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Abstract

Shallow water equations are widely used for the simulation of those geophysical flows for
which the flow horizontal length scale is much greater than the vertical one. Inspired by
the example of lava flows, we consider here a modified model with an additional transport
equation for a scalar quantity (e.g., temperature), and the derivation of the shallow water
equations from depth-averaging the Navier-Stokes equations is presented. The assumption
of constant vertical profiles for some of the model variables is relaxed allowing the presence
of vertical profiles, and it follows that the non-linearity of the flux terms results in the
introduction of appropriate shape coefficients.

The space discretization of the resulting system of hyperbolic partial differential equa-
tions is obtained with a modified version of the finite volume central-upwind scheme intro-
duced by Kurganov and Petrova in 2007. The time discretization is based on an implicit-
explicit Runge-Kutta method which couples properly the hyperbolic part and the stiff source
terms, avoiding the use of a very small time step; the use of complex arithmetic increases
accuracy in the implicit treatment of stiff terms. The whole scheme is proved to preserve
the positivity of flow thickness and the stationary steady-states.

Some numerical experiments are performed to validate the proposed method and to show
the incidence on the numerical solutions of shape coefficients introduced in the model.

Keywords: Shallow water equations, viscous fluids, finite volume, numerical scheme,
well-balanced, topography.

Introduction

In the past two centuries the shallow water equations, a depth-averaged system of partial
differential equations describing the dynamics of inviscid and constant-density fluids for
which the flow horizontal length scale is much greater than the vertical one, have been
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widely used for the simulation of a multitude of geophysical flows. In the volcanologic field,
for example, they have been applied with success to the simulation of pyroclastic density
currents [1], lava flows [2, 3], and lahars [4]. In the meteorological field they are used,
with an additional term modeling Coriolis forces, to describe the horizontal structure of the
atmosphere [5, 6]; in the study of ocean circulation they are employed to produce global,
realistic tidal models [7], and they accurately describe the propagation of a tsunami until
waves approach the shore [8, 9].

The classical shallow water equations, first introduced by De Saint Venant in 1864 and
Boussinesq in 1872, are based on several assumptions, among which the fact that the vertical
pressure distribution is hydrostatic, the vertical component of the velocity can be neglected,
and that the horizontal velocity field can be considered constant with depth. In the past,
several modifications have been proposed to weaken this last assumption and better model
flows where vertical shear is important, resulting in a modified momentum equation where
a multiplying coefficient, named shape or Boussinesq factor, is introduced in the advective
flux term [10]. Its magnitude relates the mean square velocity to the square of the mean
velocity and reflects the shear in the profile of the horizontal fluid velocity, and may depend
on factors such as the Reynolds number or the boundary roughness. It is well known that
these modifications do not change the hyperbolic nature of the equations but in some case
they can significantly impact the front features and propagation [11].

From the modeling point of view, in this contribution we go a step further, proposing
a depth-averaged model for laminar, viscous and incompressible fluids, enriched by a pa-
rameter describing the vertical variation of the velocity field (the Boussinesq coefficient)
and with an additional transport equation for a scalar quantity varying horizontally and
with a non-constant vertical profile. This is the case, for example, of temperature in single
phase flows, where a thermal boundary layer develops when fluids flow over a solid, but it is
also the case of particle concentration in sediment-laden flows, where a high-concentration
basal layer may affect the transport dynamics. Also for this quantity, as done for the velocity
field, a shape coefficient describing the vertical profile is introduced, and the resulting depth-
averaged transport equation is derived. In addition, we also consider the case where density
depends on the depth-averaged temperature, therefore density varies horizontally, further
relaxing the assumptions of the classical shallow water equations. The paper illustrates the
derivation details of the depth-averaged system of equations from the Navier-Stokes equa-
tions; moreover, the hyperbolicity of the system is also studied highlighting the role of the
shape parameters.

Due to the non-linearities present in shallow water equations, it is possible to find an-
alytical solutions only in particular cases, and in general a numerical approach is adopted
for their solution. When dealing with the numerical solution of depth-averaged flow models,
an important issue is the proper tracking of wet/dry fronts, i.e. the propagation of inter-
faces between regions occupied by the flow (wet) and regions without flow (dry). A large
number of numerical models solving for the shallow water equations are based on explicit
finite volume schemes [12, 13, 9], and they adopt different strategies to deal with wetting
and drying. It is important to remark that the stability of any explicit scheme is controlled
by the Courant-Friedrichs-Lewy (CFL) condition and by the maximum characteristic speed
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of the governing equations, which depends on the square root of flow thickness. For this rea-
son, a numerical scheme producing negative thickness is not only physically unrealistic, but
also results in numerical problems. A simple but effective method to capture wet/dry fronts
and to overcome these problems would be set to zero any negative thickness produced by a
numerical scheme, together with the corresponding velocities [14], but we observe that this
approach does not preserve the total mass of the system. In Godunov-type schemes, other
conservative methods have been proposed to treat wetting and drying [15, 16]. A different
approach, based on the central-upwind finite-volume scheme, was proposed by Kurganov
and Levy (2002) [13] and then adopted in other works [17, 18, 19]. Such different approach
on one hand guarantees the positivity of the solution, and on the other hand is able to cap-
ture steady states over a complex topography, like those represented by a null velocity and a
flat free surface. In literature, methods able to preserve these stationary states are generally
called well-balanced methods [20]. In addition to the numerical issues described above, com-
putational instabilities may also arise in the numerical simulation of wet/dry fronts, when
friction terms inversely proportional to flow thickness are considered, like for example in the
Manning formulation [21]. For this reason it is important to employ appropriate numerical
schemes, such as semi-implicit schemes [14, 15], or implicit-explicit Runge-Kutta methods
[22, 23].

In this work, we propose a combination of some of the above-mentioned existing tech-
niques. The spatial discretization is performed through a modified version of the central-
upwind finite volume scheme introduced by Kurganov and Petrova (2007) [17] for the clas-
sical shallow water equations: we adapt the method to our depth-averaged modified model,
proving in §2.1 that important properties like well-balancing and positivity preserving for
near-dry states are satisfied. We couple this approach with an implicit-explicit Runge-Kutta
technique employed to the temporal discretization [23], where a suitable selection of the stiff
terms to be treated implicitly is performed in §2.2. A clever use of complex arithmetic,
borrowed from [24] and described in §2.2.1, ensures an accurate computation of Jacobians
which is necessary for the efficient solution of the implicit part of the scheme.

This combination of choices appears quite efficient: the conservative and positivity-
preserving explicit central-upwind numerical scheme allows for a robust and accurate track-
ing of flow fronts, whereas the implicit treatment of nonlinear viscous terms allows us to
properly simulate steady-state equilibrium states and flow stopping conditions, without the
need for any ad-hoc empirical criteria.

The outline of the paper is as follows. In §1, the physical model with the derivation of the
governing equations and the study of their hyperbolicity are presented. In §2, the numerical
model is introduced, describing the spatial and temporal discretizations. In §3, the model is
applied to several 1D and 2D cases, where the accuracy of the numerical schemes is studied
and where it is shown the effect of the shape factors. The concluding remarks are presented
in §4.
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1. The physical model

In this section, we present the derivation of a depth-averaged model for the dynamics
of an incompressible, laminar, viscous and homogeneous fluid over a variable topography,
which takes into account also the transport of an additional quantity with a vertical dis-
tribution. This is a quite common feature in environmental science where, for example,
this quantity may represent the concentration of sediments [25] or pollutants [26] or in geo-
physics and volcanological applications, where it may represent the fraction of solid particles
in pyroclastic flows [27] or the temperature in lava flows [2], or it may represent both the
temperature and the salinity of water in oceanology [28].

Even though it is common to derive depth-averaged equations directly from first princi-
ples (conservation of mass and conservation of momentum), here we obtain them from more
general transient and 3D fluid equations. Considering a Eulerian framework, the desired
equations are in fact derived from the depth-averaging of the Navier-Stokes equations, un-
der the assumption that the horizontal length scale is much greater than the vertical length
scale.

For a viscous fluid, ignoring the energy equation, the full 3D conservation of mass and
conservation of linear momentum equations (the Navier-Stokes equations) write respectively
as

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂(ρu)

∂t
+∇ ·

(
ρuuT

)
= −∇p−∇ · τ, (2)

where ρ(x, y, z, t) is the fluid density, u(x, y, z, t) is the velocity vector field (with components
(u, v, w)), p = p(x, y, z, t) is the pressure and τ = τ(x, y, z, t) is the viscous term. In the case
of a Newtonian and incompressible fluid, the viscous term reduces to

τ = µ(∇u + (∇u)T ), (3)

with µ being the dynamic viscosity. Viscosity is intrinsically related to the physical nature
and chemical composition of involved materials, and it may vary according to other factors
involved into the event dynamics. For example, such factors might be the crystal fraction (as
in the celebrated Krieger-Dougherty equation [29]) or the quantity of bubbles for a magmatic
fluid, but also the temperature (for example in the Arrhenius model for liquid or the Costa
and Macedonio [2] lava model) or the concentration of sediments for other geophysical flows.

Even though we are interested in incompressible flows, here we have retained the com-
pressible formulation of the Navier-Stokes equation. This is because in many geophysical
flows, like in oceans, lava flows, or debris flows, fluids are incompressible but with variable
density, for example as a result of spatial and temporal variations in temperature (for in-
stance due to thermal exchanges and cooling of a lava flow), in concentration of sediments
(due to settling or erosion processes) or in concentration of salinity.

For some of such flows, when the horizontal length scale is much greater than the vertical
length scale and when the vertical dynamics can be neglected compared to horizontal effects
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(w = 0), by integrating over flow thickness it is possible to derive a simpler 2D transient
model describing the fluid dynamics. Here, we write this simplified system of equations
by adopting an horizontal Cartesian system of coordinates, such that the topography (here
assumed not varying with time) is expressed as B(x, y) and the two velocity significant
components u and v are defined as the components along the x and y axes respectively,
orthogonal to the z axis that is parallel to the gravitational acceleration (g = (0, 0, g)). We
introduce now two additional variables describing the system: h(x, y, t), which denotes the
fluid thickness above the ground, and T (x, y, z, t), which denotes the field of an additional
transported intensive property, i.e. a local physical property of a system that does not
depend on the system size or the amount of material in the system. For simplicity, from
now on, we assume that the transported quantity will represent the temperature of the flow,
as it would be for a lava flow, and, considering only the temperature advection, we adopt
the following transport equation:

∂T
∂t

+∇ · (T u) = 0. (4)

We remark that this equation is general and applicable to other variables, like for examples
particle concentration in a sediment-laden flow, where a Rouse profile for the suspension
might be used.

Following these assumptions, we introduce the notation U(x, y, t) for the z-averaged
horizontal velocity vector, whose two components U and V are given by

U(x, y, t) =
1

h

∫ B+h

B

u(x, y, z, t) dz, V (x, y, t) =
1

h

∫ B+h

B

v(x, y, z, t) dz.

Similarly, we introduce the notation T for the depth-averaged temperature

T (x, y, t) =
1

h

∫ B+h

B

T (x, y, z, t) dz.

In a variety of situations density depends on temperature and here we assume a linear
dependence of density on the temperature

ρ(z) = ρ0 +mT .

This is the case, for example, of some of the materials (wax and silicone oils) investigated
in the examples presented in §3. Furthermore, for the applications we are interested in
(for example lava flows or the laboratory analogue experiments simulated in this work), the
vertical variations of density are small with respect to the horizontal ones. For this reason,
in the following we will consider only horizontal variations of the depth-averaged density,
observing that it also depends linearly on the depth-averaged temperature

ρ̄ :=
1

h

∫ B+h

B

ρ(z) dz =
1

h

∫ B+h

B

[
ρ0 +mT

]
dz = mT + ρ0.

For this reason, in the following, we will use for the depth-averaged temperature, without
ambiguity, the notation ρ.
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1.1. The velocity vertical profile

In the derivation of the classical shallow water model, from the assumption of inviscid
fluid it descends that the velocity does not depend on the vertical coordinate, i.e. u =
u(x, y, t). With this assumption, the depth-averaged velocity U corresponds to the local
velocity. Instead, for a free surface laminar viscous flow, moving in one direction, a vertical
velocity profile develops and three conditions must be satisfied: (i) null velocity at the
bottom, (ii) null traction between air and fluid and (iii) maximum velocity at the free
surface.

As shown in [30], when considering one-directional motion of a Newtonian fully developed
laminar viscous flow, the balance of friction and gravitational force leads to a parabolic
velocity profile (as represented in Figure 1), similarly to a Poiseuille flow:

u(x, z, t) = a(z −B)2 + b(z −B) + c, (5)

with a = a(x, t), b = b(x, t), c = c(x, t).

u(x,z,t)

u

z

B+h

B

Figure 1: Parabolic velocity profile.

By imposing the previous conditions to the form (5) of u(x, z, t), we completely determine
its expression:

(i) u(x,B, t) = 0 ⇐⇒ c(x, t) = 0, ∀x, ∀t;

(ii) ∂zu(x,B + h, t) = 0 ⇐⇒ b(x, t) = −2h a(x, t), ∀x, ∀t;

(iii) u(x,B + h, t) = a(x, t)h2 + b(x, t)h ⇐⇒ a(x, t) = −u(x,B + h, t)

h2
, ∀x, ∀t.

Since for a parabolic profile the relation between maximum and average velocity is u(x,B+
h, t) = 3

2
U , by applying (i)–(iii) we express u in terms of U as

u(x, z, t) =
3

2
U(x, t)

(
1−

(
z −B − h(x, t)

)2

h2(x, t)

)
. (6)
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In the following, we assume the parabolic profile given by Eq. (6). Then, we finally
substitute Eq. (6) into the conservation of mass equation (1) and, integrating over the flow
thickness, we obtain:

∂(ρh)

∂t
+∇ · (ρhU) = 0.

When the transient term of the momentum equation (2) is integrated over the flow
thickness, because of the assumption that ρ does not depend on the flow depth, we have:

∂

∂t

∫ B+h

B

ρu(x, z, t) dz =
∂(ρhU)

∂t
.

For the derivation of the other terms of the depth-averaged momentum equation, we consider
for the sake of simplicity the 1D version of the momentum equation. By substituting the
expression for the velocity profile in the advective term and by integrating it, one finds:∫ B+h

B

ρ u2(x, z, t) dz = βuρ hU
2, (7)

where βu = 6
5
. This coefficient is often termed in literature as Boussinesq momentum

coefficient or shape factor, and its magnitude reflects the shear in the profile of the horizontal
fluid velocity. Different velocity profiles, arising for example when non-Newtonian viscosity
are considered, will result in different values of βu. Even though it is frequently set equal
to unity (which holds only when velocity is constant over the flow thickness), it is well
known that this coefficient may have a significant effect on the dynamics of the flow when
a complete sheared flow is expected [11].

1.2. Pressure and viscosity terms

Let assume now a hydrostatic profile for the pressure p, i.e.

∂p(x, z, t)

∂z
= ρg.

Integrating p from the height z to the free surface B + h, and fixing at 0 the pressure value
at the free surface, we obtain the expression of hydrostatic pressure at height z

p(x, z, t) =

∫ B+h

z

∂p(x, ζ, t)

∂ζ
dζ = ρg[(B(x) + h(x, t))− z]

and, deriving with respect to x, we have

∂p(x, z, t)

∂x
= g

∂

∂x
(ρ(B(x) + h(x, t)))− gz ∂ρ

∂x

When this term is integrated with respect to z over the flow thickness, i.e. it is integrated
from z = B to B+h, we obtain the desired term of the depth-averaged equation accounting
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for pressure gradient, that is∫ B+h

B

∂p (x, z, t)

∂x
dz = gh

∂

∂x
[ρ (B + h)]− g ∂ρ

∂x

[
z2

2

]B+h

B

=

ρgh

(
∂h

∂x
+
∂B

∂x

)
+

1

2
gh2 ∂ρ

∂x
.

By rearranging the derivatives, the depth-integrated pressure gradient reduces to∫ B+h

B

∂p

∂x
dz =

∂

∂x

(
1

2
ρgh2

)
+ ρgh

∂B

∂x
, (8)

which is the term usually found in depth-averaged momentum equations in presence of a
variable topography.

Finally, we obtain the expression for the viscous term of the depth-averaged equation
by integrating vertically the term ∇ ·

[
µ(∇u + (∇u)T )

]
appearing in the Navier-Stokes

equations (where µ is the dynamic viscosity, according to (2) and (3)), which here reduces
to µ∆u because the fluid is incompressible. By considering again a one-directional motion,
the integral results in∫ B+h

B

µ
∂2u

∂z2
dz = µ

∂u

∂z

∣∣∣∣B+h

B

= µ

[
∂u

∂z
(x,B + h, t)− ∂u

∂z
(x,B, t)

]
(∗)
= −µ ∂zu(x,B, t), (9)

where in (∗) we have considered again no traction between air and fluid, as done for the
parabolic velocity profile assumption. In particular, according with the parabolic profile
expressed in Eq. (6), the vertical derivative evaluated at the bottom is

∂zu(x,B, t) = 3
U(x, t)

h

so that the viscous term expression becomes∫ B+h

B

µ
∂2u

∂z2
dz = −ργU(x, t),

where γ :=
3ν

h
is the friction coefficient, depending on kinematic viscosity and flow thickness

(by reminding the relationship between dynamic and kinematic viscosity: µ = ρν). Note
that Gerbeau and Perthame [31], by using a different approach, obtained a similar expression
for γ.

1.3. The temperature vertical profile

As previously stated, we do not assume that temperature is constant over the whole flow
depth. We assume instead that temperature variations occur only over a fraction of the flow
thickness near the ground, and we denote this region as characteristic thermal boundary
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T (x,z,t)

T1T0 T

δT

B

B+h

Figure 2: Vertical temperature profile.

layer, with thickness δT = h/n (with n ≥ 1). We also assume a linear temperature profile
near the ground and a constant temperature for z > δT , fixing the free-surface temperature
at T = T1 (see Figure 2).

Temperature T (x, z, t) along a vertical profile can be written in terms of the averaged
temperature T , of the free-surface temperature T1 and of the thickness index n as follows:

T (x, z, t) =


2n2

h

(
T1 − T (x, t)

)
z + (1− 2n)T1 + 2nT (x, t), if 0 ≤ z ≤ δT

T1, if δT < z ≤ h.

When we use this expression for the piecewise linear temperature profile and Eq. (6)
for the parabolic velocity profile, the integration over the vertical depth of the advective
term appearing in Eq. (4) leads to the sum of two terms whose coefficients depend on the
parameter n related to the thermal boundary layer thickness h/n∫ B+h

B

T (x, z, t)u(x, z, t) dz =
4n2 − n

4n3
hTU +

4n3 − 4n2 + n

4n3
hT1U.

Now, if we denote by βT the coefficient of the first term on the right-hand side of the previous
equation and by βT1 the coefficient of the second term, we obtain the 1D formulation of the
advective flux

(βTT + βT1T1)hU.

Being 0 ≤ βT , βT1 ≤ 1 and βT + βT1 = 1, the term in brackets in the previous equation
corresponds to a convex combination of the maximum and averaged temperature. For
instance, when considering n = 4 (as suggested by Costa and Macedonio [2] for lava model),
the values of the two coefficients are βT ≈ 0.24 and βT1 ≈ 0.76. One observes that the
smaller is the thickness of the thermal boundary layer, the closer to 1 is the value of βT1
and the smaller is the value of βT . Thus, when the boundary layer thickness goes to zero (n
goes to +∞) the maximum temperature and the depth-averaged temperature coincide and
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the advective term in (4) reduces to

∇ ·
(
ThU

)
, (10)

which is the classical form resulting from the assumption of a uniform temperature profile
(hence T = T1) and corresponds to the choices βT1 = 1 and βT = 0.

In summary, assuming an incompressible homogeneous fluid, a hydrostatic pressure dis-
tribution, a parabolic velocity profile, a piecewise linear temperature profile and generalizing
to the two-dimensional case, the depth-averaged equations for the flow are:

∂(ρh)

∂t
+∇ · (ρhU) = 0, (11)

∂(ρhU)

∂t
+∇ ·

(
βuρhUUT

)
+∇

(
1

2
ρgh2

)
= −ρgh∇B − ργU, (12)

∂(hT )

∂t
+∇ ·

(
h(βT T + βT1 T1)U

)
= 0, (13)

where we underline that U is a column vector; the system is coupled with the state equation
that considers the density dependence on the average temperature

ρ(T ) = mT + ρ0. (14)

The stationary steady-state solutions of our system are the lake-at-rest conditions:

U = 0, B + h = const, T = const, ρ = const, (15)

The homogeneous part of the system (11–13) is constituted by non-linear hyperbolic
PDEs, and thus it is solved by classical numerical techniques developed for such kind of
equations [32, 33]. In order to do that, we first rewrite the homogeneous system in a more
compact notation, introducing the vector of conservative variables q

q =


q1

q2

q3

q4

 :=


ρh
ρhU
ρhV
hT

 .
If we denote by f = (G,H) the flux vector (argument of the divergence in (11–13)), and we
express the fluxes as function of the conservative variables

G(q) =


ρhU

βuρhU
2 +

ρg

2
h2

βuρhUV

h
(
βTT + βT1T1

)
U

 , H(q) =


ρhV

βuρhUV

βuρhV
2 +

ρg

2
h2

h
(
βTT + βT1T1

)
V

 ,
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then we rewrite the homogeneous part of the governing equations as

∂q

∂t
+∇ · (f(q)) ≡ ∂q

∂t
+
∂G(q)

∂x
+
∂H(q)

∂y
. (16)

In order to study the hyperbolicity and local propagation velocities, we replace the
homogeneous system by the equivalent quasi-linear formulation

qt +∇ · (f(q)) = 0 ←→ qt + G′(q)qx + H′(q)qy = 0,

where G′ and H′ are the Jacobian matrices of the advective fluxes. By direct computation,
it is possible to show that each of the two Jacobians has four eigenvalues, which are the
elements of the following spectra:

Sp (G′) =

{
βu U ±

√
βu(βu − 1)U2 + gh, βu U, βTU

}
,

Sp (H′) =

{
βu V ±

√
βu(βu − 1)V 2 + gh, βu V, βTV

}
.

(17)

When the eigenvalues are real, it follows that the equations are hyperbolic, and the pertur-
bations in the solution propagate with finite velocities given by the previous equations. We
also note that, when βu = 1 (resulting from the assumption of a uniform velocity profile),
the first eigenvalues reduce to

U ±
√
gh and V ±

√
gh,

thus they coincide with the characteristic velocities of the classical shallow water equations.
Recall that the Froude number is a dimensionless variable accounting for the relative

importance of inertial and gravitational forces. Classically, the Froude number for shallow
water waves is defined as

Fr =
|U|√
gh
, (18)

see Leveque 2004 [32], and according to the value assumed by this ratio, the regime is
classified as subcritical if Fr < 1, critical if Fr = 1 and supercritical if Fr > 1. When flow
conditions are supercritical, surface waves generated by downstream disturbances cannot
travel upstream. Conversely, when flow is subcritical, disturbance propagates both upstream
and downstream. This classification is relevant also for numerical simulations, because the
boundary conditions must be prescribed according to the flow regime. We point out that the
effects of a parabolic velocity profile assumption on the solution become less important as
the Froude number approaches 0, because in such situations the dynamics are less affected
by the inertial term.

As shown above, the parabolic velocity profile defined in Eq. (6) leads to the presence
of the coefficient βu in the inertial term appearing in the momentum equation. Because of
that, from a mathematical point of view, also the critical conditions change with respect
to the classical shallow water equations. In fact, considering the 1D case, the eigenvalues
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of the flux Jacobian for the parabolic velocity case have the same sign when the following
condition is satisfied:

|U |√
(1− 1/βu)U2 + gh/β2

u

> 1.

According to this formulation, for the same value of the flow thickness h, the critical
regime for a parabolic profile is obtained at a smaller depth-averaged flow velocity than for
constant velocity profile. In addition, we observe that the left-hand side quantity converges
to the Froude number when the velocity tends to have constant profile, namely when βu
goes to 1.

2. Numerical model

The numerical model we have developed leans on the central-upwind second order scheme
introduced by A. Kurganov and G. Petrova in 2007 [17], as far as the spatial derivative
concerns, and on an Implicit-Explicit scheme belonging to the Runge-Kutta family described
by Pareschi and Russo in 2000 [34] for the discretization in time.

2.1. Spatial discretization

Kurganov and Petrova [17] (KP in the following) developed a numerical scheme to solve
the classical shallow water equations which, on one hand, is able to capture stationary
steady-states solutions (like lake at rest), on the other, guarantees the positivity preserving
property of fluid thickness.

For simplicity, we present the numerical scheme for the one dimensional version of the
system (11-13) (for the discretization of the two dimensional version, consult de’ Michieli
Vitturi et al. [27]):

(ρh)t + (ρhU)x = 0,

(ρhU)t +

(
βuρhU

2 +
ρg

2
h2

)
x

= −ρghBx − ργU,(
hT
)
t
+
(
h
(
βTT + βT1T1

)
U
)
x

= 0,

(19)

coupled with the state equation for the temperature dependent density ρ = mT+ρ0. Naming
q the vector of conservative variables, we denote by f(q) the vector of the fluxes and the
source terms by E(q) and S(q):

q =

 ρh
ρhU
hT

 , f(q) =


ρhU

βuρhU
2 +

ρg

2
h2

h
(
βTT + βT1T1

)
U

 , E(q) =

 0
−ρghBx

0

 , S(q) =

 0
−ργU

0

 ,
so that we can write the 1D system in the compact form:

∂q

∂t
+
∂f(q)

∂x
= E(q) + S(q). (20)
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The distinction between the two source terms will be exploited in §2.2.
In order to apply a Finite Volume scheme, the domain is divided into a uniform grid,

and for each cell we denote by xi its midpoint and indicate by Ci =
[
xi− 1

2
, xi+ 1

2

]
the i-th

cell. An important feature of a numerical scheme discretizing the system of Eqs. (19) is a
proper treatment of the topography. Here, as a preliminary step, the original topography
B(x) is approximated by a continuous linear-piecewise function B̃(x), whose values B̃i+ 1

2
at

the interfaces xi+ 1
2

are obtained by averaging the limits of B(x) from both the sides. The

approximation B̃ and its derivative are used for the finite-volume numerical discretization
in the cell Ci of the second component of the source term E(q):

1

∆x

∫ x
i+1

2

x
i− 1

2

(−ρghBx)dx ≈ −gρihi
B̃i+ 1

2
− B̃i− 1

2

∆x
. (21)

We denote by Qi the approximation of the average of q(·, t) over the i-th cell

Qi(t) ≈
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, t)dx ,

then we apply a semi-discretization of Eqs. (20) obtaining the following system of ODEs in
each cell:

d

dt
Qi(t) = −

Fi+ 1
2
(t)− Fi− 1

2
(t)

∆x
+ Ei(t) + Si(t) (22)

where Fi± 1
2

are the numerical fluxes, here defined accordingly with KP. Our modified version
of the central-upwind finite volume KP scheme is briefly summarized in the following steps
(see the original reference [17] for details).

(1) Solution reconstruction. From the values of the conservative variables Q, we compute
an additional set of variables P = [w,U, T ]T (where w := h + B denotes the free-surface
height), by using the following relations

h =
Q(1) −mQ(3)

ρ0

, T =
Q(3)

h
, ρ = mT + ρ0, U =

Q(2)

ρh
.

When the height h is very small, an appropriate de-singularization procedure is necessary,
in order to prevent inaccuracies in velocity and temperature values. To do that, we adopt
the following expressions to compute the temperature and velocity values instead of the
previous ones

T =

√
2hQ(3)√

h4 + max(h4, ε)
, U =

√
2hQ(2)

ρ
√
h4 + max(h4, ε)

as suggested in [17].
By using the cell values {Pi}i calculated from the cell averages {Qi}i, we define a dis-

continuous piecewise linear reconstruction over each cell:

p̃i(x) = Pi + σi(x− xi), xi− 1
2
< x < xi+ 1

2
, ∀i, (23)
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where the slopes {σi}i are computed by using a suitable geometric limiter. The reconstructed
solution might be discontinuous at the interfaces points xi+ 1

2
, then we define PL

i+ 1
2

and PR
i+ 1

2

as the left and right side values of the reconstructed solution respectively.
In addition, a suitable correction is needed for the reconstructed values w

L/R

i+ 1
2

m, in order

to preserve the positivity of each h
L/R

i+ 1
2

:= w
L/R

i+ 1
2

− B̃i+ 1
2

(not guaranteed by the geometric

limiters) as described in [17].
The solution reconstruction is a key point to guarantee the well-balancing property of a

numerical scheme. In §2.1.1, we show that the modification introduced here with respect to
[17] continues to guarantee this property, even if the equations are modified and the linear
reconstruction is computed for a different set of variables.

(2) Values of the conservative variables at the interfaces. From the values PL
i+ 1

2

and PR
i+ 1

2

of the variables at the interfaces, we compute QL
i+ 1

2

and QR
i+ 1

2

, namely the values of the

conservative variables at the interfaces.

(3) Estimation of the local speed through the interfaces. The reconstructed solution propa-
gates with right-sided and left-sided local speeds a±

i+ 1
2

, which are estimated in terms of the

eigenvalues of the Jacobian of f , denoted by f ′, as we have seen in (17) for 2D model, at the

reconstructed values Q
R/L

i+ 1
2

:

a+
i+1/2 = max

{
λmax

(
f ′
(
QR
i+ 1

2

))
, λmax

(
f ′
(
QL
i+ 1

2

))
, 0

}
,

a−i+1/2 = min

{
λmin

(
f ′
(
QR
i+ 1

2

))
, λmin

(
f ′
(
QL
i+ 1

2

))
, 0

}
.

(24)

The computation of U is requested also here, but in this occasion the de-singularization is
not necessary: we did it previously passing to the set of variables P, with those values we
have done the linear reconstruction, and since we have used geometric limiters, then all the
velocities are limited at the interfaces.

(4) Computation of the numerical flux. We adopt the numerical flux expression used in [17],
that is:

Fi+ 1
2
(t) =

a+
i+ 1

2

f
(
QL
i+ 1

2

)
)
− a−

i+ 1
2

f
(
QR
i+ 1

2

)
)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

[
QR
i+ 1

2
−QL

i+ 1
2

]
(25)

where the first term on the right side is an average of the evaluated fluxes weighted with the
speeds of propagation, because the total flux at the interface depends both on the left-going
and on the right-going fluxes, each weighted with the maximum speed in that direction.
Notice that the time dependence of the right term, although it is omitted explicitly, belongs
to both a±

i+ 1
2

and Q
R/L

i+ 1
2

.
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With respect to [17], the model equations we refer to are richer, since we have an addi-
tional equation for the temperature transport, corrector coefficients βu, βT and βT1 inside
the flux terms, more source terms and also a variable density. From the numerical point of
view, a major difference between our scheme and the original KP scheme is that we pass
forward and backward to the set of variables P to compute the solution reconstruction of the
conservative variables at the interfaces. Moreover, the presence of the corrector coefficients
βu and βT impacts over the scheme by affecting the local speed of propagation.

2.1.1. Well-balancing property

As stated before, the modifications introduced here to the numerical scheme presented
in [17] continue to guarantee the well-balancing property for stationary steady states. We
provide a sketch of proof of this property.

One recalls that the stationary steady-state solutions of our system consist of null velocity
and constant conditions for both free surface height, temperature and density (see equations
(15)). In such cases, from the system of equations (20) we obtain:

∂x

(
1

2
ρgh2

)
= −ρghBx. (26)

By proving that the equality (26) is preserved also by the numerical discretization, we
confirm the well-balancing of the numerical scheme.

The flux term on the left side is discretized with the numerical fluxes F
(2)

i− 1
2

and F
(2)

i+ 1
2

defined in Eq. (25). Since velocity is null, the conservative variable Q(2) = ρhU is null too,
therefore the numerical flux at the right interface of the cell i reduces to:

F
(2)

i+ 1
2

=
a+
i+ 1

2

f (2)
(
QL
i+ 1

2

)
)
− a−

i+ 1
2

f (2)
(
QR
i+ 1

2

)
)

a+
i+ 1

2

− a−
i+ 1

2

, (27)

where the flux values at the sides of the interfaces are given by f (2)
(
Q
L/R

i+ 1
2

)
= 1

2
ρ
L/R

i+ 1
2

g
(
h
L/R

i+ 1
2

)2
.

According to the numerical scheme, the linear reconstruction is applied to the free surface
w = h + B to find its interface values wL

i+ 1
2

and wR
i+ 1

2

, from which we derive the interface

values of h as
hL
i+ 1

2
= wL

i+ 1
2
− B̃i+ 1

2
, hR

i+ 1
2

= wR
i+ 1

2
− B̃i+ 1

2
.

As the total thickness w = h+ B is constant, its reconstructed values on the left and right
sides of each interface are equal, hence the same condition descends for h:

wL
i+ 1

2
= wR

i+ 1
2
⇒ hL

i+ 1
2

= hR
i+ 1

2
.

From the assumption of constant density, we also have ρL
i+ 1

2

= ρR
i+ 1

2

= ρ and from now

we neglect the L/R notation for the interface values of h and ρ. According with these
considerations, the numerical flux simplifies its expression

F
(2)

i+ 1
2

=
a+
i+ 1

2

[
1
2
ρg
(
h
i+ 1

2

)2
]
− a−

i+ 1
2

[
1
2
ρg
(
h
i+ 1

2

)2
]

a+
i+ 1

2

− a−
i+ 1

2

=
1

2
ρg
(
hi+ 1

2

)2
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and the complete discretization of the flux term on the LHS of the stationary state Eq. (26)
becomes

F
(2)

i+ 1
2

− F
(2)

i− 1
2

∆x
=

1

2∆x
ρg
[(
hi+ 1

2

)2 −
(
hi− 1

2

)2
]

= ρghi
hi+ 1

2
− hi− 1

2

∆x
, (28)

where, because of the linearity of the interface reconstruction, hi is the average of the
interface values.

We observe that the discretization of the right term of Eq. (26), given by Eq. (21), can
be written in the following equivalent way

−gρihi
B̃i+ 1

2
− B̃i− 1

2

∆x
= −gρhi

(
wi+ 1

2
− hi+ 1

2

)
−
(
wi− 1

2
− hi− 1

2

)
∆x

. (29)

Because of the constant condition on the free surface, we have that wi− 1
2

= wi+ 1
2

and, by

canceling these terms in the previous equation, we find the same expression as in Eq. (28),
so we conclude the proof.

2.1.2. Positivity-preserving property

In [17] has been proven that, for their model, an explicit temporal discretization of
the central-upwind scheme with an appropriate choice of the time step, is not only well-
balanced, but also positivity preserving for h. Despite the differences from them, for our
modified scheme their result is still valid, but with an additional condition over the β’s.

We premise in a specific lemma the nontrivial adjustments to the proof of the corre-
sponding result in [17].

Lemma 1. If the condition max(βu, βT ) ≥ 1 is verified, then for each interface the following
inequalities hold:

(a) a−
i+ 1

2

≤ UR
i+ 1

2
, (b) a−

i+ 1
2

≤ UL
i+ 1

2
, (c) a+

i+ 1
2

≥ UR
i+ 1

2
, (d) a+

i+ 1
2

≥ UL
i+ 1

2
.

Proof. (a) We start by distinguishing the different cases of positive or negative velocities.
In the first case 0 ≤ UR

i+ 1
2

, and by definition a−
i+ 1

2

≤ 0, therefore the thesis follows. Instead

when UR
i+ 1

2

< 0 it is sufficient to show that λmin

(
f ′
(
QR
i+ 1

2

))
≤ UR

i+ 1
2

.

A simple check shows that, for any q, the matrix f ′(q) is block lower triangular; if f ′u(q)
denotes its leading (full) 2× 2 principal submatrix, then the relations

λmin

(
f ′(q)

)
= min

{
λmin

(
f ′u(q)

)
, βTU

}
, λmax

(
f ′(q)

)
= max

{
λmax

(
f ′u(q)

)
, βTU

}
hold.

Now we suppose by contradiction that λmin

(
f ′
(
QR
i+ 1

2

))
> UR

i+ 1
2

, so that on one hand

βTU
R
i+ 1

2

> UR
i+ 1

2

which implies βT < 1 because the velocity is assumed negative. On the other
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hand, at the same time we must have λmin

(
f ′u

(
QR
i+ 1

2

))
> UR

i+ 1
2

so that every eigenvalue of

f ′u is greater than the velocity; this would imply

tr
(
f ′u

(
QR
i+ 1

2

))
> 2UR

i+ 1
2
,

where tr(·) denotes the trace of a matrix which equals the sum of its eigenvalues. A direct
computation of the diagonal entries in the Jacobian shows that

tr
(
f ′u

(
QR
i+ 1

2

))
= 2βuU

R
i+ 1

2
, (30)

but since we are considering a negative velocity this is equivalent to βu < 1, which conflicts
with the lemma hypothesis since we have proved that βT < 1.

(b) The proof is the same as the previous one, with the difference that λmin

(
f ′
(
QL
i+ 1

2

))
must be compared with UL

i+ 1
2

.

(c) Again we distinguish the cases of positive and negative velocity. In the case where
UR
i+ 1

2

≤ 0, the thesis immediately follows by the definition of the propagation speed, for

which a+
i+ 1

2

≥ 0. Instead if UR
i+ 1

2

> 0, we apply the same argument as in (a): suppose by

contradiction that λmax

(
f ′
(
QR
i+ 1

2

))
< UR

i+ 1
2

so that both the conditions βTU
R
i+ 1

2

< UR
i+ 1

2

(from which βT < 1 follows) and λmax

(
f ′u

(
QR
i+ 1

2

))
< UR

i+ 1
2

hold. On one hand,

tr
(
f ′u

(
QR
i+ 1

2

))
< 2UR

i+ 1
2
;

on the other hand, from (30) the positive sign of velocity yields βu < 1, which contradicts
the condition on the β coefficients.

(d) The proof is the same as the previous one, with the difference that we must compare

λmax

(
f ′
(
QL
i+ 1

2

))
with UL

i+ 1
2

.

Theorem 2. Consider the system of ODEs (22) and the central-upwind semi-discrete scheme
described above. Assume that the system is solved by the forward Euler method, which pro-
duces a time sequence {Qn

i }i of approximations (from which the current value of the height
hni is retrieved). Suppose that, for all i, hni ≥ 0. Then, for all i, hn+1

i ≥ 0, provided that

(i) max(βu, βT ) ≥ 1,

(ii) ∆t ≤ ∆x

2a
, where a := maxi

{
max

{
a+
i+ 1

2

, − a−
i+ 1

2

}}
and a±

i+ 1
2

are the local speeds

estimated at step 3.

Proof. We report only a brief sketch of the proof because it is mainly similar to that
presented in Kurganov and Petrova [17], where further details are offered.

17



Since we are interested in the behaviour of hn+1
i , we focus on the first equation of the

system discretized by the forward Euler method; then we rearrange the expression by using
the definition (25) of the numerical flux at the interfaces and by considering the value of
hni as the average of the reconstructed values at the interfaces. We obtain the following
expression for hn+1

i , where λ = ∆t/∆x

hn+1
i = hR

i− 1
2

[
1

2
+
(
λa−

i− 1
2

)(a+
i− 1

2

− UR
i− 1

2

a+
i− 1

2

− a−
i− 1

2

)]
+ hL

i+ 1
2

[
1

2
−
(
λa+

i+ 1
2

)(UL
i+ 1

2

− a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

)]

+hL
i− 1

2

(
λa+

i− 1
2

)(UL
i− 1

2

− a−
i− 1

2

a+
i− 1

2

− a−
i− 1

2

)
+ hR

i+ 1
2

(
− λa−

i+ 1
2

)(a+
i+ 1

2

− UR
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

)
(31)

where all the RHS terms are considered at time tn, but, in order to simplify the notation, we
have omitted the superscripts n. Thus hn+1

i is a linear combination of the previous values

at the interfaces h
R/L

i± 1
2

with suitable coefficients. The special reconstruction procedure at the

interfaces guarantees that all h
R/L

i± 1
2

≥ 0. From the definition of the propagation speeds (24)

it follows that a+
i− 1

2

≥ 0, a−
i+ 1

2

≤ 0, a+
i± 1

2

− a−
i± 1

2

≥ 0. Thanks to assumption (i), we apply

Lemma 1 which implies

0 ≤
a+
i± 1

2

− UR
i± 1

2

a+
i± 1

2

− a−
i± 1

2

≤ 1 and 0 ≤
UL
i± 1

2

− a−
i± 1

2

a+
i± 1

2

− a−
i± 1

2

≤ 1.

By adding the further CFL condition λa ≤ 1/2 ensured by assumption (ii), we conclude
that all the coefficients in (31) are non-negative, therefore the fluid depth computed at the
next time level hn+1

i is a sum of non-negative terms for all i, and the proof is completed.

Remark 1. In the 2D case, assumption (ii) becomes ∆t ≤ min
{∆x

4a
,
∆y

4b

}
, where ∆x,∆y

are the spatial steps along the two horizontal directions whereas a, b are the maximum local
speeds of propagation at interfaces along the x- and y-axis respectively. Assumption (i)
does not change and the proof of the analogous of Lemma 1 is essentially the same: the
Jacobians are 4 × 4 matrices but keep a block triangular structure (up to permutation as
H′(q) is concerned), according to the spectra displayed in (17).

Moreover, our derivation of βu from a velocity profile never leads to a value less than 1,
so that assumption (i) is always true. In fact, for any arbitrary profile u(x, z, t) the equality∫ B+h

B

u2(x, z, t) dz = βu hU
2

must be imposed, as we have seen in (7) for the parabolic profile. If we consider for each
(x, t) the L2 space over the set {z : B ≤ z ≤ B + h}, the left side of the equation sees the
squared L2 norm of u; by Schwarz inequality,

‖u‖2
L2 ≥

|〈u, 1〉L2|2

‖1‖2
L2
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where the inner product in the numerator corresponds to
∫ B+h

B
u(x, z, t)dz = hU(x, t)

whereas the denominator equals h. Therefore βu hU
2 ≥ (hU)2/h so that βu ≥ 1.

The proposal in literature by Costa and Macedonio [2] for lava flows considered all the
correction factors in the range 0.5–1.5, independently on their derivation. A value of βu < 1
makes the PDE system non-hyperbolic, but our theorem is still valid provided that such a
choice is balanced by a parameter βT ≥ 1 in order to verify assumption (i), even though this
is not the case for the particular temperature profile we have assumed in §1.3.

For the time discretization of hyperbolic terms we will use higher-order methods be-
longing to the family of Strong Stability Preserving (SSP) Runge-Kutta (R-K) schemes, see
§2.2. A similar positivity preserving property is proved for all these methods, since any SSP
R-K method is expressible as a convex combination of intermediate Forward Euler steps,
see Gottlieb et al. [35]. Hence, Theorem 2 can be applied to each step of the combination
provided that ∆t is sufficiently small (in order to satisfy the theorem assumption (ii) for
each intermediate Euler method), ensuring the positivity preserving property for the whole
SSP R-K method.

Remark 2. It is important to observe that, for each Euler term in the combination, the
time step condition required by Theorem 2 depends on a, i.e. the maximum propagation
velocity of the solution at interfaces evaluated at the considered term. Therefore the explicit
determination of a global restriction for ∆t (useful for the whole combination) is not so much
simple, since we should estimate the evolution of a values during the intermediate steps of
the R-K method.

2.2. Time discretization

In this section we present the Implicit-Explicit (IMEX) Runge-Kutta schemes proposed
by Pareschi and Russo [34] used to solve the system (22). These methods have been devel-
oped to solve stiff systems of differential equations written in this form:

d

dt
Q = F(Q) + S(Q), (32)

where S(Q) is the “stiff term”. We write our problem in the same way by defining F(Q) as
the spatial discretization of − ∂xf(q) + E(q) in (20). In our situation the stiffness of S(Q)
is due to the high viscosity, when γ � 1. In fact, the characteristic time of the source term
is much smaller than the characteristic time of the advective part of the equations, hence
the problem is said to be stiff and these kind of problems are generally difficult to solve
numerically in an efficient way. A trivial solution is treating all the system explicitly and
using a very small time step to ensure the stability of the scheme, but this approach results
in long computational times.

In our scheme this limit has been overcome by applying an Implicit-Explicit method.
An IMEX Runge-Kutta scheme consists of applying an implicit discretization to the stiff
term and an explicit one to the non stiff terms. Applying the scheme to the system (32) we
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obtain

Q(l) = Qn + ∆t
l−1∑
k=1

ãlkF(Q(k)) + ∆t
ν∑
k=1

alkS(Q(k)), l = 1, . . . , ν (33)

Qn+1 = Qn + ∆t
ν∑
k=1

ω̃kF(Q(k)) + ∆t
ν∑
k=1

ωkS(Q(k)). (34)

The choice of the ν × ν matrices Ã = (ãlk), where ãlk = 0 for l ≥ k, and A = (alk) and of
the vectors ω̃ = (ω̃1, . . . , ω̃ν)

T and ω = (ω1, . . . , ων)
T characterizes the different schemes.

The IMEX Runge-Kutta schemes is presented by a double tableau in the usual Butcher
notation,

c̃ Ã

ω̃T

c A

ωT

where the coefficients c̃ and c, used for the treatment of non autonomous systems (which is
not our case), are given by the usual relations

c̃l =
l−1∑
k=1

ãlk, cl =
l∑

k=1

alk

In all these schemes the implicit tableau corresponds to an L-stable scheme, that is
ωTA−1e = 1, where e is a vector whose components are all equal to 1. The notation
(s, σ, p) is adopted to qualify the scheme, where s indicates the number of stages of the
implicit scheme, σ the number of stages of the explicit scheme and p is the order of the
IMEX scheme. Tables (12) report examples of schemes adopted for the proposed numerical
simulations in Section §3.

Table 1: Tableau for the Explicit (left) Implicit (right) IMEX-SSP(2,2,1) R-K scheme

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1

The algebraic equations obtained at each step (which must be solved implicitly) are
treated simply and efficiently by adopting diagonally implicit Runge-Kutta (DIRK) schemes
(alk = 0, for k > l), that in addition guarantee that F is always evaluated explicitly.
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Table 2: Tableau for the Explicit (left) Implicit (right) IMEX-SSP(3,3,2) R-K scheme, from Russo
[23].

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

Computation of the solution using IMEX DIRK schemes. When using DIRK schemes, at
each internal Runge-Kutta step we have an implicit problem for all the cells of the domain.
In fact, by applying a DIRK scheme to the ordinary differential equations (22) we obtain

Q
(l)
i = Qn

i + ∆t
l−1∑
k=1

ãlk

(
−

F
(k)

i+ 1
2

− F
(k)

i− 1
2

∆x
+ E

(k)
i

)
+ ∆t

l∑
k=1

alkS(Q
(k)
i ), l = 1, . . . , ν (35)

Qn+1
i = Qn

i + ∆t
ν∑
k=1

ω̃k

(
−

F
(k)

i+ 1
2

− F
(k)

i− 1
2

∆x
+ E

(k)
i

)
+ ∆t

ν∑
k=1

ωkS(Q
(k)
i ). (36)

Furthermore S(Q
(k)
i ) depends only on the solution in the cell i, thus, for each Runge-Kutta

step, we have to solve n independent implicit problems, one for each cell of the domain.
All the implicit problems are solved by using a functional iterative method. For simplic-

ity, we rewrite the equation (35) as follows:

Q
(l)
i = Qn

i + ∆t
l−1∑
k=1

ãlk

(
−

F
(k)

i+ 1
2

− F
(k)

i− 1
2

∆x
+ E

(k)
i

)
+ ∆t

l−1∑
k=1

alkS(Q
(k)
i ) + ∆t · allS(Q

(l)
i ),

which is simply expressible as

Q
(l)
i − Λi −∆t · allS(Q

(l)
i ) = 0 ⇐⇒ Γ(Q

(l)
i ) = 0

where the term Λi contains the explicit part of the equation (35), which can be evaluated

once during the iterative computation of the solution Q
(l)
i .

We apply the Newton-Raphson method [36] to the problem Γ(x) = 0 obtaining{
x(0) = Qn

i

x(k+1) = x(k) − J−1
|x(k)
· Γ(x(k))

(37)

where J−1
|x(k)

is the inverse of the Jacobian of the function Γ evaluated at x(k). The Newton-

Raphson method is second order convergent, its computational cost depends on the cost
of computing derivatives in the entries of the Jacobian and on the cost of the Jacobian
inversion, in addition Newton-Raphson method suffers for a bad choice of the initial guess for
the iterations. We underline here that the inversion of the Jacobian is not computationally
expensive, since J is a m×m matrix, where m is the number of the equations having terms
treated implicitly, for example in the 2D case m = 3.
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2.2.1. Derivative approximation through complex numbers

The solution of the linear system appearing in (37) requires an accurate numerical evalua-
tion of the Jacobian matrix J , i.e. the partial derivatives of Γ with respect to the components
of x. Due to the strong non-linearity of S(Q), it is not convenient to determine analytically
the derivatives.

A common method to estimate the first derivative is the first-order forward-difference
formula and higher order extensions which increase the stencil by using Taylor series expan-
sion. However, when estimating sensitivities using finite-difference formulas we are faced
with the “step-size dilemma”, that is the desire to choose a small step size to minimize
truncation error while avoiding the use of a step so small that errors due to subtracted
cancellation become dominant.

A way to overcome this problem is to use complex functions. The first use of complex
variables to estimate derivatives starts with the work of Lyness and Moler in 1967 [37, 38].
They introduced a reliable method for computing the derivatives of an analytic function,
and later Squire and Trapp in 1998 [24] obtained a very simple expression for estimating the
first derivative. It has been shown that this estimation is very accurate, extremely robust
and easy to implement, with a reasonable computational cost. Recently it has been used
for sensitivity analysis in computational fluid dynamics and further research on the subject
has been carried out [39, 40, 41].

Through the complex-step derivative approximation we compute the Jacobian J , needed
for the Newton-Raphson method, with an error of the same order of the machine working
precision. All we have to do is to extend the function Γ to the complex plane, by introducing
the new function Γ̃ : C→ C and to compute each column of the Jacobian at x as

J(x) · ej =
I(Γ̃(x + i h ej))

h
(38)

where (ej)j=1,...,m are the canonical basis vectors, i denotes the imaginary unit and I(·)
stands for the imaginary part of a complex number.

3. Numerical simulations

The numerical code developed is a variant of the solver IMEX SfloW2D [42] and it has
been tested and validated with some literature examples and other tests to verify: (i) the
well-balancing and the positivity preserving properties of the scheme; (ii) the consequences of
using different limiters; (iii) the various behaviours when adopting constant vertical profiles
of the variables or not. One recalls that in our scheme the linear reconstruction at interfaces is
computed over the set of variables P (see §2.1) whereas in the scheme proposed by Kurganov
and Petrova [17] it is computed over the variables [w, hU, hV ], hence we will stress over
differences or similarities of such different computations; in the following, we indicate them
with PVR and CVR respectively.

When the outputs of simulations done with different parameters or methods are com-
pared, a metric is needed to compute the difference between two numerical solutions. Here,
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if yA and yB are vectors containing solution values on the same grid, the following expression
is used

diff(yA,yB) :=

[
∆x
∑
i

(
|yAi − yBi |

max(|yAi |, |yBi |)

)p]1/p

(39)

with p = 2. This expression is a combination of the p-norm, recalled also by Leveque in
2004 [32], and the relative distance proposed by Ziv in 1982 [43].

The first and second tests are 1D dam-break simulations of viscous fluids over flat and
inclined plane. We have doubled the experiments to present simulations both with high and
low viscosity, in order to check the sensitivity of the scheme to the values of βu, namely the
sensitivity to constant or parabolic velocity profile. We remark that we use the terms high
viscosity and low viscosity to distinguish between the two cases, but in all the examples the
values of viscosity are large enough to result in laminar flows. In fact, the fluid simulated in
the examples are representative of lava, silicone gum and silicone oil (both used in analogue
experiments as benchmarks for models of lava flow emplacement). Moreover, the first test
case sees also a temperature-dependent density simulation. In these tests, the spatial domain
has been considered closed by fixed walls, hence homogeneous Dirichlet conditions have
been imposed for the velocity (in this case zero velocity in correspondence to the walls) and
homogeneous Neumann conditions for h+B (zero gradient). The third and last test is a 2D
simulation of a hot viscous fluid, and the focus is on the effects of a temperature-dependent
viscosity. In this case we have modeled an open domain by imposing zero-gradient Neumann
conditions both for velocities, h + B and temperature. In order to preserve the positivity
of the solution and the stability of the explicit scheme, associated with the CFL condition,
a variable time step is used, which for the 1D simulations has been set to ∆t = k∆x

a
, with

k = 0.45, while for the 2D simulations is given by ∆t = kmin
{

∆x
a
, ∆y
b

}
with k = 0.24.

3.1. Dam-break of viscous fluids over a flat bottom.

We start from the simulations of viscous fluids with constant density. We explore
the results focusing on some aims: (i) check the correct treatment of wet/dry states and
of low/high viscosity; (ii) compare results (by computing the relative difference through
Eq.(39)) obtained with PVR and CVR, 2 and 3 stages Runge-Kutta schemes reported in
Tables 1-2 and constant and parabolic velocity profile; (iii) study the limiters effects. We
conclude with the simulations of a temperature-dependent variable density fluid.

The dam-break test simulates the rupture of a dam: the viscous fluid is initially confined
in a box and then, after the abrupt removal of one box sides, it starts to flow into a chan-
nel. This is a classical fluid mechanics problem, widely used because of its mathematical
tractability and numerous applications, from hydraulic engineering, to food science, from
geophysical science, to industrial problems [44]. This test is also considered as a standard
measurement when characterizing fluid rheology, and it is a common benchmark for the
shallow-water numerical codes too [45].

For our simulations, we consider a viscous fluid with a Newtonian rheology and a dam
L = 6.6 m long and h = 1 m high over a horizontal domain of length LTOT = 75 m, as
suggested in [46] where the dam-break test is recommended as an isothermal benchmark for
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lava-flow numerical codes. When the flow is slow enough to neglect inertia, it is possible to
find analytic solutions. In such case, the results are comparable with the solution proposed
by Saramito et al. [45] where the front evolution is described by a power law with exponent
0.5, for short times, and 0.2 for long times:

xf (t)

L
≈


0.284

( t
tc

)1/2

if t < 2.5tc

1.133
( t
tc

+ 1.221
)1/5

otherwise

(40)

with the characteristic time tc depending both on geometry of the initial condition and on

fluid rheology: tc =

(
L

h

)2
µ/ρ

gh
. In particular, the short term flow regimes is influenced

by the fluid collapse immediately after the dam rupture and the fluid takes more time in
propagating in this regime with the increase in viscosity. On the opposite, this sort of
dynamics is almost instantaneous for a low viscosity fluid, moreover, in this case the gravity
waves affect the propagation so that the equation (40) is no more able to describe such case.

We perform this test both with high and low viscosity, classifying the regime through
the Froude number Fr defined by Eq. (18). For this application, we compute Fr using
the front velocity of propagation and the mean thickness over the flow extent, as the front
thickness is comparable with the mean value.

High viscosity. For the high-viscosity test, we model a silicone gum, following the laboratory
dam-break experiment presented by Saramito et al. [45] where a transparent synthetic poly-
mer SGM 36 manufactured by Dow Corning (USA) was employed. In this test temperature
is not considered and we have used a constant kinematic viscosity value ν = µ/ρ = 3.7 m2/s
(as suggested in Example 1, Cordonnier et al. [46]).

The relative differences after t = 100 s, anyway the velocity profile is chosen, between
solutions computed by the PVR or CVR are very small (∼ 10−4) and the same happens
if we use R-K schemes with 2 or 3 stages (∼ 10−7). In addition there are no appreciable
differences in the solutions when using βu = 1 or βu = 1.2, i.e. constant or parabolic velocity
profile, because the flow is in a strict subcritical regime with Fr ≈ 0.018. This condition is
mainly due to the high viscosity which, by opposing to the motion, keeps the flow velocity
very low. Because of this, our results are comparable with the analytic solution of Eq. (40),
see below.

In order to see the convergence behaviour, we compare results obtained with 200, 400,
800 and 3600 cells (using a 3-stages R-K, βu = 1 and by PVR at interfaces) in Figure 3.
We distinguish three different cases of computation of the interface values (see Eq. (23)):
we have used both the minmod limiter, the generalized minmod limiter and also a piecewise
constant reconstruction (namely no-limiter). We recall that the generalized minmod limiter
is

σni = minmod

(
θ
Qn
i −Qn

i−1

∆x
,
Qn
i+1 −Qn

i−1

2∆x
, θ
Qn
i+1 −Qn

i

∆x

)
(41)
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where the minmod function is defined as:

minmod (a1, a2, . . . ) =


minj{aj}, if aj > 0 ∀j,
maxj{aj}, if aj < 0 ∀j,
0, otherwise

By using the generalized minmod with θ = 2 a very accurate solution is obtained with 400
cells whereas, with the minmod limiter, similar results are obtained with 800 cells and, in
the case of no limiter, with 3200 cells. On the opposite, by using the generalized minmod
limiter a less refined grid is sufficient to obtain a very good solution.
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Figure 3: Dam-break of a viscous fluid over a flat bottom. Solution at t = 100 s of a high-viscosity
fluid. Solutions computed by different grid size over a domain 75 m long. Left : no limiter. Center :
minmod limiter. Right : generalized minmod limiter.

Figure 4 shows the convergence to the analytical solution of the front position, see Eq.
(40). Three different grid resolutions have been used: 400, 800 and 1600 cells, and the
generalized minmod limiter has been adopted. The front position of the numerical solutions
is determined by a threshold value h = 10−3 m.

For the 400 cells grid, the simulation with PVR, generalized minmod limiter and k = 0.45
for the time step condition, took 3432 time steps with a total execution time of 7.91 s, whereas
the time-step size grew slowly up to 3.2 · 10−2 s.

Low viscosity. For the low-viscosity test, we model a silicone oil, the material used by Lister
[47] in his laboratory experiments for the spreading of isothermal viscous fluids on a plane.
This silicone oil is characterized by a kinematic viscosity ν = µ/ρ = 1.16 · 10−3 m2/s (taken
from Example 2, Cordonnier et al. [46]). Also for this test, temperature is not considered.

One observes a low sensitivity to most numerical parameters. Regardless of the assump-
tion about the velocity profile, the relative differences between solutions obtained with R-K
schemes with 2/3 stages and PVR/CVR are about 10−3. The results are also independent
from the limiter adopted. On reverse, the assumption of constant or parabolic velocity
profiles leads to different dynamics, as shown in Figure 5. The main outcome of the two
simulations is that solutions with different vertical profiles have distinct shapes and temporal
evolution, indeed initially the flow front of the simulation with βu = 1.2 (parabolic profile)
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Figure 4: Dam-break of a viscous fluid over a flat bottom. Front position over time: analytic solution
given by Eq. (40) and simulation results obtained with different grid size.

Figure 5: Dam-break of a viscous fluid over a flat bottom. Evolution: top t = 8 s, center t = 12 s,
bottom t = 16 s of a low-viscosity fluid, computed by PVR at interfaces with the minmod limiter,
3 stages IMEX R-K scheme. Comparison between βu = 1.0 and βu = 1.2 (constant and parabolic
velocity profile).

proceeds faster, after 12 s the solutions are equal merit and then they reverse positions (see
Figure 5).

The sensitivity to the velocity vertical profile emerges because, in this case, the flow
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regime is supercritical, therefore the inertial forces control the flow dynamics and the influ-
ence of the βu coefficient becomes notable. In this case there is no analytical solution for
comparison and Eq. (40) is not applicable. Figure 6, representing the front position and the
Froude number, shows that differences in the Froude numbers between the two simulations
result in diverse velocities of propagation of the flow front.

Figure 6: Dam-break of a viscous fluid over a flat bottom. Evolution of the front position (blue)
and the Froude number (red). Comparison between constant velocity profile with βu = 1.0 (solid
line) and parabolic velocity profile βu = 1.2 (dashed line).

With respect to the high-viscosity case, the low-viscosity test highlights a lower sensitivity
of the numerical solution to the choice of the limiter, as shown by Figure 7. In addition,
there is no necessity to refine too much the discretized domain since the solutions computed
with only 400 cells are all close to the convergence solution.

Using a 400 cells grid, for the simulation with PVR, with the generalized minmod limiter
and with k = 0.45 for the time step condition, in the case of βu = 1 (constant velocity profile)
we needed 597 time steps with a total execution time of 1.9 s whereas the time-step size grew
slowly up to 2.1 · 10−2 s; in the case of βu = 1.2 (parabolic velocity profile), we needed 757
time steps with a total execution time of 2.44 s whereas the time-step size grew slowly up
to 1.9 · 10−2 s.

Low viscosity with temperature dependent density. Silicon oil, the material employed in the
previous low-viscosity test, is characterized by a linear dependence of density on temperature
in the range of 300 − 380 K, as supported from paper [48]. That work presented some
experimental data about mineral oil and silicone oil and we have extrapolated from it the
values for the linear relation between density and temperature, Eq. (14), ρ(T ) = 1200 −
0.75T . We set the maximum temperature on the surface T1 = 338 K and the initial depth-
averaged temperature T = 330 K with the thermal boundary layer thickness δT = h/4. In
Figure 8 we present the results of the simulation at time t = 8 s and 20 s computed with 400
cells by PVR at interfaces with the minmod limiter, 3 stages IMEX R-K scheme, βu = 1.2
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Figure 7: Dam-break of a viscous fluid over a flat bottom. Solutions at t = 10 s of a low-viscosity fluid
computed without limiter, with the minmod and the generalized minmod limiter. Top: βu = 1.0.
Bottom: βu = 1.2.

(parabolic velocity profile). Since we consider a laminar flow, the co-presence of velocity
profile and thermal profile results that the top layer with the highest temperature moves
faster than the lower part and it rapidly constitutes a large portion of the front. For this
reason the front has the highest temperature and consequently the lowest density; conversely,
the tail average temperature decreases and then density grows.

The relative difference between the variable-density and the constant-density solutions
increases with time reaching the maximum value ∼ 10−1 at t = 10s. The simulation results
highlight that, in this circumstance, density variations do not affect significantly nor the
front position neither the global shape of the flow, therefore in the following tests we neglect
density variations.

3.2. Dam-break of viscous fluids over an inclined bottom.

The purposes of this second test are analogue to those of the previous one: (i) check
the correct treatment of wet/dry states and low/high viscosity; (ii) compare the solutions
(by computing the relative difference with Eq.(39)) obtained with constant and parabolic
velocity profile, PVR and CVR and 2 and 3 stages Runge-Kutta schemes, as reported in
Tables 1–2; (iii) study the limiters effects.

The dam-break setting is like to that of the former case §3.1, but the horizontal plane is
inclined at a slope of 2.5◦ from horizontal.
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Figure 8: Dam-break of a viscous fluid over a flat bottom. Thickness and density for solutions of a
low-viscosity fluid with temperature-dependent variable density and constant density. Simulation
computed over 400 cells by PVR at interfaces with the minmod limiter, 3 stages IMEX R-K scheme,
βu = 1.2 (parabolic velocity profile). Top: t = 8 s. Bottom: t = 20 s.

High viscosity. For the high-viscosity test we have considered again a silicone gum in isother-
mal condition, with a kinematic viscosity ν = µ/ρ = 3.7 m2/s (as suggested in [46]).

After t = 100 s, for both the constant and parabolic velocity profiles, the relative differ-
ence between results computed with PVR and CVR is small (∼ 10−4) and that calculated
between solutions obtained with 2 and 3 R-K stages is even smaller (∼ 10−7). In Figure 9
the high sensitivity to different limiters is very clear, and once more the generalized minmod
limiter with θ = 2 is confirmed to produce better approximations even with a less refined
grid.

As in the previous test with high-viscosity conditions, the Froude number is very small
Fr ≈ 0.023. In such subcritical regime situation, the inertial forces are minor compared
to gravitational and viscous forces and the effect of the vertical velocity profiles on flow
dynamics is negligible. Indeed, results obtained with βu = 1 or βu = 1.2 are similar, with
a relative difference of the order of 10−6. In this test, the value of Fr is obtained again by
using the front velocity propagation and the mean thickness over the flow extent, since the
front thickness is comparable with the mean value.

Using a 400 cells grid, for the simulation with PVR, the generalized minmod limiter and
k = 0.45 for the time step condition, we needed 3265 time steps with a total execution
time of 7.95 s, whereas the time-step size grew up slowly and reached the maximum value
of 3.4 · 10−2 s.

Low viscosity. For the low-viscosity test, we model again a silicone oil with the kinematic
viscosity ν = µ/ρ = 1.16 · 10−3 m2/s (taken from [46]). Also for this test, temperature is not
considered.
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Figure 9: Dam-break of a viscous fluid over an inclined bottom. Solution at t = 100s for a high-
viscosity fluid. Comparison between solutions computed with different grid size over a domain 75m
long. Left : no limiter. Center : minmod limiter. Right : generalized minmod limiter.

At t = 10 s, regardless of the assumption about the velocity profile, the relative distance
between simulations computed with R-K scheme with 2 and 3 stages is about 10−3; whereas,
comparing CVR and PVR, the relative distance is one order of magnitude larger; moreover,
there is no sensitivity to the limiter adopted.

For a fixed limiter and a fixed number of Runge-Kutta stages, there is a great difference
in solutions with constant and parabolic velocity profile, βu = 1 and βu = 1.2 respectively,
as shown in Figure 10. In particular, at t = 5 s the runout of the simulation with βu = 1.2
is larger than that obtained with βu = 1, whereas at t = 10 s the opposite occurs. The
sensitivity to the velocity profile assumption finds correspondence in the supercritical regime
situation, shown by the Froude number reported in Figure 10. Indeed, in such cases, after
the initial collapse, the inertial force dominates the dynamics and then the effects of different
values of βu are considerable, as already observed in the former low-viscosity case in §3.1.
In this case, the value of Fr is computed using the front velocity of propagation and the
flow thickness averaged over the 10 m close to the front, avoiding the thin tail.

Furthermore, one observes that the tail does not move down the slope with time. This
happens because of the rheological model adopted, with the friction force inversely propor-
tional to h; for this reason, when the tail thickness decreases, the viscosity increases and
hence the velocity tends to zero.

Using a 400 cells grid, the simulation with PVR, generalized minmod limiter and with
k = 0.45 at the time step condition, in the case of βu = 1 (constant velocity profile) took
751 time steps with a total execution time of 2.65 s whereas the time-step size has grown
up to 1.4 · 10−2s; in the case of βu = 1.2 (parabolic velocity profile) the simulation took 972
time steps with a total execution time of 2.65 s whereas the time-step size grew increased
till 1.2 · 10−2s.

3.3. 2D Simulation of a temperature-dependent viscous fluid

This last test is a 2D simulation of a temperature-dependent viscous fluid. Our aim is
to check the coupling between momentum and temperature equations, and the effects of a
Newtonian rheology.
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Figure 10: Dam-break of a viscous fluid over an inclined bottom. Evolution: top t = 5 s, center
t = 10 s, bottom t = 15 s of a low-viscosity fluid, computed by PVR at interfaces with the minmod
limiter, 3 stages IMEX R-K scheme. Comparison between βu = 1.0 and βu = 1.2, i.e. constant
and parabolic velocity profile. The Froude number Fr points out a supercritical regime in both
conditions; its trend increases for βu = 1.0, while it is decreasing for βu = 1.2.

The fluid is initially concentrated in a hemispherical shape over a 35◦ inclined flat plane,
then it slides down over such plane which merges continuously into a horizontal plane,
passing through a smooth transition zone. The initial conditions and the topography of this
test are similar to that used in Example 4.1 from Wang et al. [49]. The computational
domain is a rectangle 30 m long and 20 m wide and the inclination angle is defined as

α(x) =


35◦, 0 ≤ x < 17.5,

35◦(1− (x− 17.5)/4), 17.5 ≤ x < 21.5,

0◦, 21.5 ≤ x ≤ 30.

In this test we use viscosity values and temperature values representative of lava flows. We
also consider a temperature-dependent viscosity adopting an exponential relationship as the
one suggested by Costa and Macedonio [2]

γ =
3 ν(T )

h
, ν(T ) = νr exp[−b(T − Tr)],

31



where b is an appropriate rheological parameter and νr is the reference kinematic viscosity
that the fluid has at the reference temperature Tr. Initially, the depth-averaged temperature
and the reference temperature are set equal (T = Tr = 1353 K), hence viscosity coincides
with the reference viscosity.

The domain is discretized by 80 × 54 cells. The PVR is used at the interfaces with
the generalized minmod limiter (θ = 1.3) and with a 3 stages IMEX R-K scheme for time
marching, see Table 2. For the characteristic thermal boundary-layer, we adopt two thickness
values δT = h/n with n = 4 and n = 10, which lead to different values for βT and βT1 :

βT =

{
0.234375, n = 4,

0.0975, n = 10,
βT1 =

{
0.765626, n = 4,

0.9025, n = 10.

One reminds that the presence of non trivial values for βT and βT1 depends on the fact that
we have considered a parabolic velocity profile, therefore in these cases βu = 1.2 must be
set, otherwise the model would lose its consistency.

High viscosity. We have adopted again the value νr = 3.7 m2/s (taken from Example 1,
Cordonnier et al. [46]) for the kinematic viscosity. In Figure 11 we compare, for n = 4, results
obtained at time t = 600 s with constant and variable temperature profiles, respectively,
while in Figure 12 we present the time evolution of their contour. For this viscosity value,
the differences between solutions obtained with n = 4 or 10 are negligible, thus the results
of the latter case are not shown.

Figure 11: 2D Simulation of a temperature-dependent viscous fluid. Comparison of high-viscosity
fluid simulations computed with different thermal profiles, at t = 600 s: left constant with T1 =
1353 K, right piecewise linear with T1 = 1400 K.

When a constant temperature profile is assumed (T1 = T = Tr), T is simply advected
with the flow and the kinematic viscosity equals the reference value νr. If the piecewise
linear temperature profile is considered, the maximum temperature is set higher than the
averaged temperature (T1 = 1400 K) and then T changes (both in space and in time) during
the simulation. In the latter case, due to velocity and thermal profiles, the top layer has the
highest temperature and moves with a speed larger than the lower part, hence it propagates
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faster arriving soon to constitute the front; on the contrary, the fluid at the upper part of the
plane becomes, on average, colder. In this situation, at time t = 600 s, the depth-averaged
temperature reaches the minimum T = 1247 K at the upper part of the plane, approximately
at x ≈ 4.5 m; such minimum leads to a kinematic viscosity value higher than the reference
one, and in this situation an amount of fluid is accumulated at the upper part of the plane,
whereas in the case of constant thermal profile this little pile does not remain.

For 600 s of simulation, with k = 0.24 for the time step condition, the constant tem-
perature profile case, the computation needed 9583 time steps, a total execution time of
547.06 s, while the time-step size reached the maximum value of 7.3 · 10−2 s. Whereas, the
case of piecewise linear temperature profile needed 8804 time steps, a total execution time
of 522.83 s, and the time-step size reaches the maximum value of 7.9 · 10−2 s.
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Figure 12: 2D Simulation of a temperature-dependent viscous fluid. Evolution of high-viscosity fluid
simulations computed with different thermal profiles: left constant profile with T1 = 1353 K, right
piecewise linear profile and T1 = 1400 K. The section between the two dotted lines is the transition
zone from the inclined plane to the horizontal plane.

Low viscosity. For the low-viscosity test, we used again the value νr = 1.16 · 10−3 m2/s for
the kinematic viscosity (taken from [46]).

We start comparing solutions obtained by different characteristic thermal boundary lay-
ers δT/n, with n = 10 and n = 4, and with the maximum temperature on the surface as
T1 = 1400 K, see Figure 13. When n = 10 the fluid propagates faster because the top layer
with the maximum temperature is thicker, therefore the averaged temperature is greater
and the kinematic viscosity lower. However, as in the former high-viscosity case, there is a
little pile of matter in the upper part of the plane. The computation of 3 s of simulations
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Figure 13: 2D Simulation of a temperature-dependent viscous fluid. Evolution of a low-viscosity fluid
with temperature-dependent viscosity computed with different characteristic thermal boundary
layer δT = h/n: left n = 10, right n = 4. The section between the two dotted lines is the transition
zone from the inclined plane to the horizontal plane.

in both cases of n = 4 and n = 10, with k = 0.24 for the time step condition, required 552
time steps and 28.89 s, while the time step size reached the maximum value 1.1 · 10−2 s.

We conclude with simulations with a simple transport of temperature and a temperature
independent viscosity, in which we compare solutions with different velocity profiles (as in
the previous 1D tests). A constant temperature profile and a constant kinematic viscosity
are assumed by setting T1 = T = Tr = 1353 K. We find, once more, that with a constant
profile the fluid propagates faster and the front is thicker, see Figure 14. For 3 s of simulation,
with k = 0.24 for the time step condition, the case of a parabolic velocity profile needed 502
time steps with a total execution time of 24.18 s, whereas the time-step size has reached the
maximum value of 10−2 s; instead, the case of a constant velocity profile took 353 time steps
with a total execution time of 16.69 s, whereas the time-step size has reached the maximum
value of 1.2 · 10−2 s.

4. Concluding remarks

In this work we studied a modified shallow water model for laminar viscous fluid with
non-constant vertical profiles for velocity and temperature. We presented a second-order
well-balanced and positivity preserving spatial discretization scheme for its solution, based
on the work of Kurganov and Petrova [17], coupled with an implicit-explicit Runge-Kutta
technique for the temporal discretization. The implicit treatment of stiff terms, required
to properly model the behaviour of laminar viscous flows, was obtained by computing the
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Figure 14: 2D Simulation of a temperature-dependent viscous fluid. Evolution of a low-viscosity
fluid with viscosity not temperature dependent with different vertical velocity profile: left parabolic
profile, hence βu = 1.2, right constant profile, hence βu = 1.0. The section between the two dotted
lines is the transition zone from the inclined plane to the horizontal plane.

Jacobians of the fluxes with complex arithmetic.
We have shown that a geometrical limiter adoption produces a better accuracy in results

for all the test performed, but high-viscosity fluids are more sensitive to the limiter chosen in
terms of diffusive behaviour (see in particular the first and second test cases which show the
dynamics of a viscous fluid over a flat or inclined plane respectively). The main differences
when considering constant or parabolic velocity profiles have been observed for supercritical
regimes (mainly associated with simulations of low-viscosity fluids); in particular, in the case
of constant velocity profile the fluid propagates faster than in the other case on the long
time. Similar differences are appreciated in the last test (2D simulation of a viscous fluid over
an inclined plane), where viscosity is temperature dependent so that the combined effects
of temperature and velocity profiles are evident. Finally, we have shown that computing
interface reconstructions over the set of variables P = [w,U, V, T ] produces in general very
similar results to those obtained by using the variables [w, hU, hV ], and allows to avoid the
process of desingularization to obtain the flow velocities at the interfaces.

The work presented in this article sets the basis for advances in some specific applied
fields, for instance lava flow simulations, where we plan future developments. In that con-
text, the temperature equation can be enriched by other source terms accounting for the
thermal exchanges between lava, the environment and the ground such as radiative, con-
vective and conductive phenomena [2], whereas the rheological model can be modified to
consider crystallization occurring with cooling.
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