0.97 ± 0.16 1.4 (2.4) Poisson 0.37
2 −0.6 0.76 ± 0.08 4.7 (2.6,2.8,2.9) Weibull 3.5
3 −0.5 0.84 ± 0.09 2.8 Weibull 1.7
4 −0.5 0.73 ± 0.19 2.5 BPT 1.2
5 −0.6 0.87 ± 0.13 2.0 Weibull 1.0
6 −0.4 0.80 ± 0.13 2.9 Poisson 1.7

The b-value is computed by using the maximum likelihood formulation [51] and the
associated uncertainty by using the Shi and Bolt [52] approach (see Table 2). The maximum
magnitude to be use in the hazard integral is computed by using Equation (4) by selecting
90% as the probability of not being exceeded and arbitrarily setting MTOT

max = 5.0. This is
in accordance with the observation that two historic earthquakes of Mw ≥ 4.0 have been
reported in the seismogenic volume considered in the present study e.g., [53]. The resulting
Mmax values for each phase are listed in Table 2. For two specific cases, for which the
total injected volume is known, they are compared with the value obtained by using the
approach proposed by McGarr [15]. In particular, we compute the maximum scalar seismic
moment using the equation Mmax

o = G∆V where ∆V is the injected volume in m3 and
G = 3e+10 Pa is the shear modulus. Next, we convert the seismic moment in moment
magnitude using the Hanks and Kanamori [54] relationship. The results suggest that the
McGarr [15] approach provides maximum magnitude values that are lower than the actual
observed value corresponding to 3.5.

As for the inter-arrival time distribution, we aim at identifying the best recurrence
model on the basis of the ongoing evolution of the seismicity. For each phase of the project,
we test the Poisson model, the Brownian Passage Time model [42], the Weibull PDF, and
the gamma PDF. The best model is identified by using the Kolmogorov-Smirnov test and is
listed in Table 2. Once the best PDF has been obtained, following Petersen et al. [42] we
compute the equivalent annual rate r = −ln(1 − P)/t, where P (see Equation (5)) is the
time-dependent probability of interest in the selected exposure time t that can be used in
the hazard integral. Figure 4 shows the fit of the inter-arrival times for phase 2 and phase 5
(see Table 1 for the specific time periods).
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Figure 4. Inter-arrival times distribution. The left column reports the distribution (in terms of
frequency F) of the inter-arrival times DT. Panels (a) and (c) correspond to the phase 2 and phase 4,
respectively. The black line depicts the best fit distribution, which corresponds to the Weibull PDF in
panel (a) and to the Brownian Passage time PDF in panel (b). Panels (c) and (d) show the cumulative
distribution used for the Kolmogorov-Smirnov test. The dashed lines represent the confidence bound.

As for the ETAS model, using Equation (7) we compute the expected daily rate of
events having magnitude greater than the cut-off magnitude Mct =−0.5, which corresponds
to the mean magnitude of completeness of the six phases of the project (Table 2), in the
period starting from first forecast interval: 2013-07-20–6:00 A.M.–2013-07-21 6:00 A.M.
(24 h) to the last forecast: 2013-10-22–6:00 A.M.–2013-10-23 6:00 A.M. (24 h). The results are
shown in Figure 5 and indicate that the forecast capability of the model increases with time,
that is, with the increasing number of recorded earthquakes. In addition to the temporal
comparison, we also compare observed and predicted spatial distribution of the seismicity.
In Figure 6, for three forecasting periods, we report the maps at 98% confidence interval
for the number of earthquakes per cell units (latitude/longitude cells of a 0.001◦× 0.001◦)
with ML ≥Mct = −0.5, for 24 h forecasting intervals.

Figure 6 depicts the seismic events of interest that occurred in the corresponding
forecasting interval [Tstart, Tend], shown as colored squares and dots (distinguished by their
magnitudes). The results in Figure 6 indicate that the ETAS model captures properly the
spatial distribution of seismic events taken place in the forecasting time interval. Inside
each sub-figure of Figure 6, the observed (shown as a green star) vs. forecasted number
of events (shown in an error-bar format) is illustrated for events with M ≥Mct = −0.5 for
the entire zone of seismic activities. It is to note that to retrospectively perform robust
seismicity forecasting within the seismic sequence, we set Mct = −0.50 to be consistent with
Table 2. However, this assignment has been verified based on the two procedures adopted
for evaluating the completeness magnitude within a seismic sequence in the Electronic
Supplementary Information in Ebrahimian and Jalayer [46].
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Figure 5. The statistics of the daily number of events having magnitude greater than the cut-off magnitude
N(m ≥ Mct|seq,Mct), Mct = −0.5 in the period starting from first forecast interval: 2013-07-20 6:00 A.M.–2013-07-21
6:00 A.M. (24 h) to the last forecast: 2013-10-22 6:00 A.M.–2013-10-23 6:00 A.M. (24 h). The statistics are represented by the
2nd–98th (grey area) percentiles and 16th–84th (blue area) percentiles confidence intervals and the mean (expected value
from Equation (5)). The reference time is To = 2013-07-14 at 12:00. The evolution of the observed number of events is shown
with black-solid line.
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Figure 6. Forecasted versus observed seismicity distribution, the maps report the 98% confidence interval for the number of
earthquakes per cell units (latitude/longitude cells of a 0.001◦× 0.001◦ grid) with ML ≥Mc = −0.5, for 24 h forecasting
intervals: (left) interval [Tstart = 2013-07-20, Tend = 2013-07-21]; (center) interval [Tstart = 2013-07-21, Tend = 2013-07-22]; (right)
interval [Tstart = 2013-07-22, Tend = 2013-07-23]; The reference time interval is To = 2013-07-14 at 12:00 UTC (the first event of
the catalog occurred about 6 min after the reference time To). The observed (green star) vs. the error-bar is also shown for
each sub-figure. The error bar is shown with the forecasted median value (the 50th percentile) labeled with a grey-filled
square, the forecasted 16th and 84th percentiles (blue numbers), and the forecasted 2nd and 98th percentiles (red numbers).

The error-bar for the forecasted number of events features: the median value (the 50th
percentile, equivalent of the logarithmic mean in the arithmetic scale) marked with a grey-
filled square; the (logarithmic) mean plus/minus one (logarithmic) standard deviation
indicating the interval between 16th and 84th percentiles (marked with blue horizontal lines
and numbered in blue); the (logarithmic) mean plus/minus two (logarithmic) standard
deviations indicating the interval between 2nd and 98th percentiles (marked with black
horizontal lines and numbered in red). This is done to help in locating the observed
number of events (marked and numbered in green) within plus or minus certain number
of standard deviations from the mean estimate. It can be seen that observed number of
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events is captured properly with respect to plus/minus two standard deviation of the
mean estimate.

We compute seismic hazard, expressed as PGV corresponding to given probability of
exceedance levels at two selected stations SGT03 and SGT09 (see Figure 1). We considered
three probability of exceedance levels: 10%, 20% and 50% and three exposure periods 15
days, 1 month and 2 months compatible with the duration of the project. We compare
the results obtained by using the standard Poisson model, the model inferred for each
phase, and the ETAS model. As for ETAS, in order to be consistent with the selected
exposure times, we use the mean daily forecasted seismicity to compute the monthly
rate. The recorded PGVs as function of the time at the two selected stations are shown in
Figures 7–9 for exposure times of 15 days, 1 month and 2 months, respectively. The figures
demonstrate that in some of the considered periods the recorded values tend to 5 mm/s
for which damage to ordinary buildings is deemed possible [55]. The PGV values obtained
from the hazard analysis together with the associated probability of exceedance are shown
as horizontal lines.
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Figure 7. Hazard analysis for three probability of exceedance (10% (red line), 20% (yellow) and 50%
(green)) and a 0.5 month exposure time. The same color code is used for the ETAS model, but with
dashed lines. The time period is reported in Table 1. Upper panels refer to time independent analysis
while lower panels refer to the time dependent analysis. Letters in the lower panels indicate the best
PDF for each period (P: Poisson; W: Weibull; B: Brownian Passage Time) (See Table 1). Grey squares
represent the observed PGVs at the two stations indicated in the two panels.
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The results indicate that using a time-dependent model provides a more robust control
on the expected PGV values. In particular, the use of the Weibull PDF and the BPT PDF,
together with updated GMPEs provide predictions closer to the observed PGV values.
Contrarily, the PGV values estimated by using the Poisson model seems to overestimate
the observed PGV values leading to overpredict the associated hazard.

As for the time independent analysis, the ETAS model performs better than the
Poisson model at station SGT09 and provides hazard estimates close—and even better
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in the second period—to the Weibull model and BPT model. On the other hand, for the
station STG03, which is located at a larger distance with respect to SGT09, ETAS provides an
overestimation of the hazard. This is probably indicating that the distance kernel used for
predicting the spatio-temporal clustering of aftershocks (characterized by two parameters
d and q in Equation (8)) is not steep enough for induced seismicity. This aspect has to be
further investigated by testing other function forms as the distance kernel.

4. Conclusions

We present a technique aimed at modifying the standard probabilistic seismic hazard
analysis when applied to induced seismicity. In particular, concerning the probability
density function of distance fR(r), we use the hypocentral distance as distance metric and
use a volume seismogenic source whose shape is modified according to the current seis-
micity spatial distribution, instead of a seismogenic source area. Moreover, we propose a
technique for estimating the expected maximum magnitude value, which use the current
probability density function on magnitude, that is, the Gutenberg-Richter relation and prior
information about long-term seismicity. However, the most relevant modifications are two.
The first one concerns the idea of updating the ground motion prediction equation during
the distinct phases of the project while new and more robust PGVs data are recorded.
The second is to test whether non-Poisson models, which assumes that successively oc-
curring events are not causally related to each other, provides a better fit of the observed
inter-arrival times distribution with respect to the Poisson model used in the standard
PSHA. This is indeed a critical point when dealing with induced seismicity e.g., [5,7,8,11].
For the application presented in this study and concerning the St Gallen geothermal project
in Switzerland, in addition to the Poisson model, we test Weibull PDF, gamma PDF, and
BPT model. The use of the Kolmogorov-Smirnov test indicates that, in most of the phases
of the project, the inter-arrival times distribution is not exponential, that is, the recurrence
model is not Poisson. Moreover, we implement a robust framework by employing ETAS
seismicity model [46,47] that allows to forecast both the temporal and spatial seismicity
distribution. The capability of forecasting the spatial distribution of the seismicity could be
used as complementary study to the diffusivity analyses to understand if the events are
migrating from the well injection toward known faults.

A critical point for the application of the proposed technique is represented by the
choice of the time-window to select the seismicity to use for seismic hazard analysis. Indeed,
it cannot be set a-priori but must be decided according to the evolution of the induced
seismicity.

The results of the probabilistic seismic hazard analysis for two specific sites indicates
that the predicted PGVs at the selected probability of exceedance when the Poisson model is
used are always larger than the observed values. On the other hand, the use of the Weibull
model provides predicted PGV values closer to the actual observed values. We observe
that the ETAS model predictions of the seismic hazard (based on a non-homogenous
Poisson rate) are generally closer to the recorded PGV values with respect to the time-
invariant model.

The advantage of the proposed approach relies on the fact that the models used to fit
the inter-arrival times distribution are characterized by few (one or two) parameters that
can be fitted also in near real-time each time a reliable catalogue of events is available.
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