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A B S T R A C T

Machine learning is becoming increasingly important in scientific and technological progress, due to its ability to
create models that describe complex data and generalize well. The wealth of publicly-available seismic data
nowadays requires automated, fast, and reliable tools to carry out a multitude of tasks, such as the detection of
small, local earthquakes in areas characterized by sparsity of receivers. A similar application of machine learning,
however, should be built on a large amount of labeled seismograms, which is neither immediate to obtain nor to
compile. In this study we present a large dataset of seismograms recorded along the vertical, north, and east
components of 1487 broad-band or very broad-band receivers distributed worldwide; this includes 629,095 3-
component seismograms generated by 304,878 local earthquakes and labeled as EQ, and 615,847 ones labeled
as noise (AN). Application of machine learning to this dataset shows that a simple Convolutional Neural Network
of 67,939 parameters allows discriminating between earthquakes and noise single-station recordings, even if
applied in regions not represented in the training set. Achieving an accuracy of 96.7, 95.3, and 93.2% on training,
validation, and test set, respectively, we prove that the large variety of geological and tectonic settings covered by
our data supports the generalization capabilities of the algorithm, and makes it applicable to real-time detection of
local events. We make the database publicly available, intending to provide the seismological and broader sci-
entific community with a benchmark for time-series to be used as a testing ground in signal processing.
1. Introduction

Natural earthquakes are the shaking of the Earth surface caused by a
sudden release of elastic energy from geological faults which generates
mechanical waves, called seismic waves. The strength of an earthquake,
generally indicated by its magnitude, is proportional to the logarithm of
the energy liberated (e.g. Båth, 1955), and determines our ability to
perceive the ground motion due to the seismic-wave propagation. Over
the last century, the possibility of recording the arrival times of different
seismic phases at sensitive instruments (i.e. seismographs) has enabled
seismologists to image and understand the Earth’s interior and dynamics.
Among these seismic phases are the compressional (P) and shear (S)
waves, which are generally the first to be recorded at a seismic receiver
when an earthquake occurs and should be considered as the two
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fundamental types of seismic waves, in that they generate all the others
(e.g. surface waves) by interacting with the discontinuities within the
Earth.

The enhancement and spreading of seismic sensors around the world,
together with the theoretical progress made in seismology over the last
decades, nowadays allow not only to exploit seismic signals emitted by
earthquakes, but also those connected to ambient noise (e.g. Shapiro and
Campillo, 2004; Boschi and Weemstra, 2015). This study aims to provide
a dataset of labeled seismograms generated by both local earthquakes
and noise, and recorded at a large number of seismic receivers distributed
around the world (Fig. 4). The choice of collecting only local
earthquake-data is motivated by the fact that small-magnitude events,
which generate relatively small amplitudes and are easily attenuated, are
often problematic to detect but provide valuable information about
ril 2020
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Fig. 1. Perceptibility radius used for collecting earthquake-data (red) compared with those obtained by using a logarithmic (black) and a linear (gray) relation
between hypocentral distance and magnitude. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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earthquake processes (Brodsky, 2019). Cataloging small earthquakes
could be important, for example, for better understanding how earth-
quakes interact with one another, their reoccurrence, nucleation stage
and the foreshock evolution (Ross et al., 2019).

This global dataset is intended to be used for carrying out a multitude
of seismological and signal processing tasks on single-station recordings,
and its size particularly suits machine learning (ML) applications. ML is
becoming increasingly important in scientific and technological progress,
due to its ability to create models that describe complex data. In the field
of seismology, ML algorithms have proved to be often more reliable than
expert scientists in recognizing seismic phases arrivals (e.g. Zhu et al.,
2019) and determining physical quantities associated with the earth-
quake (e.g. Ross et al., 2018). This has important implications, e.g., for
the improvement of modern earthquake early-warning system tech-
niques and therefore for the mitigation of risk (Meier et al., 2019). ML
applications, however, always require a large number of samples to
induce these models to generalize well, i.e. to properly classify data not
represented in the training set (for an overview on applications of ML in
seismology see, e.g., Kong et al., 2019). At the present time, availability
of seismological benchmark datasets like the one presented here is very
limited. To our knowledge, the only instance of something similar in size
has been assembled and published in a recent, independent study by
Mousavi et al. (2019a). The impressive work carried out by these authors,
however, led to a dataset of different characteristics, arising from e.g.
different processing and geographic distribution of the seismograms
collected.

We hope that a collection of time-series like the one presented here
may benefit not only seismologists, but a broader community including
data scientists interested in informative data such as seismograms
recorded on the Earth surface. After explaining the procedure adopted for
an automated labeling of the waveforms (Section 2), we describe in detail
the features of the dataset (Section 3). An application of supervised ML to
a binary classification problem is presented in Section 4. Specifically, we
show the ability of a Convolutional Neural Network (Krizhevsky et al.,
2012) trained on our dataset to recognize earthquakes from noise in
unlabeled data (i.e. test set) based on single-station recordings. Possible
2

applications of the dataset and conclusions are presented in Sections 5
and 6, respectively.

2. Labeling and downloads

We searched for seismic data recorded at more than 1500 publicly-
available, broad-band or very broad-band seismic stations equipped
with sensors oriented along vertical (Z), north (N), and east (E) compo-
nents. For each receiver, recordings that satisfied some quality criteria
explained in the following paragraphs were downloaded, demeaned,
detrended, tapered with a 5% cosine-taper, and bandpass-filtered be-
tween 0.1 and 5 Hz before deconvolving the instrumental response to
physical units (velocity). Each 3-components seismogram was then cut
into time-windows of 27 s sampled at 20 Hz, and labeled as earthquake
(EQ) or noise (AN) following an automated procedure, presented below.
2.1. Earthquakes

To download EQ waveforms we relied on several catalogues of
seismic events (see Data & Resources); for each location, we used the
catalogue with the largest number of earthquakes reported, and selected
only seismic events satisfying 3 quality parameters. Since this study fo-
cuses on local earthquakes, we set the (1) maximum hypocentral distance
of an earthquake with respect to a receiver to 134 km. Events in the
catalogue satisfying this condition are subject to a further selection based
on a criterion of (2) time separation from other events: if the considered
event is disturbed by other events that occurred at about the same time in
the vicinity of the station, the event is discarded. In practice, we only use
those whose origin times are at least 100 s before and 600 s after the
closest available events in the catalogue with epicentral distances � 1.7�

(e189 km). This conservative choice is motivated by the need of avoiding
arrivals of seismic phases from different local events within the same
waveforms.

The last requirement for an event on the catalogue to pass the quality
selection is determined by a (3) perceptibility radius (see Nuttli and Zoll-
weg, 1974, and our implementation detailed below) that is function of



Fig. 2. Four randomly selected seismograms (Z, N, E components from top to bottom of each panel) which passed the selection criteria explained in Section 2.1 and
were consequently labeled as earthquakes. Each recording brings evidence of a particle motion due to a seismic event. Station codes, start times of the waveforms,
origin times and magnitudes of the earthquakes (as indicated by the catalogue providers) are reported in the following. (a) station code: CI.PALA, start time: 2018-10-
20 23:16:46, event time: 2018-10-20 23:16:45, magnitude: 2.5; (b) station code: AE.U15A, start time: 2015-03-03 14:18:56, event time: 2015-03-03 14:18:44,
magnitude: 2.4; (c) station code: IV.ATPC, start time: 2014-03-03, 10:08:02, event time: 2014-03-03 10:08:04, magnitude: 1.3; (d) station code: CN.MOBC, start time:
2014-06-26 15:15:11, event time: 2014-06-26 15:15:03, magnitude: 2.3.
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both magnitude and hypocentral distance (Fig. 1): for each magnitude,
the perceptibility radius indicates the maximum acceptable hypocentral
distance above which the event is discarded since no visible signal can
likely be detected. The strategy of avoiding such events is motivated by
the fact that the capability of a receiver to record an earthquake decreases
with the hypocentral distance and strongly depends on the attenuation
properties of the Earth, which can be significantly variable depending on
e.g. the local geology and/or the tectonic environment (e.g. Dalton et al.,
2008; Dalton and Faul, 2010). The choice of the perceptibility radius is
critical in compromising the trade-off between the number of rejected
events and the quality of the downloaded data; however, accounting for
its spatial variability in order to optimize the labeling at each location
covered by our dataset would be, at least, impractical. For this reason,
our choice of the perceptibility radius is empirical, and has been made
after visual inspection of its performance in terms of quality of the
labeled waveforms vs. rejection rate. In this regard, we visually checked a
large number of seismograms (more than 40,000) and excluded from the
dataset those stations which appeared too noisy and therefore did not
bring clear evidence of earthquakes in the data. The bad quality of such
waveforms can be ascribed either to an inappropriate definition of the
perceptibility radius or strong ambient noise at those locations, or to
relatively large errors on the events information provided in the cata-
logues (due to, e.g., a scarce seismic coverage in the surroundings of
certain receivers).

In practice, the perceptibility radius has been defined using the
functions linspace and geomspace of NumPy Python library (Oliphant,
2006): we chose the maximum acceptable hypocentral distances within
an interval between 4 km and 120 km using 21 points (a) spaced evenly,
i.e. Linear ¼ linspaceð4;120; 21Þ, and (b) spaced evenly on a logarithmic
scale, i.e. Logarithmic ¼ geomspaceð4;120;21Þ; each of these two arrays
3

has then been associated with a set of 21 magnitudes evenly spaced be-
tween 0.3 and 2.3 to obtain the gray line and black curve shown in Fig. 1,
respectively. Magnitudes above 2.4 are always accepted provided con-
dition (1) is met. The perceptibility radius employed in this study has
been obtained by defining the array of the hypocentral distances as a
weighted average of (a) and (b): Used ¼ 1

3 ðLinearþ2LogarithmicÞ (red
curve in Fig. 1).

For each event that met the above conditions, 3-components seis-
mograms starting 4 s before the expected arrival time of the P-wave at the
receiver (calculated using IASP91 as 1-D background model, Kennett and
Engdahl, 1991) were downloaded and labeled as EQ (Fig. 2).
2.2. Noise

Concerning the labeling of noise data (Fig. 3), we followed the same
criterion of time separation from the closest events reported in the cata-
logue, already described above: each waveform labeled as AN is
randomly downloaded, provided its starting time and ending time are
separated from the closest events at least 100 s and 600 s, respectively. It
might be noted that this approach would not prevent from labeling as AN
recordings of ground motion generated by seismic events at epicentral
distances greater than 1.7� and strong enough to be detected. This choice,
however, is supported by two considerations. (1) The Gutenber-Richter
relation (Gutenberg and Richter, 1944) says that the probability of
occurrence of an earthquake decreases, to a good approximation, expo-
nentially with increasing magnitudes; this circumstance alone makes the
probability of randomly labeling as AN an earthquake strong enough to
be perceptible at the station location relatively small. In addition, (2) the
characteristics of a seismogram recording seismic waves generated by a
strong, distant earthquake will be substantially different from those of a



Fig. 3. Four randomly selected seismograms (Z, N, E components from top to bottom of each panel) which passed the selection criteria explained in Section 2.2 and
were consequently labeled as noise. Station codes and start times of the waveforms are reported in the following. a) station code: OK.ELIS, start time: 2017-05-02
05:46:30; (b) station code: IV.ATMI, start time: 2015-09-11 12:05:38; (c) station code: IV.FIAM, start time: 2018-08-05 20:25:34; (d) station code: FR.TURF, start
time: 2016-11-25 22:48:35.

Fig. 4. Location of the receivers whose recordings are collected in our dataset. Red, blue, and green indicate training, validation, and test sets as employed in the ML
application (Section 4), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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seismogram produced by a local earthquake. Indeed, the chosen duration
for the waveforms (27 s), together with the maximum hypocentral dis-
tance (134 km) used for labeling EQ, imply that EQ seismograms will
necessarily record both P, S, and surface waves generated by a seismic
event, due to simple velocity-time-distance considerations (for average
velocities of these seismic phases see, e.g., Stein and Wysession, 2009).
However, since these seismic waves travel at different velocities, the
same would not happen in case of a more distant earthquake, thus
without affecting the possibility of discriminating between noise- and
earthquake-waveforms.
4

3. Final dataset

The above procedure allowed us to collect 1,244,942 3-component
seismograms recorded at 1487 receivers distributed worldwide (Fig. 4):
615,847 labeled as AN and 629,095 as EQ. EQ data have been retrieved
from a total amount of 304,878 different earthquakes (Fig. 5), whose
magnitude distribution is shown to follow the Gutenberg and Richter
(1944) distribution in Fig. 6, at least down to magnitudes of e2:5. For
lower magnitudes, the decrease in the number of earthquakes in our EQ
data can be ascribed both to the insufficient completeness of the



Fig. 5. Spatial distribution of the 304,878 earthquakes exploited for collecting 3-component seismograms labeled as EQ.

Fig. 6. Magnitude distribution of the 304,878 earthquakes exploited for col-
lecting 3-component seismograms labeled as EQ.
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catalogues and to the conservative choice of the perceptibility radius
adopted in the downloads.

We make the dataset publicly available through https://doi.org/10.
5281/zenodo.3648232 as a unique file in HDF5 binary data format.
Fig. 7 summarizes the structure of the database, which we dubbed LEN-
DB (Local Earthquakes and Noise DataBase). The labeled data are split
into 2 HDF5-Groups: EQ and AN. Each of these groups contains as many
HDF5-Datasets as the number of 3-component seismograms; these are
labeled in accordance to the format net sta starttime, where net, sta, and
starttime represent the seismic network, station, and start time of the
seismograms. EachHDF5-Dataset (i.e. each triplet of seismograms) has an
attribute, which allows accessing the respective metadata. Attributes of
AN data consist of the station and waveform information: net (network
code), sta (station code), stla (station latitude, in degrees, north positive),
stlo (station longitude, in degrees, east positive), stel (station elevation, in
meters), starttime and endtime (start time and end time of the waveforms,
respectively); as for EQ data, information about the event are also re-
ported: mag (magnitude), evla (epicenter latitude, in degrees, north
5

positive), evlo (epicenter longitude, in degrees east positive), evdp (depth
of hypocenter with respect to the nominal sea level given by the WGS84
geoid, in meters), otime (event origin time), dist (epicentral distance, in
meters), az (event to station azimuth, in degrees), and baz (station to
event azimuth, in degrees). In addition, oneHDF5-Group allows accessing
stations’ metadata through as many HDF5-Datasets as the number of re-
ceivers employed for collecting the waveforms.

4. Machine learning application

We present in this Section a simple application of the dataset to a
signal classification problem. Specifically, we trained a Convolutional
Neural Network (CNN) (Krizhevsky et al., 2012) to discriminate between
recordings of noise and recordings of earthquakes; the trained model
therefore represents a single-station local-earthquake detection
algorithm.

4.1. Input model

The architecture of the CNN ensures that the algorithm is invariant to
a certain degree of data translation and rotation. In other words, when
applied to a time-series, the CNN learns its characteristics, regardless of
their position in time (Chollet, 2018). The inputs to the CNN are the 27 s
3-component seismograms sampled at 20 Hz. Each input is normalized
using the maximum value among the triplet of seismograms, and the
maximum is stored and serves as complementary data to the normalized
time-series. The architecture of the algorithm is a slightly modified
version of ConvNetQuake, a CNN adopted by Perol et al. (2018) and
Lomax et al. (2019) for detection and characterization of local and global
earthquakes, respectively. The output of the algorithm consists of a real
number between 0 and 1, which classifies a given waveform into EQ or
AN upon approximation to the closest integer.

The CNN has been set up using the Keras Python library (Chollet
et al., 2015). The input layer consists of the normalized waveform array
of dimensions (540, 3). This layer is followed by 8 stacked L2-regularized
convolutional layers (with regularization constant set to 0.0002), whose
number of features is progressively halved by employing max-pooling
(e.g. Scherer et al., 2010). The last convolutional layer is flattened and
the extracted features, together with the maximum used in the normal-
ization, are then fed to a fully-connected layer with 256 neurons. This
configuration resulted in 67,939 model parameters. The rectified linear
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Fig. 7. Schematic representation of the structure of the database.

Fig. 8. Accuracy (top) and loss (bottom) as function of epoch achieved on training and validation sets. The final model has been trained for 100 epochs, larger epochs
are shaded in gray. In each subplot, the red (training) and blue (validation) curves indicate the running average of accuracy/loss actual values (red and blue dots for
training and validation, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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unit (ReLU) activation function (e.g. Nair and Hinton, 2010) is used
throughout the whole architecture except for the last layer, where a
fully-connected layer with one neuron returns the classification of the
waveform using a sigmoid activation function. Crossentropy (e.g.
Goodfellow et al., 2016) and Adam (Kingma and Ba, 2014) are the loss
function and the optimization algorithm used throughout the model,
respectively.
6

4.2. Training and testing

We split the dataset on a geographical basis (Fig. 4), using 884,073
(452,147 EQ, 431,926 AN), 266,407 (128,698 EQ, 137,709 AN), and
94,462 (48,250 EQ, 46,212 AN) 3-components seismograms for training,
validation, and test set, respectively; the magnitude distributions of the
earthquakes used in these three subsets is illustrated in the



Fig. 9. Confusion matrices of (a) train, (b) validation, and (c) test set. In each subpanel, the colorscale indicates the number of 3-component seismograms employed.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
True Negatives (TN), False Negatives (FN), False Positives (FP), and True Posi-
tives (TP) resulting from the application of the detection algorithm to the test set;
the results are shown for each seismic network (NET) individually. Accuracy (in
percentage) in correctly classifying AN and EQ waveforms are indicated as ACC
AN and ACC EQ, respectively, while ACC indicates overall accuracy.

NET TN FN FP TP ACC AN ACC EQ ACC

CN 184 0 6 66 96.8 100 97.7
DK 1254 32 52 950 96 96.7 96.3
G 1291 292 22 1854 98.3 86.4 90.9
GE 413 14 13 279 96.9 95.2 96.2
IC 775 66 48 364 94.2 84.7 90.9
II 4186 204 65 4495 98.5 95.7 97
IU 2296 92 45 2562 98.1 96.5 97.3
JP 8438 1032 77 12871 99.1 92.6 95.1
KR 25227 3603 684 18511 97.4 83.7 91.1
NO 747 9 3 552 99.6 98.4 99.1
PL 379 4 7 398 98.2 99 98.6
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supplementary materials. The strategy to split the dataset geographically
is adopted to prevent the waveforms of different subsets from carrying
geological/tectonic information buried in the signal; in fact, this could
possibly induce the model to overfit the data due to information leakage
(see, e.g., Chollet, 2018). In other words, the large number of stations
from different geological and tectonic settings is probable to make the
algorithm learn general features of EQ and AN signals, regardless of the
characteristics of the specific areas. Splitting the dataset on a
geographical basis therefore helps the generalization capabilities of the
model (a thorough discussion on the topic can be found e.g. in Good-
fellow et al., 2016). Due to the large number of samples and to limitations
in the RAM memory available, for this study we randomly split the
training data into three separated subsets. During the training, at each
epoch one of them is randomly chosen and used, so that each subset
equally contributes to the learning process of the model. The training
process required e30 min on a Nvidia 1060 4 GB for 100 epochs using a
batch size of 512 samples. The trained Keras model is available at https:
//github.com/djozinovi/LEN-DB.

The above procedure yielded an overall accuracy of 96.7% and 95.3%
on the training and validation sets, respectively; graphs of accuracy and
loss as function of epoch for both training and validation sets are shown
in Fig. 8. The performance of the trained model has then been validated
over the test set, on which we achieved an overall accuracy of 93.2%.
4.3. Discussion of the results

Fig. 9 shows the confusion matrices (e.g. Sammut and Webb, 2017)
obtained using our algorithm for classifying the waveforms of the three
datasets individually; the percentage of False Negatives is larger than the
one of False Positives for both train, validation, and test sets, albeit small.
7

This is ascribed to the difficulty of our simple model of 67,939 parame-
ters in detecting earthquakes in presence of relatively high noise levels.
To this regard, some seismic networks included in the test set proved to
be problematic, contributing to decrease the value of overall accuracy, as
illustrated by Table 1. Among them, the KR (Kyrgyzstan) network
showed the largest number of undetected earthquakes (i.e. False Nega-
tives). The relatively large number of EQ waveforms belonging to this
seismic network turned out to be an important factor in determining the
overall accuracy of the subset. In fact, excluding the KR network from the
test set allows increasing its overall accuracy from 93.2% to 95.5%,
values which are consistent with those achieved on validation and
training sets.

Visual inspection of the waveforms misclassified as AN showed that,
for the majority of them, the ground motion caused by the earthquake
reported on the catalogue is only barely visible, even for magnitudes� 3.
This is shown in Fig. 10, where only a few of nine randomly selected
seismograms recorded by the KR network bring evidence of the earth-
quake, albeit not as clearly as one would expect from their relatively large
magnitudes. This is ascribed to the relatively high noise levels at the
locations covered by this seismic network.

The performance of the detection algorithm obtained on individual
networks belonging to training and validation sets is shown in Tables 2
and 3, respectively. Except for a few locations, the results confirm the
high quality of the labeled seismograms collected in our dataset. It is
worth noting the performance of the CNN on the global network IU,
which offers an insight into the strong geographic variability of the
waveforms; as opposed to a very small number of False Negatives asso-
ciated with IU at the locations included in test and training sets (see
Tables 1 and 2), a relatively poor accuracy is observed for the same
network on the validation set (Table 3). In analogy with the KR network,
this can be ascribed to high noise levels at specific sensors. On the other
hand, the high overall accuracy achieved on the three subsets in presence
of such variability of the waveforms with location provides evidence of
the good generalization properties of the detection algorithm.

5. Possible applications

We have shown in Section 4 that the trained model can be applied to
detect small earthquakes in regions that were not represented in the
training set. The high accuracy achieved (96.7, 95.3, and 93.2% on
training, validation, and test set, respectively) brings evidence that the
same method can be applied to real-time detection of earthquakes on
individual stations, by streaming continuous data in batches of 27 s on
the condition of pre-processing the seismograms as in Section 2. In this
regard, a possible attempt to further improve the performance of the
algorithm would be introducing one or more recurrent layers in the
model (e.g. Mousavi et al., 2019b), to account for the temporal relation
between the seismic phases arriving at the receivers.

Our algorithm also suits the analysis of past recordings with the
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Fig. 10. Nine randomly selected seismograms (Z, N, E components from top to bottom of each panel) belonging to the KR network and misclassified as AN. Buried in
the seismograms is the evidence of earthquakes characterized by magnitudes � 3. Station codes, start times of the waveforms, origin times and magnitudes of the
earthquakes (as indicated by the catalogue providers) are reported in the following. (a) station code: KR.DRK, start time: 2012-04-30 17:43:56, event time: 2012-04-30
17:43:39, magnitude: 3.2; (b) station code: KR.BTK, start time: 2018-08-14 23:05:19, event time: 2018-08-14 23:05:05, magnitude: 3.4; (c) station code: KR.MNAS,
start time: 2018-08-25 22:17:44, event time: 2018-08-25 22:17:38, magnitude: 4.9; (d) station code: KR.DRK, start time: 2017-06-20 16:50:17, event time: 2017-06-20
16:50:06, magnitude: 3.0; (e) station code: KR.ANVS, start time: 2018-06-09 23:51:52, event time: 2018-06-09 23:51:42, magnitude: 3.0; (f) station code: KR.ANVS,
start time: 2013-09-14 10:00:38, event time: 2013-09-14 10:00:21, magnitude: 3.1; (g) station code: KR.DRK, start time: 2018-08-12 17:18:58, event time: 2018-08-12
17:18:46, magnitude: 3.1; (h) station code: KR.TOKL, start time: 2012-06-10 21:29:00, event time: 2012-06-10 21:28:44, magnitude: 3.2; (i) station code: KR.SFK,
start time: 2018-08-08 20:19:47, event time: 2018-08-08 20:19:32, magnitude: 4.3.
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purpose of enriching the actual catalogues by detecting small, local
earthquakes that could not be detected by other methods commonly
employed (for example the STA/LTA; e.g. Withers et al., 1998); without
relying on multiple stations, this would prove especially useful in areas
with scarce density of receivers. We have shown that the large variety of
geological and tectonic settings covered by our data supports the
generalization capabilities of the detection algorithm. On the other hand,
for carrying out specific tasks like improving the completeness of the
catalogues in certain locations, it might be beneficial to focus only on a
portion of the dataset; training a machine learning algorithm on those
data would then enable to incorporate the geographic characteristics of
the investigated region in the trained model, possibly leading to higher
accuracy in the detection. In addition, it might be worth investigating if
such a collection of AN data could allow to efficiently simulate seismic
ambient noise and extract information on the distribution of noise
8

sources contributing to the recordings of a specific area. Something
similar would be particularly useful for constraining the attenuation
properties of the region (e.g. Tsai, 2011; Boschi et al., 2019).

Other possible applications of our dataset are connected to signal-
processing tasks. Denoising of the waveforms (e.g. Mousavi et al.,
2016) and detection of anomalies due to e.g. electronic failures of the
sensors are an example; when dealing with real data, it is common to
observe the presence of anomalous, meaningless signals which might
introduce a bias in the results of a study. In fact, while visually checking
the seismograms collected, we noticed the presence of a few instances of
such anomalies; although we estimated the amount of such signals to be
very small in comparison to the number of healthy waveforms in our
dataset (< 0:1%), we tried to remove them employing a robust criterion
based on a clustering analysis. However, this procedure (explained in
detail in the supplementary materials) did not yield stable results and we



Table 2
Same as Table 1, but obtained on the training set.

NET TN FN FP TP ACC AN ACC EQ ACC

AE 642 6 7 282 98.9 97.9 98.6
AK 21315 921 760 28596 96.6 96.9 96.7
CH 39171 2212 431 34417 98.9 94 96.5
CI 26044 2506 581 46416 97.8 94.9 95.9
CN 25973 625 466 22654 98.2 97.3 97.8
CZ 3666 161 42 3957 98.9 96.1 97.4
FN 1468 35 13 1150 99.1 97 98.2
FR 55384 5902 585 48631 99 89.2 94.1
G 520 42 1 425 99.8 91 95.6
GB 1865 13 8 596 99.6 97.9 99.2
GE 2807 116 58 1582 98 93.2 96.2
GR 5114 235 67 3758 98.7 94.1 96.7
HE 3028 39 14 2910 99.5 98.7 99.1
II 8257 151 41 11074 99.5 98.7 99
IU 6795 57 98 7308 98.6 99.2 98.9
IV 116349 5402 3120 119243 97.4 95.7 96.5
MN 22572 1497 300 20280 98.7 93.1 96
N4 10555 127 255 7698 97.6 98.4 98
NO 1489 22 2 901 99.9 97.6 99
OE 12630 234 148 12813 98.8 98.2 98.5
OK 41179 1084 731 38321 98.3 97.2 97.8
PE 954 35 15 450 98.5 92.8 96.6
PL 620 49 0 676 100 93.2 96.4
UM 2902 11 46 3644 98.4 99.7 99.1
US 10264 153 253 8330 97.6 98.2 97.9
XV 3874 87 138 5696 96.6 98.5 97.7

Table 3
Same as Tables 1 and 2, but obtained on the validation set.

NET TN FN FP TP ACC AN ACC EQ ACC

AF 1807 75 41 1369 97.8 94.8 96.5
AU 4027 290 107 1444 97.4 83.3 93.2
BR 598 4 2 215 99.7 98.2 99.3
G 5791 733 207 5327 96.5 87.9 92.2
GE 52076 1771 1674 44331 96.9 96.2 96.5
GT 264 12 6 63 97.8 84 94.8
II 1782 47 28 1509 98.5 97 97.8
IU 27099 4374 753 21619 97.3 83.2 90.5
MN 6208 44 137 6689 97.8 99.3 98.6
NZ 22626 1640 407 25024 98.2 93.8 95.9
TU 12634 385 203 12360 98.4 97 97.7
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decided to keep those anomalies within the dataset, leaving such a task to
be tackled by future studies and different methodological approaches.

6. Conclusions

We compiled a large dataset of seismograms recorded along the
vertical, north, and east components of 1487 broad-band or very broad-
band receivers distributed worldwide, including 629,095 3-component
seismograms generated by 304,878 local earthquakes and labeled as
EQ, and 615,847 ones labeled as noise (AN). We used the dataset to train
a Convolutional Neural Network (CNN) in discriminating noise-from
earthquake-data, and showed that the trained model can be applied to
detect small earthquakes in regions that were not represented in the
training set. The high accuracy achieved (96.7, 95.3, and 93.2% on
training, validation, and test set, respectively) confirm both the high
quality of the labeled seismograms collected in the dataset and the good
generalization properties of the detection algorithm.

Availability of similar benchmark datasets is, at the present time, very
limited. To our knowledge, the only instance of something comparable in
size and built on a global scale has been published in a recent, inde-
pendent work byMousavi et al. (2019a); differences, however, arise from
the distribution of the receivers, processing, and duration of the
3-component seismograms. Our global dataset is intended to be used for
carrying out a multitude of seismological and signal processing tasks
9

based on single-station recordings; importantly, its size suits machine
learning applications. For this reason, we believe that our large collection
of waveforms will not only benefit seismologists, but a broader com-
munity including data scientists interested in informative data such as
seismograms recorded on the Earth surface.

6.1. Data and resources

Catalogues of seismic events were downloaded from Istituto Nazio-
nale di Geofisica e Vulcanologia (INGV) Seismological Data Centre
(2006), International Seismological Centre (2019) (Storchak et al., 2013,
2015; Giacomo et al., 2018), and IRIS Data Services (0000). The facilities
of IRIS Data Services, and specifically the IRIS Data Management Center,
were used for access to waveforms, related metadata, and/or derived
products used in this study. IRIS Data Services are funded through the
Seismological Facilities for the Advancement of Geoscience and Earth-
Scope (SAGE) Proposal of the National Science Foundation under
Cooperative Agreement EAR-1261681. Seismic waveforms have been
downloaded using EIDA archive (http://www.orfeus-eu.org/eida) from
the following network operators: Arizona Geological Survey (2007),
Penn State University: AfricaArray (2004), Alaska Earthquake Center
(1987), Swiss Seismological Service (SED) at ETH Zurich (1983), Cali-
fornia Institute of Technology and United States Geological Survey
Pasadena (1926), Geological Survey of Canada (1980), Institute of
Geophysics, Academy of Sciences of the Czech Republic (1973), RESIF -
R�eseau Sismologique et g�eod�esique Français (1995), Institut De Physique
Du Globe De Paris (IPGP) & Ecole Et Observatoire Des Sciences De La
Terre De Strasbourg (EOST) (1982), GEOFON Data Centre (1993), Fed-
eral Institute for Geosciences and Natural Resources (BGR) (1976),
Albuquerque Seismological Laboratory (ASL)/USGS (1988, 1990, 1992,
1993), The Finnish National Seismic Network. GFZ Data Services (1980),
Scripps Institution of Oceanography (1986), Istituto Nazionale di Geo-
fisica e Vulcanologia (INGV) Seismological Data Centre (2006), Kyrgyz
Institute of Seismology, KIS (2007), MedNet Project Partner Institutions
(1990), UC San Diego: Central and Eastern US Network (2013), ZAMG -
Zentralanstalt für Meterologie und Geodynamik (1987), Oklahoma
Geological Survey: Oklahoma Seismic Network (1978), Penn State Uni-
versity: Pennsylvania State Seismic Network (2004), University Of
Montana: University of Montana Seismic Network (2017), International
Federation of Digital Seismograph Networks: XV Seismic Network (2014)
(Tape and West, 2014; Tape et al., 2018).
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