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Abstract

Excessive nonphysical energy dissipation is a problem in Smoothed Particle Hy-

drodynamics (SPH) when modeling free surface waves, resulting in a significant

decrease in wave amplitude within a few wavelengths for progressive waves. This

dissipation poses a limitation to the physical scale of SPH applications involv-

ing water wave propagation. Some prior solutions to this wave decay problem

rely on elaborate schemes, which require a complex, or non-straightforward, im-

plementation. Other approaches demand large smoothing lengths that lead to

longer simulation times and potential degradation of the results. In this work

we present an approach based on a kernel gradient correction. Our scheme is

fully 3D and solves the main known drawbacks of kernel gradient corrections,

such as instabilities and lack of momentum conservation. The latter is ensured

by adopting an averaged correction matrix, so as to conserve reciprocity during

particle interactions. We test our model with a standing wave in a basin and a

progressive wave train in a wave tank, and in both cases no nonphysical decay

occurs. A comparison to an approach based on large smoothing factors shows

advantages both in quality of the results and simulation time.
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1. Introduction

Water wave propagation constitutes a problem of great importance for a

wide range of scientific topics in nearshore physical oceanography and coastal

engineering. Numerical simulations are gaining relevance in applications involv-

ing wave shoaling, coastal hydrodynamics, or wave-structure interaction [1].5

Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian method in

2- and 3D that allows a straightforward tracking of free-surfaces, making it a

promising method for this purpose [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19]. However, basic SPH models can exhibit substantial numerical

dissipation when simulating wave propagation, leading to excessive loss of wave10

energy. Without further remedies, this problem potentially limits the applica-

bility of SPH to small scale water wave problems.

The comprehensive study by Colagrossi et al. [3] concludes that basic SPH

models are capable of accurately predicting the attenuation process in viscous

standing waves. The number of neighbors per particle is the decisive factor, and15

a minimum amount is needed in order to achieve convergence towards analytical

results with refining spatial resolution. The convergence properties were studied

for a range of Reynolds numbers, showing that a higher number of neighbors

is needed for larger Reynolds numbers. While the choice of the kernel function

can improve the results, at least to some extent [3, 4, 14, 18, 10], the simulation20

of waves with large Reynolds numbers quickly demands an unrealistic amount

of computational effort due to the required number of neighbors and spatial

resolution. Furthermore, the large smoothing length causes additional layers of

particles to be in the free-surface region, where particle supports are incomplete,

and may result in a severe particle disordering at the free-surface.25

Numerous studies report a range of schemes that relax the requirements

discussed by Colagrossi et al. [3]. Chang et al. [14] employ a sixth-order kernel
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with a large smoothing length. This approach is simple and provides accurate

results. However, the required number of neighbors per particle calls for a

large computational effort, which increases significantly in 3D. The inclusion30

in the conservation of mass equation of density diffusion terms that stabilize

the pressure field, as in the δ-SPH formulation [20, 21], has also been shown to

improve the conservation of energy, but large kernel supports are still needed

to obtain good levels of conservation [5, 22]. Riemann solvers [6, 16, 18] also

result in an improvement of wave propagation with SPH, but those often involve35

a complex implementation and do not account for any viscous terms without

special treatment.

Kernel gradient correction (KGC) is another approach; Guilcher [6], Wen

[15] and Gao [16] incorporated various forms of KGC into SPH models. These

corrections are based on the original proposition by Randles and Libersky [23]40

and Johnson and Beissel [24], which also appears in the Corrective Smoothed

Particle Method (CSPM) by Chen and Beraun [25]. The latter was proposed as

a method for addressing tensile instability. The correction technique adopted in

KGC stems from the Taylor expansion of the SPH interpolation and is known

to enhance the consistency of the SPH approximation of the kernel gradient45

[26]. As a result, KGC significantly improves the simulation of wave propaga-

tion without requiring any extensive increase of the smoothing length [15]. But

KGC schemes also present some known drawbacks, one of which is the lack of

momentum conservation [20], resulting from the fact that the coefficients cor-

recting the kernel gradients are applied to individual particles, instead of particle50

pairs. This approach does not guarantee symmetric interactions during force

computations, which can result in loss or gain of wave momentum and energy.

A second problem of KGC arises when the correction coefficients are applied

to certain geometrical particle configurations, such as free-surfaces, which can

generate significant errors or instabilities in the simulations [27].55

In this work, we will first show the numerical dissipation associated with

standard SPH when simulating progressive wave trains and standing waves in a

basin. We then present a new approach to KGC where coefficients are computed
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considering particle pairs, ensuring that the particle interactions are symmetric.

A strategy to avoid the instabilities illustrated by Xiao et al. [27] is also pre-60

sented. After a validation of the new numerical scheme, we show the simulation

of progressive waves in a long wave tank, where a wavetrain thirty wave lengths

long is considered. The results suggest that the proposed method can accurately

predict water wave propagation, while ensuring good stability and simulation

performance.65

2. The Standard SPH scheme: SSPH

In our 3D SPH scheme the domain is initially discretized by means of a set

of regularly spaced particles, with the inter-particle distance denoted as ∆p. We

indicate with xi the position of a generic particle i, where x = (x, y, z)T , and ui

the velocity of the particle. Following [28], we denote the SPH approximation

of a generic function f(x) evaluated at a particle i as:

f(xi) =
∑
j

f(xj)W (rij , h)Vj . (1)

Here, Vj is the volume of a particle j, positioned at xj , and W indicates the

SPH smoothing kernel. The distance from particle j to particle i is denoted by

rij and the SPH smoothing length is denoted by h. The latter can be expressed

in terms of inter-particle spacing ∆p by writing h = αs∆p, where αs is the70

smoothing factor. For computational convenience, W is defined on a compact

support and hence the summation over j is limited to the particles within the

support. We refer to these particles as neighbors. In 3D the support is a sphere

centered at xi with a radius taken as a multiple of h. This radius is typically

referred to as the influence radius.75

We now specify the details of the SPH scheme that we will use as a reference

model to illustrate the problem of numerical damping. For convenience, we will

denote this standard SPH scheme as SSPH. We use the fifth order Wendland

smoothing kernel [29], which has been observed to be beneficial for free-surface

simulations [4]. This kernel has a smoothing radius 2h, and, in three dimensions,
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is defined as:

W (r, h) =


21

16πh3

(
1− q

2

)4
(1 + 2q) if 0 ≤ q ≤ 2

0 if q > 2,
(2)

where q = r/h. We will use αs = 1.3, which is a commonly adopted value for

the smoothing factor [28, 30].

Considering the radial symmetry of the smoothing kernel, we can define a

function F (r, h), such that

F (r, h) =
1

r

∂W (r, h)

∂r
(3)

has an analytical expression. For the Wendland kernel it is:

F (r, h) =


105

128πh5
(q − 2)3 if 0 ≤ q ≤ 2

0 if q > 2.
(4)

This expression implicitly accounts for divisions by r in many formulas involving

∇W (·, h) that would otherwise cause instabilities for spatially close particles.

Our model is based on the three-dimensional Navier–Stokes equation for

mass and momentum conservation. The discretized equation for mass conser-

vation is written as

Dρi
Dt

=
∑
j

uij · xijFijmj + ξhc0
∑
j

ΨijFijmj . (5)

Here, the second term on the right hand side is the density diffusion contribution,

presented in [31] and modified by Equation 3, giving:

Ψij =

 2

(
ρj
ρi

− 1

)
if |Pi − Pj |

ρig|zi − zj |
> 1

0 otherwise.
(6)

ξ is the density diffusion coefficient [31], that we take equal to 0.1, and c0 is the80

speed of sound in the fluid domain. This diffusive term improves the pressure

field and the stability of the simulations, while requiring a limited computational

load [15]. A more recent density diffusion term was proposed by Antuono et

al. [32], adopted in the δ-SPH formulation [20], constituting an improvement of
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Equation 6. Among the enhancements, the new term solves some consistency85

issues that arise at the free surface for stationary hydrostatic pressure fields [21],

at the expense of higher computational load. Because of the dynamic nature of

wave propagation problems, the term in Equation 6 is able to provide enough

stability to the simulations, constituting a good compromise with computational

time. However, as described in [21] the adopted diffusion term is independent on90

the SPH scheme and transition to a different density diffusion term is possible

whereas desired.

The equations for momentum conservation are

Dui

Dt
=
∑
j

(
Pi

ρ2i
+

Pj

ρ2j
+Πij

)
xijFijmj + g, (7)

where g = (0, 0,−9.81)T is the gravity vector and Πij is the artificial viscosity

term, defined as [28]

Πij =

 −αh c0
ρj

(
uij · xij

|xij |2 + εh2

)
if (uij · xij) > 1

0 otherwise.
(8)

Here, ε is a constant set to 0.01, introduced to prevent a singularity when |xij |2 is

very small [28], and α is the artificial viscosity coefficient. In order to reproduce

an equivalent kinematic viscosity, ν, we use the relationship [28]

α =
10 ν

h c0
. (9)

The pressure P is obtained from the density using Cole’s [33] equation of state:

P (ρ) = c20
ρ0
γ

[(
ρ

ρ0

)γ

− 1

]
. (10)

Here, ρ0 is the reference density of the fluid and γ is the polytropic constant,

that we take equal to 7.

We adopt a second order predictor-corrector integration scheme described95

by the following steps:

1. Compute accelerations and density derivatives at instant n:

a) a(n) = a(x(n),u(n), ρ(n)),
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b) ρ̇(n) = ρ̇(x(n),u(n), ρ(n)),

2. Compute half-step intermediate positions, velocities and densities:100

a) x(n?) = x(n) + u(n) ∆t
2 ,

b) u(n?) = u(n) + a(n) ∆t
2 ,

c) ρ(n?) = ρ(n) + ρ̇(n) ∆t
2 ,

3. Compute corrected accelerations and density derivatives:

a) a(n?) = a(x(n?),u(n?), ρ(n?)),105

b) ρ̇(n?) = ρ̇(x(n?),u(n?), ρ(n?)),

4. Compute new positions, velocities and densities:

a) x(n+1) = x(n) + (u(n) + a(n?) ∆t
2 )∆t,

b) u(n+1) = u(n) + a(n?)∆t,

c) ρ(n+1) = ρ(n) + ρ̇(n?)∆t.110

The time step ∆t is computed for each particle i and is required to fulfill CFL-

like stability conditions determined by the acceleration magnitude and speed of

sound:

∆ti ≤ min

{
0.3

√
h

||ai||
, 0.3

h

c0

}
. (11)

The resulting overall time step for the model is chosen as the minimum particle

time step. Following the approach of Monaghan [28], the value of c0 is taken to

be lower than the physical speed of sound to avoid very small time steps. For

free surface flow problems, to avoid a large fluid compressibility, the value c0 is

typically chosen one order of magnitude above the Torricelli Theorem velocity,

ch =
√
2gd (with d being the tallest fluid column in the simulation domain) or

the highest particle velocity, umax, expected in the problem under consideration,

if umax > ch. In our formulation we choose

c0 = 20 max {ch, umax} . (12)

All of the schemes shown in this paper are 3D and are implemented in

the open source code GPUSPH [34]. Computations are performed on GPUs in

single numerical precision and we incorporate some accuracy improvements, like

relative density and position [35].
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Figure 1: x–z view of the numerical wave tank (NWT) where waves with height H = 0.08m

and wavelength λ = 1.5m are being generated in a depth of 1 m. Colors relate to the pressure

experienced by the SPH particles. Figure (a) displays the entire NWT, whereas Figure (b)

highlights details of the beginning and end of the NWT.

3. Wave decay in SSPH115

For the simulation of progressive gravity waves, we consider the three-dimen-

sional numerical wave tank (NWT) shown in Figure 1. The tank has a flat region

of length lf = 50m with a still water level of d = 1m, and it terminates with a

10m long sloping region (10% slope) to reduce wave reflection from the end. The

wavemaker is modeled with Lennard-Jones particles and the tank bottom with120

Lennard-Jones planes [13]. Periodic boundary conditions are imposed on the

side walls, and the domain has a width of 8h rounded up to the next multiple of

∆p. The simulated waves have a height of H = 0.08m (peak-to-peak amplitude)

and are generated by means of a piston wavemaker. We use an SPH resolution of

128 particles per meter (∆p = 1/128 m). The density of a particle is initialized125

according to its hydrostatic pressure, ρi(t0) = ρ(P (zi(t0))), and the mass is

8



0 5 10 15 20 25 30 35 40 45 50

−0.04
−0.02

0
0.02
0.04

x [m]

η(x)− η̄(x) [m]
Wave train 1, λ1 = 1.5m
Wave train 2, λ2 = 3.0m
Theoretical envelope for λ1

(a)

0 2 4 6 8 10 12 14

−0.04
−0.02

0
0.02
0.04

x/λ1,2

η(x)− η̄(x) [m]
Wave train 1, λ1 = 1.5m
Wave train 2, λ2 = 3.0m
Theoretical envelope for λ1

(b)

Figure 2: Surface elevation in the NWT for two wave trains with different wavelengths, simu-

lated with the SSPH. Figure (a) displays surface elevation plotted against distance down the

tank. Figure (b) displays surface elevation plotted against the distance normalized by the

wavelength of the respective wavetrain; the decay depends on the number of wavelengths that

the wave has travelled. The theoretical envelope is shown only for λ1 as in this plot it would

be indistinguishable from that of λ2.

taken as mi = ρi(t0)∆p3. The artificial viscosity is set according to Equation

9, and a value of ν = 10−6m2/s is chosen. The simulation is run up to a time

tend, necessary for the wave train to reach the end of the flat region.

Two tests were simulated for progressive wave trains using SSPH for waves130

with wavelengths of λ1 = 1.5m and λ2 = 3m, corresponding to a wave periods of

0.98s and 1.407s respectively. Figure 2 shows the free-surface elevation, denoted

with η(x), at the time tend. A de-trending has been performed by subtracting

lower frequency fluctuations of the mean water level along the tank, defined

as η̄(x). This allows us to isolate and better analyze the amplitude of the135
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progressive waves. These low-frequency oscillations are a seiche motion triggered

at the startup of the simulation by the rearrangement of the SPH particles and

the startup of the wave paddle. The profile η̄(x) is obtained from the free-surface

elevations by filtering out the propagating waves. This filtering is performed by

means of a moving average, using a one-wavelength-wide spatial window.140

The water surface elevation for a progressive wave in a viscous medium can

be obtained from linear wave theory as [36]:

η(x) =
H

2
e
−
4νk3x

ω cos(kx− ωt), (13)

where ω = 2π/T is the angular frequency of the wave and k = 2π/λ is the wave

number. In Figure 2 (a), we compare the simulated results with the analytical

solution for each test. The dashed lines in figure mark the envelope of the

analytical solution along the wave tank. While the decay predicted by the

theoretical model is not appreciable within the length of the tank, an excessive145

decay can be observed in the simulated solutions, with the shorter waves (λ =

1.5m) decaying faster with distance. We note from these simulations that,

unlike the viscous decay, the spurious decay has a linear dependence on the

wave number, attenuating the amplitude of a propagating wave according to

the number of wavelengths traveled, independent of the value of λ. By non-150

dimensionalizing the distance traveled by each wavetrain by its wavelength,

we can directly see a correspondence between the decay rate of the two wave

trains (Figure 2b). Therefore, in the rest of this work, all distances will be

non-dimensionalized by wave length.

The energy in water waves consists of potential and kinetic energy. Linear

wave theory shows that the these energies have equal magnitude and they are

proportional to the square of the wave height. For a standing wave, the energy

will oscillate between pure potential to purely kinetic during the motion. Here

we measure the kinetic energy in a standing wave in a basin over time. This

approach has been used in other works [19, 3], making a comparison with other

results in the literature possible. We use the same settings adopted in [5], except
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Figure 3: x–z view of the domain for the simulation of the standing wave. Light blue patterns

are optical effects resulting from particle alignment in the y direction.
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that our example is in 3D, not 2D. The domain has a square shape in the x

and z directions, with a side of d = 1m (see Figure 3), and we assign it a

thickness of 6h in the y direction. Periodic boundary conditions are used in

the x and y directions. As in the NWT problem, the density and the mass of

the particles are initialized hydrostatically. A standing gravity wave of height

H and wavelength equal to the basin length is generated by means of an initial

velocity potential field, described as

φ(x, z, t) = φ0(x, z) cos(ωt), (14)

with

φ0(x, z) = −ε
dg

2ω

cosh[k(z + d)]

cosh(kd)
cos(kx), (15)

where ε = H/d. The relationship between the wave number k and the wave/se-

iching frequency ω is obtained from the dispersion relation

ω2 = gk tanh(kd). (16)

where g is the modulus of the gravity vector, equal to 9.81m/s2. For the setup

described above, we obtain ω = 7.85rad/s, that corresponds to a wave period

of 0.8s. The theoretical evolution of the kinetic energy for a standing wave is

an oscillation with frequency 2ω, decaying exponentially at a rate determined

by the viscosity and the wave number. An analytical expression for the kinetic

energy in the basin is [5]:

Ekin(t) = ε2ρ0 g b
λd2

32
e−4νk2t [1 + cos(2ωt)] , (17)

where b is the thickness of the tank in the y direction and ρ is included to make155

the equation dimensionally correct. In the case of water, the decay is negligible

over a short period of time.

From the SPH point of view, we use a ∆p = 1/256m and a smoothing

factor αs = 1.3. Figure 4a shows the kinetic energy for the standing wave with

H = 1/16 = 0.0625m), simulated using SSPH (Section 2). The kinetic energy of160

the standing wave is indicated by the periodic oscillations, which are decaying
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Figure 4: Temporal evolution of kinetic energy for the standing wave problem simulated with

SSPH formulation. Figure (a) displays the instantaneous kinetic energy and its one-period-

wide moving average. Figure (b) displays the postprocessed kinetic energy. Dashed lines show

the envelope of the analytical solution, Equation 17.

rapidly over time. A slower shifting of the curve can be observed that prevents

the energy oscillations from reaching zero at the instants when the wave has

zero velocity (trough and crest positions). This additional kinetic energy comes

mainly from particles mixing up when re-settling from their initial configuration165

[37]. Hereafter, this shifting will be filtered out in order to allow a better

evaluation of the amplitude of the wave associated oscillations. An approach

based on a one-period-wide moving average is used also in this case. Figure 4b

shows the filtered trend, and the decay is compared to the analytical solution

(dashed lines) obtained using Equation 17. The irregularities present on the first170

few periods are due to the limits of the filtering process. During the initial phase,

the energy coming from particle mixing varies with a frequency comparable with

that of the wave-associated oscillations, and therefore the dynamics due to the

particle mixing cannot be filtered out using the moving average approach. A

normalization of the energy by its initial value is also performed, so that the175
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initial energy oscillation has unit amplitude and is centered on zero, allowing an

easier reading of the percentage of decayed energy, and accounting for different

thicknesses of the domain due to differing smoothing factors.

4. Corrected formulation

In accordance with the consistency condition on the smoothing factor [38]

αs = h/∆p → ∞, (18)

the study by Colagrossi et al. [3] shows that larger values of αs can reduce180

the amount of numerical dissipation of gravity waves. This benefit comes at the

expense of a higher computational cost and simulation time. In fact, most of the

computation of a SPH simulation lies in the particle-particle interactions (i.e.

summations over the neighbors), where the number of interactions grows with

the cube of αs in the three-dimensional case. For this reason, typical suggested185

values of αs range between 1.2 and 1.5 [39], while Colagrossi et al. [3] shows

that acceptable decay rates for high Reynolds number simulations are obtained

for values of αs greater than 3, implying prohibitive simulation times.

Alternatively we can improve the particle approximation without having

large αs by using a kernel gradient correction [6, 39, 40].190

4.1. Standard kernel gradient correction

Kernel gradient correction (KGC) is a technique that is designed to compen-

sate for the error introduced in the SPH approximation of a gradient as a result

of discretizing the domain with a finite number of particles (Appendix A).

A KGC is obtained as a linear mapping of the kernel gradient by a corrective

matrix. For each particle at location xi = (xi, yi, zi)
T , the matrix

Ai =
∑
j

∇Wij ⊗ (xj − xi)Vj =
∑
j


xij

∂Wij

∂x yij
∂Wij

∂x zij
∂Wij

∂x

xij
∂Wij

∂y yij
∂Wij

∂y zij
∂Wij

∂y

xij
∂Wij

∂z yij
∂Wij

∂z zij
∂Wij

∂z

Vj (19)
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is computed, where xij = xj − xi, and similarly for yij and zij . See Appendix

A for details. From this matrix we define the correction matrices as Bi = A−1
i ,

so that the corrected kernel gradient can be written as

∇̃Wij = Bi∇Wij . (20)

These coefficients are calculated before the computation of the derivatives, which195

are Steps 1 and 3 of the integration scheme shown in Section 2.

4.2. Reduced correction scheme, CSPH

Typical corrective schemes apply the kernel gradient correction to both the

equations of mass and momentum conservation, but the conservation of energy

is most directly related to the momentum equation [39]. We therefore limit the200

correction to the latter, as otherwise some volume conservation issues can occur,

especially at low viscosity values.

In our formulation, we adopt the convention expressed by Equation 3, so we

rewrite the matrix Ai as

Ai =
∑
j


x2
ij yijxij zijxij

yijxij y2ij zijyij

xijzij yijzij z2ij

FijVj . (21)

This matrix is symmetric, allowing a smaller computational effort. The order

of the matrix is limited to the dimensionality of the problem; therefore the

matrix inversion to obtain B in 3D can be performed analytically. The corrected

momentum equation becomes

Dui

Dt
= −

∑
j

(
Pi

ρ2i
+

Pj

ρ2j
−Πij

)
BixijFijmj + g. (22)

Henceforth, we will refer to this corrected SPH scheme as CSPH. Let us notice

that Taylor-consistent formulations, where the gradient of the pressures is dis-

cretized using the difference of the pressures, are typically adopted when using a205

correction based on the Taylor series (see Appendix A)[41, 39]. However, these

formulations do not guarantee conservation of momentum [11] and energy [42]
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Figure 5: Kinetic energy of a standing wave, simulated with CSPH and two different smoothing

factors.

even at continuum level. On the other hand, it has been shown that improved

results can be obtained also when applying a KGC to a non Taylor-consistent

formulation [15, 39]; considering the scope of this work, we follow this approach210

since energy conservation is prioritized.

4.3. Symmetrized Correction, CCSPH

Because of the local nature of the correction coefficients, the standard kernel

gradient correction (KGC) adopted in CSPH does not guarantee reciprocity

in particle-particle interactions [39]. Asymmetric interactions in turn do not215

guarantee conservation of momentum [20, 43], which can eventually affect the

conservation of energy.

Figure 5 shows the trend of kinetic energy for the CSPH formulation intro-

duced in Subsections 4.1 and 4.2 for different values of the smoothing factor,

αs. Even though the kinetic energy is maintained better than in SSPH with

αs = 1.3, no convergence is shown towards the analytical solution, with the
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Figure 6: Normalized total energy for SSPH and CSPH at two different smoothing factors.

kinetic energy growing over time for larger αs. The loss of energy conservation

can also be found in the total energy of the system, which is computed as:

Etot =
∑
i

(
1

2
miu2

i +mig · ri +miei

)
, (23)

where the terms in parenthesis are the particle kinetic energy, potential energy

and internal energy, respectively. The latter is determined from the following

equation [35]:

Dei
Dt

=
1

2

∑
j

(
Pi

ρ2i
+

Pj

ρ2j
+Πij

)
uijxijFijmj . (24)

By looking at the trend of the total energy (Figure 6), significant variations are

introduced for CSPH. The original SPH formulation shows variations that are

three orders of magnitude smaller and are attributable to the machine precision220

of the calculations.

The conservation issues associated with standard kernel gradient correction

can be solved by restoring symmetry in particle-particle interactions. Vila [44]
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and Guilcher et al. [6] show a case of corrected formulation where interactions

are maintained symmetric, presenting an averaged correction with coefficients

obtained as

Bij =
1

2
(A−1

i + A−1
j ) (25)

to be used in Equation 22 in place of Bi. However, we have found that these

correction coefficients introduced instabilities in the simulations in presence of

a free surface. Figure 7a shows the free surface region for the standing wave

problem simulated using the asymmetric correction, as presented in Subsection

4.2, and a resolution of 128 particles per meter. Figure 7b shows the simulation

obtained using Equation 25, where the particle distribution in proximity of the

free surface is noticeably altered. The correction coefficients that we propose

are formulated as

Bij =

[
1

2
(Ai + Aj)

]−1

. (26)

This averaging is more consistent with the geometrical meaning of the matrix

A, which is directly related to the configuration of the neighbors in the particle

support, and results in a better stability, as shown in Figure 7c. Note that

Figure 7 shows a three-dimensional domain with six layers of particles; particle225

agglomerates are then only a visual effect due to the three dimensional domain.

Despite the improved stability of Equation 26, some disordering is introduced

in proximity of the free surface with respect to the original non-conservative

asymmetric case, with some instabilities arising only at high resolutions, where

the single precision adopted for the computations becomes the limiting factor.230

Instabilities have been encountered at all tested resolutions for the symmetric

version of Equation 25. A solution to this problem will be discussed in the next

subsection. From a mathematical point of view, the correction matrix with the

averaged matrix restores reciprocity in the interactions but introduces an error

in the discretized equation. However, the matrices are related to the config-235

uration of the neighboring particles, therefore the error will be smaller as the

particles i and j are closer. This condition is consistent with the general idea of

keeping the smoothing factor small, so as to limit the size of the particle neigh-

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

x [m]

z
[m

]
Fluid particle

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

x [m]

z
[m

]

Fluid particle

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

0.9

1

x [m]

z
[m

]

Fluid particle

(c)

Figure 7: Particle distributions in the free-surface area at t = 0.2s. (a): asymmetric correction;

(b): symmetric correction with Equation 25; (c): symmetric correction with Equation 26.
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borhood. Preserving momentum conservation is however the main outcome of

this symmetric approach. For convenience, we will refer to the newly introduced240

formulation as CCSPH (Conservative Corrected SPH).

4.3.1. Treatment of free-surface

The use of corrective methods that involve a matrix inversion can cause

some known complications when particle supports are incomplete or include

distorted particle configurations [39, 27]. These situations typically affect the245

conditioning of the associated correction matrices [27], leading to instability or

loss of accuracy. A special treatment is therefore required for particles with such

matrix deficiencies. In the case of gravity waves, a clear example of incomplete

support is found at and near the free-surface. Nevertheless, these issues at

the free-surface can induce some negative effects on the conservation of the250

wave energy. Therefore, for the affected particles, we forgo the kernel gradient

correction and use an identity matrix (A = I) in Equation 26 during particle

interactions.

The detection of the affected particles with a matrix deficiency is based on

the determinant of the matrix. Values of the determinant lower than a certain255

threshold, det(A)th, indicate a matrix deficiency. In order to determine an

appropriate threshold, a parameter study was performed, and the quality of

the results was analysed by comparing the decay rate of the simulated kinetic

energy to the analytical solution provided by Equation 17. The decay rate of

the simulated solutions was obtained from an exponential function fitted to the260

envelope of the kinetic energy signal; the optimal fitting is determined according

to the least-squares mean (LSM) approach. We take as a quality index the ratio

between the damping exponential coefficient, β, of the fitting function, and the

damping exponential coefficient of the analytical solution, β0 = −4νk2. Values

of the ratio larger than unity indicate a stronger decay than the theoretical one.265

The solid line in Figure 8 shows the values of β/β0 obtained for the standing wave

problem discretized with 256 particles per meter, and indicates det(A)th = 0.6

as optimal value for the threshold. The choice of this value is reflected on the

20



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

β
β0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

det(A)

Frequency
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threshold; right scale.
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histogram of the determinants for the entire particle set. The values group up

in the histogram mostly in accordance with the location of the particle within270

the domain (i.e. surface, close to surface, interior); therefore, these histograms

do not undergo substantial variations with respect to the simulated problem,

once the smoothing function and the dimensionality of the problem are defined.

The rightmost set of values in the histogram correspond to particles with full

support, while the leftmost are mainly associated with particles on the free-275

surface. We can say that the optimal threshold should keep the correction on

the largest possible amount of particles while discarding all of the particles with

a matrix deficiency. This analysis results in our choice of det(A)th = 0.6.

Referring to Figure 7, the optimal threshold additionally restores particle

order in the simulations involving averaged matrices with both Equations 25280

and 26. The formulation of Equation 26 is anyways preferred as the stability

of the simulation would be strongly linked to the presence and the value of the

threshold det(A)th.

4.3.2. Treatment of solid boundaries

Fluid particles in proximity of solid boundaries can assume distorted con-285

figurations that lead to a degradation of the matrix conditioning [27]. Since

boundaries and the neighboring fluid are not actively contributing to the wave

propagation, we exclude the kernel gradient correction for boundary particles

and fluid particles in their neighborhood. Also in this case, an identity matrix is

used for these particles in Equation 26 during particle interactions. The adopted290

boundary model is therefore not relevant for the design of the corrected scheme.

The simulations discussed in this paper adopt a variety of boundary models:

a multi-layer model (dynamic boundary conditions [45]), a single-layer model

(Lennard-Jones particles), and an analytically described solid boundary model

(Lennard-Jones planes [13]). For the latter, the correction is excluded for fluid295

particles that have planes in their neighborhood.
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Figure 9: Convergence test: trend of the quality index β/β0.

5. Standing wave results for the improved formulation

Using the standing wave problem introduced in Section 3 we performed a

convergence test with respect to the spatial resolution and the smoothing factor

(Figure 9). In the case of changing ∆p we use a fixed smoothing factor αs = 1.3.300

Figure 9a shows that the ratio β/β0 approaches unity as the spatial resolution

is refined, and thus, that the simulated results converge towards the analytical

values.

It is worth observing that the ratio β/β0 refers to the decay rates, and

should not be directly interpreted as the error in the wave amplitude. We can305

consider as an example the value of β/β0 = 2.61, obtained with a resolution

of 256 particles per meter, indicating that the simulated wave decays with an

equivalent viscosity of 2.61 times the physical viscosity. Considering the low

value of the viscosity, the resulting decay is negligible in most of realistic time

windows, as shown in Figure 10. Here, the deviation between the simulated and310

analytical amplitudes are comparable to the numerical precision.
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Figure 10: Comparison of kinetic energy for SSPH and CCSPH.

An irregularity in the convergence trend can be seen at a resolution of 512

particles per meter, where the β/β0 ratio has a negative value of −0.947. This

condition, that translates into a slow growth of the kinetic energy, is possibly

due to the adoption of a non-Taylor-consistent gradient formulation [39] and315

limitations due to the machine precision [46]. However, the quality of the results

shown in Figure 10 suggest that resolutions higher than 256 particles per meter

are not needed. Therefore, the numerical issues arising for finer resolutions do

not pose any problem to the applicability of the formulation.

Convergence is also obtained with respect to the smoothing factor, as shown320

in Figure 9b. Similarly to what was observed for varying the resolution, the con-

vergence is impeded for values of αs higher than 1.4. The same conclusions can

be made here, as we saw that the amplitude decay obtained with 256 particles

per meter, which uses a smoothing factor αs = 1.3, are negligible.
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Figure 11: Water surface elevation in the NWT with respect to the mean water level. Results

for SSPH and CCSPH are shown.

6. Improved progressive wave propagation325

The progressive wave train problem introduced in Section 3 is now simulated

with the new corrected formulation. Figure 11 shows the surface elevation along

the wave tank for SSPH and for CCSPH. As discussed in Section 3, a de-trending

has been performed also in this case. We set the wavelength to λ = 1.5m and

simulate a distance corresponding to 30 wavelengths. A noticeable improve-330

ment in the maintenance of the wave amplitude is obtained with CCSPH. The

theoretical amplitude decay, expected along the wavetank due to the viscosity

of the fluid, can be predicted with Equation 13, and its value is around 0.1%

(dashed lines in figure 11). This small decay is negligible in the simulation, as

it is one order of magnitude below the discretization interval, ∆p. The CCSPH335

formulation can successfully reproduce this result, as the waves reach the end

of the tank without showing any apparent decay. On the other hand, the wave-

train simulated with the SSPH formulation decays exponentially, dropping 92%

of the nominal amplitude.

Some irregularities are present in the computed surface elevation that pre-340

vent it from being a perfect sinusoidal shape. These irregularities are appropri-

ate for the simulated problem and are not related to the adopted formulation.
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In particular, the larger waves in proximity of the tank origin are associated

to the evanescent modes generated by the wavemaker [36]. The fluctuations

in the amplitude and the offset are due to spurious waves in the tank, related345

to nonlinearities generated by the wavemaker and to the startup-related seich-

ing phenomena. Finally, the distortion at the end of the tank is due to the

interaction with the sloping region.

In addition to the benefits of the conservation of wave energy, the CCSPH

improves the simulation of the wavelength. We estimate the wavelength of350

the simulated wave train by averaging over 15 periods. A length of 1.552m is

obtained for the corrected formulation, against the nominal 1.5m, while it is

1.618m for standard SPH. We note that the nominal wavelength is obtained

from the period of the wavemaker, using the dispersion relation, Equation 16,

assuming linear wave theory.355

7. Discussion on performance and quality of the simulations

As discussed in Section 4, kernel gradient corrections eliminate the exces-

sive decay from SPH simulations similarly to approaches based on an increased

smoothing factor, but with lower computational load. To make a quantita-

tive assessment of the simulation performance, we simulated the standing wave360

problem using both approaches and the setup in Section 3. We take as refer-

ence a discretization interval of 256 particles per meter, that results in 532 480

particles, and a smoothing factor of αs = 1.3. The simulations are run on an

NVIDIA Titan XP GPU. Using the SSPH formulation of Section 2, a time of

0.1s is simulated in 153s. If we adopt the kernel gradient correction, the required365

simulation time is 344s, while increasing the smoothing factor to αs = 3.0 brings

the simulation time up to 1248s. In relative terms, using the kernel gradient

correction increases the simulation time by a factor of 2.25, while using the

larger smoothing factor results in a factor of 8.11. It is worth mentioning that

αs = 3.0 is derived from Colagrossi et al. [3] as an indicative value for an ac-370

ceptable energy conservation. In fact some spurious decay can be appreciated
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Figure 12: Particle distributions in the free-surface area at t = 18.6 s. (a): SSPH and αs = 3.0;

(b): CCSPH and αs = 1.3.

on the kinetic energy, with β/β0 = 17.25 (against the β/β0 = 2.61 obtained

using CCSPH and αs = 1.3).

7.1. Particle distribution

In addition to limiting simulation time, keeping a small smoothing factor375

helps reduce the amount of support incompleteness, as for example the layering

occurring on free-surfaces. Large particle supports extend the layer of particles

in proximity to the surface with incomplete support, resulting in the formation

of multiple layering of particles below the free-surface. Figure 12 shows a com-

parison of the free-surface obtained with the two approaches. We can see that380

a smoothing factor of αs = 3.0 creates three layers of particles and a higher

disorder of the underlying region. Figure 13 shows a close up of the free sur-

face region during the three different phases of the standing wave and a close

up of the domain bottom. For visual convenience the shown simulations are

performed using ∆p = 1/128. Because of the three-dimensional nature of the385

simulation the distribution of the particles cannot be directly appreciated, and

visual artifacts resulting in striped regions also appear. However the images
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Figure 13: Particle distributions for the standing wave at the fifth oscillation. The free-surface

area is shown for the three phases of the wave, and subfigure (d) shows the bottom of the

domain.
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z = 0 corresponds to the bottom of the domain, while the data on the rightmost side of the

plot correspond to the free surface.

can provide a reference for the quality of simulated free surface and fluid-solid

interface.

7.2. Pressure field390

Figure 14 shows the vertical profile of the pressure error for the standing

wave at the beginning of the fifth oscillation, simulated with CCSPH, αs = 1.3

and 256 particles per meter. The simulated values are plotted as the SPH in-

terpolation along a vertical line placed in the central region of the domain. At

the considered instant, the surface of the domain is flat, therefore the theoret-395

ical pressure used for the computation of the error is equal to the hydrostatic

pressure. The latter is computed considering the analytical free surface ∆p/2
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above the surface particles, so to take into account the particle’s volume. The

error increases in proximity of the bottom of the domain and the free surface,

due to the truncation of the domain. Figure 15 shows the relative error, which400

is maintained below 0.5% of the theoretical value in most of the domain, and

grows around 1.5% close to the domain discontinuities. In close proximity to

the surface the relative error is not reliable, and the very large values are due

to the theoretical pressure (used in the normalization) approaching zero.

8. Conclusions405

An improved corrected SPH for wave propagation has been presented: CC-

SPH. This scheme is able to substantially reduce excessive decay from simulated

gravity waves when compared to standard SPH (SSPH), while maintaining low

computational load and moderate implementation complexity.

The presented scheme works in 3D and solves the main issues that typi-410

cally come with kernel gradient correction (KGC) techniques, such as the lack

of momentum conservation and instabilities of the simulation. Thanks to the

design of a reduced correction scheme (Section 4.2), our CCSPH avoids some

volume conservation issues that appear for generic KGC when simulating very

low viscosity fluids. The scheme is thus applicable to the simulation of water415

with realistic viscosity values, unlike many of the approaches mentioned in the

introduction.

Throughout the paper we have characterized the amplitude decay for gravity

waves and described how the simulations are affected. We presented our cor-

rected formulation and addressed the criteria for the choice of the only parameter420

introduced by our scheme, det(A)th, which is a threshold on the determinant of

the correction matrices.

We have then discussed some convergence tests, obtained for a standing

wave, with respect to variations of the particle resolution and the smoothing

factor. In both cases convergence has been assessed. Some irregularities were425

found in the convergence plots, but we saw that their onset occurs beyond values
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of spatial discretization and smoothing factor for which the simulation errors

are already negligible according to the numerical limits.

Finally, the simulation of a wave train in a long wave tank has been shown,

where 30 wavelengths are simulated without exhibiting any excessive decay.430

This propagation distance is greater than that, to the best of our knowledge, is

shown in the current literature. The limit of 30 wavelengths was only chosen in

relation to the time required by the simulations, while the results that we have

obtained don’t suggest any limit on the propagation distance.

Improvements on the simulation of the wavelength and the free-surface were435

also shown. A final discussion about the simulation performance of the presented

approach and an alternative proposed in the literature has been done.

Future developments of the proposed SPH scheme will address the opti-

mization of the computational load, so as to reduce simulation times, and the

possibility to free the scheme from the threshold on the matrices determinant,440

det(A)th.
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Appendix A. Kernel gradient correction

We derive here the standard kernel gradient correction formulation, following

the approach of Oger et al. [39]. For simplicity, we will refer to the 2D case, and

the final results will be extended to the 3D case. Let us consider the equation

∇f = 1
φ (∇ (φf)− f∇φ). For φ = 1 this yields

∇f = ∇f − f∇1. (A.1)

If the SPH approximation of a gradient of a function is considered in its contin-

uous form and inserted in the right hand side,

∇f (x) ≈
∫
Ω

f (x′)∇Wdx′ − f (x)
∫
Ω

∇Wdx′ (A.2)

is obtained, in which the abbreviation ∇W = ∇W (|x − x′|, h) is adopted. The

Taylor expansion for the first term on the right hand side about x = xe1 + ye2

yields∫
Ω

f (x′)∇Wdx′ = f (x)
∫
Ω

∇Wdx′ +
∂f (x)
∂x

∫
Ω

(x′ − x)∇Wdx′

+
∂f (x)
∂y

∫
Ω

(y′ − y)∇Wdx′ +O
(
h2
)
.

(A.3)

If the Taylor expansion is inserted in Eq. (A.2), the first term of the expansion

and the second term on the right hand side of Eq. (A.2) cancel each other, such

that the SPH approximation of the gradient of f yields

∇f (x) ≈ ∂f (x)
∂x

∫
Ω

(x′ − x)∇Wdx′︸ ︷︷ ︸
A

+
∂f (x)
∂y

∫
Ω

(y′ − y)∇Wdx′︸ ︷︷ ︸
B

. (A.4)

Here, the terms depending on h to the power of two or higher originating from

the Taylor expansion have been omitted and can also be viewed as a contribution625

towards the approximation error.

It is straightforward to identify desired values of the integral terms. In order

to provide particularly well-posed approximations of gradients, A and B have

to yield e1 and e2, respectively. If the integrals are approximated as the sum
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over a finite set of particles, and a cartesian coordinate system is assumed, the

conditions result in

∑
j

(xj − xi)∇WijVj =

1

0

 ,

∑
j

(yj − yi)∇WijVj =

0

1

 .

(A.5)

If the kernel gradient is unaltered, these conditions do not necessarily hold.

For this reason, a linear mapping is constructed, that is applied to the kernel

gradients and corrects them in the sense that they satisfy Equation (A.5). A

corrected kernel gradient can therefore be obtained by applying a corrective

matrix associated with particle i, as described in Equation 20. In order to

identify how Bi can be constructed, so that ∇̃Wij fulfills Equation (A.5), the

conditions are written in matrix-vector notation, and using Equation 20 we

have: ∑
j

(
(xj − xi)Vj∇WT

ij

)
BT

i =

1 0

0 1

 . (A.6)

It is now straightforward to determine Bi, namely

Bi =

∑j (xj − xi)
∂Wij

∂x Vj

∑
j (yj − yi)

∂Wij

∂x Vj∑
j (xj − xi)

∂Wij

∂y Vj

∑
j (yj − yi)

∂Wij

∂y Vj

−1

= A−1
i . (A.7)

Extending this matrix to the 3D case, we obtain Equation 19.
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