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Abstract 

Magnetic skyrmions are emerging as key elements of unconventional operations having unique 

properties such as small size and low current manipulation. In particular, it is possible to design 

skyrmion based neurons and synapses for neuromorphic computing in devices where skyrmions move 

along the current direction (zero skyrmion Hall angle). Here, we show that, for a given graph, 

skyrmions can be used in optimization problems facing the calculation of the shortest path. Our tests 

show a solution with the same path length as computed with the Dijkstra’s Algorithm. In addition, 

we also discuss how skyrmions act as positive feedback on this type of problems giving rise to a self-

reinforcement of the path which is a possible solution.  
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1. Introduction 

Magnetic skyrmions are particle-like magnetization textures[1,2] characterized by a non-

trivial topology and usually stabilized in presence of a sufficiently large Dzyaloshinskii–Moriya 

interaction (DMI)[3,4]. Skyrmion solutions were initially obtained by Skyrme[5] in the non-linear 

field theory, while recently they have been achieved in magnetic systems where Néel-type[6–8] and 

Bloch-type skyrmions[9–12] can be observed. The increasing interest on skyrmions is mainly due to 

the fact that they can be manipulated by electrical currents, which opens the way to a number of 

potential applications[1,2,13]. In particular, the skyrmion motion can be driven by either the spin-

transfer torque (STT)[6,7,12,14] or the spin-Hall effect (SHE)[6,7,15]. A major feature of the current-

driven skyrmion motion is that its trajectory does not coincide with the direction of the applied 

electrical current, but it is characterized by an in-plane deflection angle, i.e. the skyrmion Hall angle 

(SHA)[16,17]. The control of the SHA is crucial for all the skyrmions applications based on their in-

plane motion, where skyrmions would be unavoidably driven towards the sample edges and 

consequently annihilated. The suppression of the SHA is achievable by balancing the Magnus force 

in two coupled skyrmions with opposite topological charge in ferrimagnets at the angular 

compensation point[18,19], synthetic antiferromagnets (SAF)[20–24], or antiferromagnets[25–31], 

where skyrmions can also achieve higher velocities than in ferromagnets. 

Although racetrack memories[2,6,7] have been proposed as main application of magnetic 

skyrmions, their use for unconventional applications, such as in a reshuffle device for probabilistic 

computing[32,33], reservoir computing[34–36], true random number generators[37], Boolean logic 

computing gates[38–41], neuromorphic computing[42,43], artificial spiking neuron[44,45], and 

memristive networks[46–48] has shown very promising results. 

In this work, we propose how to use magnetic skyrmions as a tool for the solution and 

visualization of the shortest path problem[49]. The main motivation is that many combinatorial 

optimization problems, which have application in real-life complex scenarios including transportation 

(e.g. autonomous vehicle navigation)[50], network optimization problems (e.g. dynamics 

programming, and internet routing)[51], and training of deep neural networks[52], require the 

evaluation of the shortest path. A number of mathematical algorithms[53] have been proposed to 

solve the problem of the shortest path, but the time for reaching the solution increases exponentially 

as the network becomes more complex. This calls for the development of different strategies to obtain 

a solution in a reasonable time. An approach to model such complicated system is to view the network 

as a number of interconnected resistors, which then correspond to a graph where the edges are 

resistors and the nodes are junctions between them. Each edge is characterized by a positive weight 

related to the resistance[54]. For instance, if we wish to study a transportation problem in terms of 
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distance between cities, a high resistance indicates that two nodes (cities) are faraway, while a low 

resistance means that the nodes are close[54,55]. Alternatively, the resistors can be replaced by 

memristors, a passive dynamical two-terminal device introduced by Chua[56,57] and characterized 

by an input and history dependent variable resistance. Specifically, a larger current flow through a 

memristor leads to a larger change of the device resistance. Memristive networks[58] have been 

shown to solve more efficiently the problem of the shortest path by using the analog computations 

performed by solving Kirchhoff’s Current Laws in a parallel manner[59]. However, to visualize the 

solution, one should know the potential for each node by including additional hardware to the system, 

such as voltmeters.  

 Here, we propose to take advantage of the magnetic skyrmions to visualize the solution of the 

shortest path in a 2-dimentional graph described as an electrical network, where the resistance of each 

resistor between two nodes is due to the length of the magnetic nanostrip (we consider a constant 

width here, but this can be used as additional degree of freedom to modulate the resistance values 

properly). Micromagnetic simulations are used for the theoretical proof of concept of this approach. 

We consider a graph made by a material stack which can host skyrmions, and two nodes of this graph 

N1 and N2. We apply a voltage between those nodes and the electrical current which gives rise to the 

SHE inside the HM flows in the graph with a spatial distribution which depends on its topology. 

Subsequently, skyrmions are periodically injected into N1 and follow a path up to N2. Therefore, the 

solution of the problem is achieved by using the final spatial distribution of the skyrmion train. If 

implemented in hardware, the computational time can be very efficient because it will depend on the 

skyrmion velocity which can reach Km/s[20,21]. Furthermore, the capability of skyrmions to move 

on interconnected grids along complex trajectories [1] is a key feature which makes them the only 

candidate over other magnetic solitons, e.g. domain walls and vortex, to be used in this category of 

optimization problems. Mainly, our analysis focuses on SAF 2D network because of the zero SHA, 

but we also show the negative effect of an oblique skyrmion trajectory by considering a single 

HM/FM heterostructure as a case of study. In addition, a comparison with Dijkstra's algorithm is 

included. Our predictions can be useful for the design of experimental systems exploiting skyrmions 

for the solution of the shortest path. 

  

2. Methods: micromagnetic model  

 The micromagnetic study is performed by means of state-of-the-art home-made 

micromagnetic solver GPMagnet[60] which numerically integrates the Landau-Lifshitz-Gilbert-

Slonczewski equation by applying the time solver scheme Adams-Bashforth, where the SHE is taken 

into account: 
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where = / sMm M  is the normalized magnetization of the ferromagnet, and 0 sM t =  is the 

dimensionless time, with 0  being the gyromagnetic ratio, and sM  the saturation magnetization. 
effh  

is the normalized effective field, which includes the exchange, IDMI, magnetostatic, and anisotropy 

fields   is the Gilbert damping, g is the Landé factor, B  is the Bohr magneton, SH  is the spin-Hall 

angle, e is the electron charge, FMt is the thickness of the ferromagnetic layer. ẑ  is the unit vector 

along the out-of-plane direction, and HMj  is the electrical current density flowing into the Pt heavy 

metal which gives rise to the SHE.  

For the case of the SAF structure, two perpendicular FMs, separated by a thin Ruthenium 

(Ru), layer designed to provide an antiferromagnetic exchange coupling[61], are sandwiched between 

two different HMs. For this reason, in Eq. (1), = /
s

i i iMm M , where ,i L U=  indicates the lower 

ferromagnet and upper ferromagnet, respectively. (see Ref. [21] for more details). The effective field 

includes the interlayer exchange coupling (same contribution for both FMs) 
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where , ,i j L U= , Aex is the interlayer exchange coupling constant, 0  is the vacuum permeability, 

and Rut  is the thickness of the Ruthenium layer. The discretization cell used in the simulations is 

4.0x4.0x0.8 nm3. We consider typical parameters for a SAF structure[21,62]: MS=600 kA/m, 

exchange constant A=10 pJ/m, Aex =-5.0x104 J/m2, upper and lower IDMI parameters DL=DU=1.8 

mJ/m2, perpendicular anisotropy constant ku=0.50 MJ/m3,  =0.1, and 0.1L

SH =  and 0U

SH = . 

 

3. Results 

3.1. Néel Skyrmions in SAF 

 We analyze the skyrmion motion in a 2-dimensional system (Fig. 1) characterized by an area 

occupancy of L2, with L=2700 nm being the length of the system, where each nanowire has a width 

w=100 nm. The two HMs have a thickness tHM=3 nm, while tFM and tRu are 0.8 nm. 

We computed the spatial distribution of the current[63,64] (see  Fig. A1) by supposing to 

supply voltage between the terminals N1 and N2 (Fig. 1(a)). The spin-current is polarized 

perpendicularly to the electrical current. We continuously nucleate a single skyrmion in 

correspondence of the node N1, then the spin-orbit-torque originating from the SHE drives the 

skyrmions towards the node N2. For the SAF structure, we consider only one current flowing through 

the lower HM[21]. We inject a current |jHM|=3 x 108 A/cm2 [21], and nucleate a skyrmion every 10 
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ns. This nucleation time has been properly designed in order to avoid skyrmion-skyrmion interactions 

during the motion. In other words, each skyrmion is well separated by the previous and next ones. 

The results are robust on a wide range of current 2 x 108 A/cm2 < |jHM| < 4 x 108 A/cm2 with a proper 

choice of the skyrmion nucleation time.  

The nucleated skyrmion moves by following the current distribution. If it meets an intersection 

where the current splits equally, the path selection is deterministic and the skyrmion tries to keep the 

same trajectory owed to an inertia effect deriving from the motion along the first part of the track (see 

Movie 1). For this specific device, after about 130 ns, the solution emerges, as we can see in Fig. 2. 

This  can be read by using state-of-the-art imaging techniques [18,22]. Basically, each new skyrmion 

introduced into the system will go through the same path analogously with ant colony algorithm 

where the ant agents follow the path with a larger amount of pheromone[65–67]. The fundamental 

aspect to be underlined is that we do not need to know locally the value of the current and/or of the 

voltage, but it is the overall current distribution, which is linked to the geometry of the system, to 

allow the solution to emerge and be detected by simple imaging techniques. This is the main 

achievement of this work. Our results can be extended to skyrmion in antiferromagnets[25–28] and 

compensated ferrimagnets[18,19] because they are characterized by a zero SHA. 

 

3.2. Skyrmions in ferromagnets 

We stress one more time that the SAF structure is a suitable solution to envisage applications 

involving skyrmion dynamics due to the zero SHA[20,21]. The need of a zero SHA is immediately 

clear when extending this study to single HM/FM bilayer where Néel skyrmions are stabilized by the 

IDMI due to the HM/FM interface[1,2,68]. The SHE-driven Néel skyrmion motion is well-known[7] 

and it is characterized by a finite SHA  
y
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x

v S
arctg arctg
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y-components of the skyrmion velocity, ( )
1

4
x yS dxdy


=   m m m ,   is the Gilbert damping, 

andD  is the dissipative tensor [7,16]. We consider the same geometry as in Fig. 1 and typical 

parameters of single HM/FM bilayer (e.g. Pt/CoFeB)[7]  MS=1000 kA/m, A=10 pJ/m, D=2.0 mJ/m2, 

ku=0.80 MJ/m3,  =0.1, and 0.1SH = . We nucleate Néel skyrmions in correspondence of the node 

N1 and we move them by means of the SHE. The value of the current amplitude is |jHM|=5 MA/cm2, 

while the nucleation time is 10 ns to obtain well-separated skyrmions. After being nucleated, the 

skyrmion moves along the positive x and y directions and, differently from the SAF case, here when 

the skyrmion meets the first intersection, the selection of the path is due to both the SHA and the 

current distribution. In fact, the skyrmion does not follow the path with larger current, as in the SAF 
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case, but it goes through the vertical path because of the large SHA (see Movie 2). When the skyrmion 

goes to the second intersection, its motion is characterized by a positive y-component and a negative 

x-component of the velocity. Hence, at the second intersection, it stops because of the absence of the 

current (see Movie 2). In this way, an accumulation of steady skyrmions forms in the part of the track 

where there is no current. The next skyrmion going towards the second intersection is then repulsed 

by the magnetostatic interaction arisen from the steady skyrmions and it keeps going up. A similar 

behavior will then occur at each intersection. However, this mechanism involving a finite SHA and 

skyrmion-skyrmion interactions does not allow skyrmions to follow the shortest path, as shown in 

the final configuration of Fig. 3. We hence conclude that the skyrmion motion characterized by a 

finite SHA fails to solve those problems. 

  

3.3. Skyrmions in other systems 

 The previous results demonstrate that only systems where the SHA is suppressed can be used 

for the solution of the of the shortest path problem with skyrmions. In addition to SAFs[20,21], 

antiferromagnets[25–28] and compensated ferrimagnets[18,19], a further viable scenario concerns 

the use of STT-driven skyrmions[7] in a single ferromagnet. Such a motion is still characterized by a 

finite SHA, but this can be controlled by the 



 ratio[1,6,7,12], where   is the non-adiabatic 

parameter. In particular, if   is properly designed to be equal to  , the skyrmion motion exhibits a 

zero SHA[1,6,7,12]. Therefore, we would obtain a final solution similar to the one in a SAF (Fig. 2), 

where the skyrmions would follow the current distribution. In this case, the achievement of the 

solution would be slower than SAF case due to the slower STT-driven skyrmions motion, while the 

imaging of the finale state will be easier.  

Recently, a growing interest have been devoted to magnetic multilayers[69–74], where tiny 

“hybrid skyrmions” (size smaller than 100 nm) can be stabilized at room temperature in absence of 

IDMI. Such hybrid skyrmions are characterized by a thickness-dependent reorientation of their 

domain wall chirality and the equilibrium configuration depends on the interplay between dipolar 

interactions and IDMI. In particular, if the dipolar interactions are the dominant contribution, a Néel 

skyrmion with outward chirality in the top ferromagnetic layer will be gradually reoriented to a Bloch 

skyrmion in the middle ferromagnetic layer and to a Néel skyrmion with inward chirality in the 

bottom ferromagnetic layer[72,73]. On the other hand, if the IDMI is increased, the Bloch skyrmion 

is shifted towards the upper layers, until, beyond a threshold IDMI value, a pure Néel skyrmion is 

obtained along the whole thickness[72,73]. Theoretical studies have pointed out that the SHE-driven 

skyrmion motion in these multilayers is characterized by a SHA dependent on the value of the DMI 
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and/or on the number of repetitions of the ferromagnetic layer[72,75]. Therefore, by proper designing 

the IDMI and/or the number of repetitions, it is possible to achieve a zero or at least negligible SHA, 

thus making multilayers a desirable system for the solution of the of the shortest path problem with 

skyrmions. If, on one hand, the realization of skyrmion-hosting multilayers is well-established[69–

71,73], on the other hand, skyrmions undergo a strong pinning effect while driven by the SHE[69]. 

Besides the use of skyrmions in different systems, it would also possible to use a different magnetic 

soliton, such as antiskyrmion [76,77] or skyrmionium[78,79], as long as the SHA is zero.  

 

3.4. Comparison with the Dijkstra’s Label Algorithm 

 To conclude our work, Fig. 4 shows a comparison of the proposed algorithm based on current 

distribution and skyrmions (green line) with the Matlab® implementation of the Shortest Path 

Dijkstra’s Label Algorithm (red line) considering a graph with undirected edges and nodes having 

the same topology as the system of Fig. 1. The edge weights are computed by considering the 

resistance of the physical device for each track, which is a function of the material, width and length 

of each track. A related dimensionless parameter is applied along each edge to reference its 

corresponding weight. The node 17 is the source node, which corresponds to node N1 in Fig. 1, and 

the node 84 is target node (N2 in Fig. 1).  

It can be observed that the two solutions do not coincide but both are optimal solutions if one 

considers the sum of the total length of the graph. If we increase the resistance value between node 

17 and 18 of 1, the Shortest Path Dijkstra’s Label Algorithm also converges in the green line (not 

shown). Therefore, our benchmark against the Dijkstra’s Algorithm confirms the validity of our 

skyrmion-based approach. 

 

4. Perspectives and conclusions 

 The results achieved here have been obtained by means of a micromagnetic model taking into 

account only the current distribution (purely resistive behavior) which does not depend on the 

magnetic texture, i.e. on the presence/absence of skyrmions. Indeed, experimental measurements 

have shown that the resistance of a ferromagnetic material depends on the number of skyrmions[71]. 

This outcome is very promising for our aim to solve the shortest path problem with skyrmions because 

a memristive behavior can occur. Specifically, when a skyrmion starts to follow a certain path, the 

electrical resistance of that path decreases, leading to an increase of the current. This aspect induces 

the next skyrmion introduced into the system to trail the previous skyrmion, and thus, to further reduce 

the electrical resistance of the selected path. Eventually, a self-reinforced path emerges, as it happens 

for real ants seeking for food as well as in the ant colony optimization algorithm[67]. 
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 In summary, we have shown, by means of micromagnetic simulations, that skyrmions can be 

used to display the final solution of the shortest path problem by exploiting the current distribution in 

a generic 2D graph. The key ingredient is to consider systems where the SHA is zero or negligible, 

such SAFs, while the solution cannot be achieved if the SHA is finite, such as in single ferromagnets. 

Our proposal is even more appealing if experimentally implemented due to the decreasing of the 

electrical resistance with the number of skyrmions. The combination of our theoretical and 

experimental results opens the way for the hardware realization of skyrmion devices for the solution 

of the shortest path problem based on a self-reinforced algorithm. 
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Fig. 1. Sketch of the device under investigation where (a) shows the x-y view together with a magnification highlighted 

by a green square and indicating the width of the structure and (b) displays the cross-section along the z-direction.   

 

 

 

 

 

 

Fig. 2. Spatial distribution of the magnetization for the (a) lower and (b) upper layer of the SAF structure[21,22]. The 

path identified by the skyrmion train and indicated with a yellow solid line represents the final solution of the problem. 
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Fig. 3. Final spatial distribution of the magnetization for the skyrmions in a single HM/FM bilayer. 

 

 

 

Fig. 4. Graph with undirected edges as obtained by modeling the same structure as Fig. 1. Nodes and edge locations and 

distances are accurately reproduced. Edge weights are represented by the linear resistance of the corresponding track. The 

path as obtained using our algorithm (dashed green line) closely resembles the one obtained from numerical simulations, 

whereas the path obtained using Dijkstra’s Algorithm (solid red line) is different. 
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Fig. A1. Spin-current spatial distribution where (a) and (b) show the x- and y-components, respectively. Where the spin-

current is along the x- (y-) direction, the skyrmions move vertically (horizontally). 

 


