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Abstract: On 16 February 2021, an eruptive paroxysm took place at Mt. Etna (Sicily, Italy), after
continuous Strombolian activity recorded at summit craters, which intensified in December 2020. This
was the first of 17 short, but violent, eruptive events occurring during February–April 2021, mostly
at a time interval of about 2–3 days between each other. The paroxysms produced lava fountains
(up to 1000 m high), huge tephra columns (up to 10–11 km above sea level), lava and pyroclastic
flows, expanding 2–4 km towards East and South. The last event, which was characterised by about
3 days of almost continuous eruptive activity (30 March–1 April), generated the most lasting lava
fountain (8–9 h). During some paroxysms, volcanic ash led to the temporary closure of the Vincenzo
Bellini Catania International Airport. Heavy ash falls then affected the areas surrounding the volcano,
in some cases reaching zones located hundreds of kilometres away from the eruptive vent. In this
study, we investigate the Mt. Etna paroxysms mentioned above through a multi-platform satellite
system. Results retrieved from Advanced Very High Resolution Radiometer (AVHRR), Moderate
Resolution Imaging Spectroradiometer (MODIS), and Spinning Enhanced Visible and Infrared Imager
(SEVIRI), starting from outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC), indicate
that the 17th paroxysm (31 March–1 April) was the most powerful, with values of radiative power
estimated around 14 GW. Moreover, by the analysis of SEVIRI data, we found that the 5th and 17th
paroxysms were the most energetic. The Multispectral Instrument (MSI) and the Operational Land
Imager (OLI), providing shortwave infrared (SWIR) data at 20/30 m spatial resolution, enabled
an accurate localisation of active vents and the mapping of the areas inundated by lava flows. In
addition, according to the Normalized Hotspot Indices (NHI) tool, the 1st and 3rd paroxysm (18 and
28 February) generated the largest thermal anomaly at Mt. Etna after June 2013, when Landsat-8
OLI data became available. Despite the impact of clouds/plumes, pixel saturation, and other factors
(e.g., satellite viewing geometry) on thermal anomaly identification, the used multi-sensor approach
allowed us to retrieve quantitative information about the 17 paroxysms occurring at Mt. Etna. This
approach could support scientists in better interpreting changes in thermal activity, which could lead
to future and more dangerous eruptions.

Keywords: Mt. Etna; paroxysms; multi-platform satellite systems; radiative power

1. Introduction

The Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution
Imaging Spectroradiometer (MODIS), and the Spinning Enhanced Visible and Infrared
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Imager (SEVIRI) are some of the instruments most largely used to study and monitor
thermal volcanic activity from space (e.g., [1–9]). Those sensors, providing Medium In-
frared (MIR) and Thermal Infrared (TIR) data at high-temporal resolution (e.g., 15 min for
SEVIRI), enable the identification and monitoring of volcanic thermal anomalies and their
quantitative characterisation (e.g., [10–12]). MODIS data, which are analysed operationally
by the MODIS Volcano Thermal Alert System (MODVOLC) and the Middle InfraRed Ob-
servation of Volcanic Activity (MIROVA) systems, were often coupled with the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) TIR observations (90 m
spatial resolution) to assess subtle hotspots (e.g., [13–16]). On the other hand, recent studies
exploited visible/near-infrared (VNIR) and shortwave Infrared (SWIR) observations, at
20/30 m spatial resolution, from the Multispectral Instrument (MSI) and Operational Land
Imager (OLI) to better map high-temperature targets (e.g., lava lakes/flows [17–20]).

In this work, we assess the advantages and limitations of a multi-platform observing
system, integrating data at different spatial, temporal, and spectral resolutions from low-
(LEO) and geo- (GEO) orbiting satellite sensors, in monitoring and characterising the Mt.
Etna (Sicily, Italy) paroxysms, i.e., intense short-lived eruptions occurring with Strombolian
activity, lava fountaining, lava overflows, and tephra columns.

Mt. Etna (Figure 1) is the highest and most active volcano in Europe. Its eruptive
activity frequently occurs from summit craters, although some intense flank eruptions,
which are usually more dangerous for both infrastructures and population in the presence
of eruptive fissures opening at low altitudes, occurred in recent years [21–23].
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In the last decade, several paroxysms took place at the summit craters [24]. During 
January 2011−December 2013, 46 eruptive episodes were recorded [25]. The paroxysms of 
January−July 2011 yielded the growth of the New South-East Crater (NSEC) at the east-
ern base of the 'old' South-East Crater (SEC, born in 1971 [26]), continuing in 2013 [27,28]. 
In 2015, other powerful paroxysms occurred at the Voragine crater (VOR), generating a 
high eruptive column (up to 15 km above sea level) [29]. In recent years, a brief lateral 
eruption took place on 24–27 December 2018. A huge movement of the eastern flank of 
the volcano and a seismic crisis (up to Mw 4.9) caused damages in a vast urbanised area 
of the eastern flank of Etna [12]. After this brief but intense flank eruption, the South-East 
Crater complex (SEC) awoke on 30 May 2019 and then reactivated on 18 and 27 July 2019, 
producing Strombolian activity. On 12 September 2019, the VOR crater came into activity 
with Strombolian explosions and intra-crater lava overflow, and then again, the SEC re-

Figure 1. Mt. Etna (Sicily, Italy) geographic location.

In the last decade, several paroxysms took place at the summit craters [24]. During
January 2011–December 2013, 46 eruptive episodes were recorded [25]. The paroxysms of
January–July 2011 yielded the growth of the New South-East Crater (NSEC) at the eastern
base of the ‘old’ South-East Crater (SEC, born in 1971 [26]), continuing in 2013 [27,28].
In 2015, other powerful paroxysms occurred at the Voragine crater (VOR), generating a
high eruptive column (up to 15 km above sea level) [29]. In recent years, a brief lateral
eruption took place on 24–27 December 2018. A huge movement of the eastern flank of the
volcano and a seismic crisis (up to Mw 4.9) caused damages in a vast urbanised area of
the eastern flank of Etna [12]. After this brief but intense flank eruption, the South-East
Crater complex (SEC) awoke on 30 May 2019 and then reactivated on 18 and 27 July
2019, producing Strombolian activity. On 12 September 2019, the VOR crater came into
activity with Strombolian explosions and intra-crater lava overflow, and then again, the
SEC reactivated in the spring of 2020, with frequent Strombolian eruptions culminating in
four major episodes (December 2020), and finally in 17 eruptive paroxysms recorded during
February-April 2021, which mostly occurred at intervals of around 2–2.5 days between
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each other [30]. During the night of 18–19 May, a series of new eruptive paroxysms started
and are still ongoing at the time of writing this article.

Here, we investigate the 17 Mt. Etna paroxysms of February–April 2021 through the
outputs of the Robust Satellite Techniques for Volcanoes (RSTVOLC) [31], the RASTer (RST
on ASTER [32]) system, and the Normalized Hotspots Indices (NHI) tool [33]. To our
knowledge, this is one of the first studies focusing on those events, which were highly
spectacular and particularly intense, receiving special attention from international, national,
and social media.

2. Mt. Etna Paroxysms of February–April 2021

On 16 February 2021 (Figure 2), after an almost continuous Strombolian activity
recorded in the previous months at Mt. Etna summit craters, which culminated with the
major Strombolian episodes of 13–14, 21 and 22 December 2020, a sequence of powerful
paroxysms took place at SEC. Table A1 (see Appendix A) details the 17 paroxysms, which,
until 1 April, followed one another with intervals ranging from 32 h to over 6 days,
providing information about eruption features.
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eruptive vent up to 300–400 m high, while the dark eruptive cloud expands to the east. (b) In the lower centre, the lava
overflows erupted from the Southeast Crater can be seen. Photos by Giò Giusa.

The 17th paroxysm was the longest of the time series (with lava fountains of 540 min
duration), the eruptive column was usually high, up to 11 km above sea level (a.s.l.) (e.g.,
the 6th paroxysm), and lava flows moved towards Valle del Bove and the southern flank
(see Table A1).

During the eruptive events, primitive magma, which is compositionally similar to the
source magma that forms in the Earth's mantle at a depth of over 40 km [34], very rich
in gas, was expelled (e.g., [35]). The coarser and heavier material fell by gravity around
the eruptive vent and therefore on the flanks of the SEC, which through this continuous
contribution has systematically changed shape and size in each of the 17 eruptions. The
lighter portion of the fragmented magma, however, continued to rise in the atmosphere for
kilometres, until it reached the 'floating' altitude, around 8–10 km above sea level, where
ashes and lapilli were taken over by the winds of the high troposphere and then transported
to areas very far from the volcano, up to many hundreds of kilometres. Therefore, most of
the Etna urban centres were repeatedly covered by a heavy mantle of ashes and lapilli. A
phenomenon that is only apparently harmless. Indeed, the fallout of the coarser volcanic
material, with bombs larger than 10–15 cm falling over 7 km away from the eruptive vent,
can injure people and animals, damage and burn vegetation, break crystals, and damage
car bodyworks. Volcanic ash makes roads slippery and dangerous for road traffic. The
passage of cars on the roads covered with lapilli further fragments the volcanic material,
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making it microscopic in size (up to PM10 size), easily inhaled, and therefore dangerous for
human health. Finally, when the material falls on Catania, Sigonella, and Reggio Calabria
airports, they must temporarily close, to ensure the safety of flights and clean the runways.
Multiplying these problems 17 times in 44 days, we can understand the hardship faced by
the population as well as the difficulties that the authorities have had to face.

3. Data

The AVHRR sensor, aboard NOAA (National Oceanic and Atmospheric Administra-
tion) satellites, provides data in five spectral channels, from visible to thermal infrared.
The AVHRR3, flying on the MetOp (Meteorological Operational)-A, B, and C satellites,
scans the Earth’s surface in six spectral bands, including the channel 3A (1.6 µm) operating
in daytime [36]. MODIS, on board the Aqua and Terra satellites, acquires VIS and TIR
data four times per day in 36 spectral bands (e.g., [3]). SEVIRI, aboard Meteosat Second
Generation (MSG) geostationary satellites, provides data in four VNIR (0.4–1.6 µm) and
eight IR channels (3.9–13.4 µm), with a temporal sampling up to 5 min in the Rapid Scanner
mode [37]. ASTER, aboard the Terra platform, operates in 14 spectral bands from VNIR
to TIR (15 m to 90 m spatial resolution), with a repeat cycle of 16 days. OLI, aboard the
Landsat-8 satellite (16-day revisit time), acquires VNIR to SWIR data in nine spectral chan-
nels [38]. The MSI instrument, aboard the Sentinel-2 constellation (5 day revisit time at the
equator in cloud-free conditions), acquires data in 13 spectral bands from VNIR to SWIR,
with a spatial resolution ranging from 10 m to 60 m [39].

Satellite data from those sensors (Table 1) were used to monitor and quantify the Mt.
Etna paroxysms, using the hotspot detection methods described in detail in the next section.

Table 1. Satellite data used in this work, key use of each exploited band, spatial resolution, hotspot detection algorithm.

Satellite Sensor
Used Spectral Bands
(Wavelength Range

in µm)
Band Key Use

Spatial
Resolution

(Nadir)

Hotspot Detection
Algorithm

Terra/Aqua MODIS

1 (0.620–0.670)
21/22 (3.929–3.989)
31 (10.780–11.280)
32 (11.770–12.270)

Cloud detection
Hotspot detection
Hotspot detection
Cloud detection

1 km RSTVOLC

NOAA/MetOp AVHRR
1 (0.58–0.68)

3B (3.55–3.93)
4 (10.5–11.5)

Cloud detection
Hotspot detection

Cloud/hotspot
detection

1.1 km RSTVOLC

MSG SEVIRI
1 (0.56–0.71)
4 (3.48–4.36)
9 (9.8–11.8)

Cloud detection
Hotspot detection

Cloud/hotspot
detection

3 km RSTVOLC

Terra ASTER 12 (8.925–9.275)
13 (10.250–10.950)

Hotspot detection
Cloud/hotspot

detection
90 m RASTer

Landsat-8 OLI
5 (0.851–0.879)
6 (1.566–1.651)

7 (2.107–2.)
Hotspot detection 30 m NHI

Sentinel-2 MSI
8A (0.854–0.875)
11 (1.568–1.659)
12 (2.115–2.290)

Hotspot detection 20 m NHI
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4. Methods
4.1. Hotspot Detection
4.1.1. RSTVOLC Algorithm

The RSTVOLC algorithm is an optimised configuration of the Robust Satellite Tech-
niques (RST) for volcanological applications (see [31,40] for details).

RSTVOLC uses two indices in combination, based on the Absolutely Local Index of
Change of the Environment (ALICE [41]), to detect thermal anomalies [41]. The ⊗MIR(x,y,t)
index, which is computed using the AVHRR channel 3B, the MODIS channel 21/22,
and the SEVIRI channel 4 (see Table 1), is highly sensitive to hot magmatic features.
The ⊗MIR-TIR(x,y,t) index, by exploiting also TIR data (i.e., AVHRR channel 4, MODIS
channel 31, and SEVIRI channel 9), is used to increase the confidence level of detec-
tion [40]. Since RSTVOLC is a tuneable technique, different cutting levels of those indices
(e.g., ⊗MIR(x,y,t) > 3 AND ⊗MIR-TIR(x,y,t) > 3) are used to identify volcanic hotspots [31].

Those indices are calculated by processing pluriannual time series of homogeneous
(i.e., same spectral channel/s, same month, and overpass times) cloud-free satellite records.
The One-channel Cloudy-radiance-detection Approach (OCA [42]), and a standard cloud-
masking procedure, from the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT), are used to filter out cloudy pixels from SEVIRI data [43].

The RST detection scheme applied to ASTER TIR data, under Google Earth Engine
(GEE) platform, is widely described in [32].

4.1.2. NHI Algorithm

The NHI multichannel algorithm uses two normalised indices to identify and map
high-temperature features through satellite data at mid-high spatial resolution [44]. Those
indices analyse the TOA (Top of the Atmosphere) radiance (W m–2 sr–1 µm–1) measured in
the SWIR (at 1.6 µm and 2.2 µm) and NIR (Near Infrared) (0.8 µm) bands of MSI and OLI.
The algorithm, whose wide description can be found in [44], flags as 'hot' the pixels with
positive values of one or both the above-mentioned indices.

NHI was tested with success over different volcanic areas using data also from previ-
ous sensors such as TM (Thematic Mapper), ETM + (Enhanced Thematic Mapper, Plus),
and ASTER [45], whose SWIR observations were available until April 2008 due to the
failure of the SWIR instrument [46].

The NHI tool (https://sites.google.com/view/nhi-tool (accessed on 23 June 2021)),
by exploiting the high computational resources and the extended data archive of the
GEE platform, enables the analysis of volcanic thermal anomalies at the global scale.
The tool includes some additional spectral tests to increase the accuracy in mapping hot
targets minimising false detections. The latter are mainly associated with the multispectral
misregistration of Sentinel-2 MSI imagery, affecting also other recent hotspot detection
methods (e.g., [47]). A detailed description of the NHI tool performance can be found
in [33].

4.2. Radiative Power Estimation
4.2.1. AVHRR Estimations

To estimate the radiative power from infrared AVHRR data [48], starting from the
outputs of the dual band three-component method, we used the following formulation:

Qrad =
n

∑
i=1

ε σ Ai

[
pci Tci

4 + phi
Thi

4
]

(1)

where Qrad is the radiative power [W], n is the number of detected hot pixels, Ai is the lava
flow area for the pixel i having a crusted and molten portion pci and phi

with temperatures
Tci and Thi

, and σ is the Stefan–Boltzmann constant (5.67 × 10–8 Wm–2 K–4) [48]. In this
study, we assumed ε = 0.98 (e.g., [49,50]) as representative of the Etnean lava flows to
calculate the radiative power (mean value from lower and upper limit; Tc = 100 ◦C;
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500 ◦C), without correcting data for atmospheric effects to cross-compare results with the
MODIS ones.

4.2.2. SEVIRI and MODIS Estimations

To retrieve the radiative power from SEVIRI and MODIS data, starting from thermal
anomalies flagged by RSTVOLC, we used the formulation proposed in previous stud-
ies to characterise thermal anomalies with temperatures ranging in between 600 and
1500 K [51,52], and largely used in literature (e.g., [53,54]):

VRP =
Apixel

τMIR

(
σε f h

aε f ,MIR

)
(LMIR–Lb,MIR) (2)

In Equation (2), Apixel is the pixel area (km2) at relative scan angle (Apixel from MODIS
data was calculated as ∆S × ∆T, where ∆S and ∆T are the along-scan and along-track
pixel size [52,55], τMIR is the atmospheric transmittance in the MIR band, σ is the Stefan–
Boltzmann constant, εf is the hotspot emissivity over all wavelengths, εf,MIR is the hotspot
emissivity in the MIR band, LMIR (W m–2sr–1µm–1) is the MIR spectral radiance from
the hot target, Lb,MIR is the background radiance, and a is a sensor-dependent constant
(Table 2).

Table 2. Sensor-dependent constants [51–53].

Sensor a × 10–9 (Wm–2sr–1µm–1K–4)

SEVIRI 3.06
MODIS 3.0

By assuming εf =εf,MIR (gray body), the above-mentioned equation may be simpli-
fied [52].

In this work, Lb,MIR from MODIS data refers to the temporal mean of the spatial
average calculated over a 7 × 7 pixel box located at the Mt. Etna southern area (i.e., at
a distance of about 10 km). The OCA method was used to discard cloudy pixels from
this computation. To retrieve Lb,MIR from SEVIRI data, we first calculated the temporal
mean of the MIR radiance, i.e., µLMIR(x, y, t), for each pixel of the scene at the observation
time t (96 time slots) by analysing a long-time series of LMIR data [41]. For each hotspot
pixel detected by RSTVOLC, the background radiance represents the spatial average of
µLMIR(x, y, t) retrieved over a 7 × 7 pixel window (about 91 × 91 km2), around the pixel
(x,y). To compute the spatial average, we excluded both sea and no-data pixels.

We estimated the radiative power from infrared MODIS and SEVIRI data by assuming
τMIR = 1 in equation (2), as in previous independent studies (e.g., [55,56]).

5. Results
5.1. Thermal Anomaly Identification and Mapping

In Figure 3, we show some thermal anomaly maps, referring to the period 16 February–
10 March 2021, generated through the NHI tool and the RASTer system. Maps display
the hotspot pixels in different colours. Regarding the NHI detections, red and yellow
pixels indicate the areas where volcanic thermal emissions were strong or less intense,
respectively.
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After a gradual increase in Strombolian activity and volcanic tremor recorded by
the Istituto Nazionale di Geofisica e Vulcanologia (INGV) surveillance network, a lava
overflow started on 16 February at around 17:05 UTC. The lava overflow caused the partial
collapse of the cone at the eastern eruptive vents of SEC, generating a pyroclastic flow
along the western wall of the Valle del Bove (see Table A1). Soon after, an intense lava
fountaining (500–600 m high, 45 min lasting) occurred, generating a tall (≈10 km above
sea level) eruptive column [30]. A few hours before the start of the paroxysm, a thermal
anomaly, which was spatially more extended than previous days, affected the Mt. Etna
crater area, as indicated by hot pixels flagged by NHI over VOR-BN and SEC (see the
S2-MSI map of 16 February). The RASTer map, from ASTER TIR data of 17 February, shows
that the lava flow emitted during the first paroxysmal event affected the Valle del Bove,
moving towards the E-SE direction (see orange pixels).

The second paroxysm took place during the night of 17–18 February, i.e., 33 h after the
previous eruptive episode. This event was similar to the previous one and generated a lava
flow travelling towards the Valle del Bove, in the NE and SE, and on the high southern
flank of Etna, in the SW direction [57]. The S2-MSI and L8-OLI maps of 18 February
provided the same information about the shape and spatial extent of lava flows, revealing
the occurrence of a thermal activity also at NEC. Figure 3 shows that the first flow moved
in the SW direction reaching an altitude of about 2840 m, while the second flow extended
up to about 1680 m in the Valle del Bove. The maps of 21 and 23 February display the lava
flows associated with the 4th and 5th paroxysm, which mostly affected the same areas.
The fourth paroxysm started in the late afternoon of 20 February and was preceded by a
weak Strombolian activity. At around 21:30 UTC, a small lava overflow occurred; explosive
activity then increased, and a lava fountain activity began at 22:00 UTC, becoming more
intense in the following hours. This activity, generating an eruptive column extending up
to about 10 km a.s.l., decreased starting from 01:10 UTC [30]. The fifth paroxysm took place
during 22–23 February with lava fountains lasting about 50 min, and the emission of a
high eruptive column. It had a time duration of about 14 h, including also the Strombolian
phase preceding the fountain (Table 1A).

The L8-OLI and Terra-ASTER maps of 25 and 26 February display the thermal anomaly
associated with the sixth paroxysm, which took place on 24 February, lasting about six



Remote Sens. 2021, 13, 3074 8 of 20

hours. Lava fountain activity fed a new lava flow expanding towards SW [58], which was
well detected by satellite, as indicated by the NHI and RASTer maps.

Lava flow associated with the 7th paroxysm was identified almost in concomitance
with the end of the eruptive event (i.e., from the S2-MSI scene of 28 February at 09:44
UTC). Consequently, the lava flow, extending up to an altitude of about 2000 m in the
Valle del Bove, appeared particularly intense (see the high number of red pixels). The
seventh paroxysm occurred after a three-and-a-half-day break and was preceded by a weak
Strombolian, having started on 28 February at around 08:10 UTC, rapidly evolving to lava
fountains, lasting 54 min. The paroxysm also produced a lava flow moving towards East,
and a tall eruptive column (11 km a.s.l.) causing the ash fall-out in the East direction.

The thermal anomaly map from the S2-MSI scene of 3 March at 09:51 UTC displays
the lava flow associated with the 8th paroxysm, which had occurred the day before with
lava fountains, lasting about two hours, and an eruptive column dispersing in the South
direction. Thermal anomaly associated with the paroxysm was partially detected by
satellite (as indicated by the manual inspection of satellite imagery), due to possible lava
cooling effects. In general, those effects such as clouds/plumes had a significant impact
on thermal anomaly identification, as for the maps of 6 and 10 March. On 4 March, the
9th paroxysm occurred. It was preceded by a Strombolian activity increasing 22 min after
midnight, reaching the climax phase about two hours later. The lava fountain lasted just
over two hours. The 10th paroxysm started on 7 March between 00:00 and 01:00 UTC
and lasted about 10 h, emitting a small lava flow from a vent opening at the base of SEC.
Activity then evolved to lava fountains at 06:00 UTC lasting 60 min, generating a high
eruptive column, dispersing in the East direction, and causing the ash fall-out over the
neighbour villages [59]. The map of 6 March, referring to the period in between the 9th
and 10th paroxysm, was strongly affected by cloud coverage, while the map of 10 March
shows the lava flow emitted the day before, during the 11th paroxysm, from a vent located
at the S base of the SEC [60], which was masked by clouds mainly in the distal part.

The map from the S2-MSI scene of 13 March shows a small thermal anomaly detected
after the end of the 12th paroxysm. This event, which was preceded by a weak Strombolian
activity occurring on 12 March since 03:20 UTC, generated lava fountaining lasting 175 min,
and an eruptive column extending up about 9–10 km a.s.l. (Table A1). Lava flow from SEC
reached about 2000 m elevation in the Valle del Bove [61]. Clouds and possible lava cooling
effects affected once again the thermal anomaly identification.

The NHI map from the S2-MSI scene of 25 March displays the lava flow emitted
during the 16th paroxysm, which took place between 23 and 24 March. In detail, after
a weak Strombolian activity from SEC, recorded since 23 March at 19:05 UTC, sustained
lava fountains occurred during the night, lasting about 8 h. The eruption, ending on
24 March at 11:55 UTC [62,63], generated an ash column moving in the SSO-SE directions,
and a lava flow moving towards the Valle del Bove. The NHI map indicates that the lava
flow extended up to about 2600 m elevation. On the other hand, the analysis of the false
colour composite imagery revealed that this feature was spatially more extended than that
indicated by NHI. The latter did not detect the lava flow in the distal part (where it was
less radiant in the SWIR bands), due to possible effects of lava cooling.

Finally, the map of 30 March shows that a low-to-moderate thermal activity was in
progress at the summit craters, some hours before the occurrence of the 17th paroxysm.
This event was preceded by an intense Strombolian activity occurring since 14:30 UTC [64].
A small lava emission was noticed through INGV thermal surveillance cameras, emitted
from the SEC's eastern base at 13:00 UTC on 31 March. Lava fountains started a few hours
later and lasted 540 min. The eruptive column reached 9–10 km a.s.l., dispersing in the SSW
direction. Lava flows expanded towards E, SE, and SSE (in Valle del Bove) and towards S
and SW (on the southern flank) down to 1820 m a.s.l.

Hence, on the one hand, S2-MSI, L8-OLI, and Terra-ASTER data provided detailed
information about active vents and emitted lava flows, particularly when they were less
affected by cloud/volcanic plumes. On the other hand, they did not enable the continuous
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monitoring of Mt. Etna activity, despite the advantages of data integration, which guaran-
tees a temporal sampling of 2–3 days on average over the Mt. Etna area (see Figure 4).

Therefore, thermal activity associated with the paroxysms of February–April 2021
required the use of high temporal resolution satellite data to be monitored and quantified
in a more efficient way from space, as shown and discussed in detail in the next sections.
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Figure 4. Temporal trend of the total hotspot area (m2) retrieved using NHI tool, by integrating
L8-OLI and S2-MSI observations over the period 1 February–4 April 2021, with the indication of the
relative paroxysm.

5.2. Monitoring and Quantifying Mt. Etna Paroxysms
5.2.1. AVHRR and MODIS Observations

The RSTVOLC system performs the near-real-time monitoring of Italian volcanoes
through infrared AVHRR and MODIS data, directly acquired and processed at the Institute
of Methodologies for Environmental Analysis (IMAA) of the National Research Council
(CNR). Data integration currently guarantees up to nine satellite observations per day
(AVHRR-3 data are not analysed in the daytime because of channel 3A). The system
generates thermal anomaly products (i.e., maps and ASCII files), available within a few
minutes after the sensing time [31], which may be delivered to the users upon request.

Figure 5 displays the temporal trend of radiative power retrieved over the period
16 February–1 April 2021, integrating results from the above-mentioned sensors, starting
from the RSTVOLC detections.

The figure shows that AVHRR provided relevant information especially about the 1st,
4th, and 9th event, due to satellite overpass times fitting with the time of paroxysms. On the
other hand, the other eruptive episodes (e.g., the 3rd, 8th, 12th, 15th, and 17th paroxysms),
mostly occurring in the daytime, were better identified using MODIS. The integration of
AVHRR and MODIS observations indicates that some eruptive events were particularly
intense (see the 1st, 3rd, and 17th paroxysms). Among them, the 17th paroxysm appeared as
the most powerful, with a value of radiative power reaching about 14 GW (from the daytime
MODIS scene of 1 April at 09:33 UTC; see the thermal anomaly in Figure 6b). Figure 5 then
shows the progressive increase/decrease in thermal volcanic activity recorded before/after
some eruptive events (e.g., see the 1st and 12th paroxysms), and the identification of a
subtle thermal anomaly also between the 16th and 17th paroxysms.



Remote Sens. 2021, 13, 3074 10 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Temporal trend of radiative power retrieved from AVHRR (mean value from two 
end-members) and MODIS observations, starting from RSTVOLC detections, with the indication of 
the Mt. Etna paroxysms. 

The figure shows that AVHRR provided relevant information especially about the 
1st, 4th, and 9th event, due to satellite overpass times fitting with the time of paroxysms. 
On the other hand, the other eruptive episodes (e.g., the 3rd, 8th, 12th, 15th, and 17th 
paroxysms), mostly occurring in the daytime, were better identified using MODIS. The 
integration of AVHRR and MODIS observations indicates that some eruptive events 
were particularly intense (see the 1st, 3rd, and 17th paroxysms). Among them, the 17th 
paroxysm appeared as the most powerful, with a value of radiative power reaching 
about 14 GW (from the daytime MODIS scene of 1 April at 09:33 UTC; see the thermal 
anomaly in Figure 6b). Figure 5 then shows the progressive increase/decrease in thermal 
volcanic activity recorded before/after some eruptive events (e.g., see the 1st and 12th 

paroxysms), and the identification of a subtle thermal anomaly also between the 16th and 
17th paroxysms. 

These results corroborate the advantages of AVHRR and MODIS data integration in 
monitoring Mt. Etna activity (see also [17]). Nonetheless, Figure 5 shows that some 
eruptive events (e.g., the 2nd, 6th, 10th, and 11th paroxysms) were monitored in a less 
efficient way, because of their time duration. SEVIRI data processed through the RSTVOLC 
algorithm enabled the promptly identification of thermal anomalies and the continuous 
monitoring of volcanic activity (see next section). 
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Etna paroxysms.

These results corroborate the advantages of AVHRR and MODIS data integration
in monitoring Mt. Etna activity (see also [17]). Nonetheless, Figure 5 shows that some
eruptive events (e.g., the 2nd, 6th, 10th, and 11th paroxysms) were monitored in a less
efficient way, because of their time duration. SEVIRI data processed through the RSTVOLC
algorithm enabled the promptly identification of thermal anomalies and the continuous
monitoring of volcanic activity (see next section).
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Figure 6. (a) Thermal anomaly map automatically generated at IMAA-CNR from the night-time AVHRR overpass of 16
February at 20:51 UTC (i.e., after the end of the 1st paroxysm), red and yellow pixels, respectively, indicate the areas where
thermal emissions were stronger or less intense; (b) The thermal anomaly (in red) detected by RSTVOLC over the Mt. Etna
area on the daytime MODIS scene of 1 April at 09:33 UTC (channel 22 in the background) leading to the peak of radiative
power in Figure 5.
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5.2.2. SEVIRI Observations

Figure 7 displays the temporal trend of radiative power retrieved from infrared
SEVIRI data (at 15 min time interval; acquired at the School of Engineering of University
of Basilicata) of 16 February–2 April 2021. The plot also shows the time interval of each
paroxysm (in pink), and the cloudiness (grey line) retrieved using the cloud-masking
procedure described in the ‘methods’ section.
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Figure 7. Temporal trend of VRP retrieved from SEVIRI (in black) data (at 15 min time interval)
starting from RSTVOLC detections with the indication of the number of the Mt. Etna paroxysms.
Paroxysms’ time duration (light pink bars) and cloudiness percentage (light grey line) are represented
as well.

The figure shows that, after the identification of a subtle thermal anomaly (≈30 MW)
in the morning of 16 February (i.e., at 08:30 UTC), a first increment of the thermal volcanic
activity occurred at 16:00 UTC (VRP ≈ 280 MW). One hour later, the radiative power
abruptly increased up to about 3.5 GW, marking the start of the lava overflow. At 17:45 UTC,
the peak of radiative power was recorded, around 4.2 GW. Lower values of this parameter
were then retrieved until 17 February at 08:30 UTC due to possible lava cooling effects.
From the evening of the same day (at 22:15 UTC), a moderated-to-low thermal activity
occurred (VRP ≈ 238 MW), becoming suddenly more intense at 22:45 UTC (VRP ≈ 1.3 GW).
The increase in thermal emissions marked the start of the second paroxysm, leading to
values of radiative power up to about 5 GW, on 18 February at 01:15 UTC. Thermal volcanic
activity then progressively decreased, and, from 14:30 UTC, no thermal anomaly affected
the target area. A subtle thermal anomaly (≈50 MW) was then identified on 19 February at
06:15 UTC. On that day, the 3rd paroxysm occurred (between 08:45 and 08:50 UTC), with a
lava fountaining activity that was recorded after a lava overflow occurring since 07:55 UTC.
This paroxysm, ending at 10:10 UTC, generated a dense ash plume dispersing towards SE
direction, and causing the ash-fall over Zafferana Etnea and Acireale villages [30]. Based
on RSTVOLC detections, thermal anomaly of 19 February became more intense between
08:30 and 08:45 UTC, marking the start of the paroxysm. At 10:30 UTC, i.e., soon after the
end of the eruptive event, volcanic radiative power was estimated around 3.8 GW. After
the discontinuous identification of weak thermal activity in the morning of 20 February
(between 06:00 and 08:30 UTC), a new phase of thermal unrest occurred at 21:00 UTC
preceding the fourth paroxysm. Thermal anomaly, identified two days later, at 22:45 UTC,
marked the start of the fifth paroxysm. The latter, based on information inferred from
SEVIRI data, started at 23:30 UTC and reached the peak (≈2.8 GW) a few hours later (i.e.,
on 23 February at 00:45 UTC). On 24 February, RSTVOLC detected a subtle thermal anomaly
between 06:00 and 07:45 UTC and at 16:30 UTC, preceding the sixth paroxysm. The latter
reached the peak at 20:45 UTC. While the identification of the thermal anomaly associated
with the 8th paroxysm was strongly affected by clouds (the radiative power was estimated
after the end of the paroxysm), during the period 28 February at 18:15 UTC–2 March at
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16:00 UTC, a short quiescence period occurred, in agreement with field observations (see
Table A1).

On the other hand, another phase of thermal unrest was identified on 2 March, starting
from 16:15 UTC, i.e., before the start of the ninth paroxysm. The following two events were
less intense in terms of VRP (with values below 3 GW), whereas the 12th paroxysm was
among the most powerful. Clouds then strongly affected the crater area, impacting on the
identification of thermal anomaly associated with the 13th, 14th, and 15th paroxysms (see
high cloudiness values in Figure 7). The 13th paroxysmal event started on 14 March at
20:10 UTC, with the increase in Strombolian activity at SEC. The lava fountaining occurred
a few minutes after midnight and ceased by 02:43 UTC [65]. The following event (the 14th
of the time series) began on 17 March when the Strombolian activity recorded at 00:30 UTC
increased in intensity, changing into lava fountaining at around 02:15 UTC. The paroxysm
ended at 06:00 UTC [66,67]. Explosions at SEC and the lava flow in the Valle del Bove
persisted until the evening of 18 March, when weather conditions improved. The 15th
paroxysm occurred on 19 March with lava fountains recorded since 08:35 UTC, lasting
about 120 min. This event followed the same pattern of previous events, with the increase
in volcanic tremor, a Strombolian activity evolving to lava fountains, and the lava flow
emission [66].

Figure 7 shows that a subtle thermal anomaly was then identified by RSTVOLC before
the 16th paroxysm. From the night of 25 March, and over more than 150 h, the system
did not flag any hotspot over the target area. This quiescence period was the longest
recorded between two consecutive paroxysms. Thermal anomaly detected from 31 March
at 18:45 UTC marked the start of a new lava fountaining. The 17th paroxysm appeared,
however, much less intense than that indicated by the analysis of infrared MODIS data
(e.g., VRP ≈ 2.6 GW on 1 April at 08:45 UTC). The intensity of thermal emissions then
progressively decreased, and a subtle hotspot affected the Mt. Etna area until 2 April
at 07:30 UTC. This information agrees with field observations, indicating that in the late
morning of 1 April, explosive activity at SEC was almost exhausted, unlike the effusive
activity, which gradually ran out during the night of 1–2 April.

6. Discussion

We investigated the Mt. Etna paroxysms of February–April 2021 through a multi-
platform observing system, retrieving information about location, size, shape, and relative
intensity level of thermal anomalies detected by satellite.

Figure 8 displays the plot of the total hotspot area retrieved from S2-MSI and L8-OLI
scenes of June 2013–March 2021 using the NHI tool. The figure shows that, although
other significant thermal anomalies (e.g., 26 October 2013, 18 March 2017) affected the
target area before the eruptive events investigated in this work, those associated with
the paroxysms of 16–18 February 2021 were the largest in size. It should be pointed out,
however, that the low temporal sampling of the analysed satellite data, such as other factors
(e.g., clouds/eruptive plumes), probably affected the results of Figure 8.

Despite those limitations, L8-OLI, S2-MSI, and Terra-ASTER data allowed us to inves-
tigate also changes in thermal volcanic activity occurring at Mt. Etna. This is indicated,
for instance, by the small thermal anomaly identified soon after the lava effusion of
15 December 2020 [68], becoming spatially more extended after mid-January 2021. This
detection reveals a general increase in thermal volcanic activity at the summit craters about
one month before the start of the first paroxysmal event of 2021 (see Figure 8).

The latter, such as the following paroxysms, was better monitored and quantified
using satellite data at high temporal resolution (see Section 5.2). Indeed, especially SEVIRI
data enabled the prompt identification and the continuous monitoring of thermal volcanic
activity (e.g., [5,7,69]), except when clouds/plumes partially or completely obscured the
target area (e.g., the 8th paroxysm). Figure 7 shows that the percentage of cloudy pixels
was generally high (i.e., above 50%). Because of clouds/plumes, some eruptive events (e.g.,
the 8th, 11th, and 16th paroxysms) were identified later than field observations, while other
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paroxysms (e.g., the 13th, 14th, and 15th paroxysms) were partially identified by satellite.
Clouds affected less than 30% of the analysed sub-scenes (a circle area of 12 km in radius
centred over the Mt. Etna craters) when SEVIRI data were fully exploited (e.g., the 3rd and
12th paroxysm).
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Regarding the radiative power, values retrieved from SEVIRI data appeared under-
estimated when compared to temporally coincident MODIS observations. In addition,
even with filtering MODIS data for low values of the satellite zenith angle, to take the poor
viewing conditions (e.g., [11,20,70,71]) into account, differences in terms of VRP recorded
especially during the 17th paroxysm were particularly high (≈12.5 GW). Those differences
were less significant when weak thermal activities occurred. The MIR channel saturation,
having a lower impact on results from MODIS data (we used channel 21, offering a high
dynamic range when channel 22 saturated) and the overestimation of cloudy pixels ob-
served on a number of SEVIRI scenes, due to the used cloud-masking procedure, were
the main factors affecting the estimates of VRP. It should be mentioned, however, that the
radiative power may be underestimated also because of the digital filter and the geometric
resampling applied to SEVIRI raw data before their delivery via EUMETCast [72]. An
overestimation of this parameter may instead occur due to the Point Spread Function
(PSP), which is so large that even a small lava flow within a single pixel may generate
significant effects on the measured radiance [73]. Finally, the impact of atmospheric effects
on estimates of radiative power should be also considered (e.g., we recorded an increase in
VRP up to ~1 GW from SEVIRI data by setting a mean τMIR value of 0.82, for a mid-latitude
winter atmosphere).

Despite those factors, SEVIRI allowed us to characterise the Mt. Etna paroxysms
also in terms of radiated energy. Figure 9 displays the plot of this parameter, which was
calculated by time integrating the values of radiative power for each paroxysmal event,
and the mean cloudiness values (dotted line). Based on the information provided by
SEVIRI, the eruptive events of 22–23 February (the 5th paroxysm) and 31 March–1 April
(the 17th paroxysm) were the most energetic (the 8th paroxysm was not quantified in terms
of radiated energy also because of cloudy pixel overestimation). Therefore, by combining
information from Figure 9 to AVHRR and MODIS observations, we can assert that the 17th
paroxysm having the longest time duration was the most powerful, and probably radiated
the largest amount of energy. These results confirm the importance of using a multi-sensor
approach in investigating and quantifying thermal volcanic activity.
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Figure 9. Radiative energy retrieved from infrared SEVIRI data of 16 February–1 April 2021 with the
indication of paroxysms and cloudiness (dotted line).

From a volcanological point of view, between mid-February and the first days of
April 2021, Mt. Etna produced 17 paroxysmal eruptions in just 44 days. Short but violent
eruptions (capable of emitting a total of 40–50 million cubic meters of magma) occurred,
which, on the whole, can be assimilated almost to a single eruptive event of considerable
size: huge pyroclastic columns elevated over ten kilometres to the upper limit of the
troposphere; lava flows 3–4 km long distributed on the east and south high flanks. Those
eruptions were produced by the SEC, which doubled in size between 2011 and 2015.
However, although summit eruptions are the most frequent at Mt. Etna, as shown in
Figure 10, displaying the map of the areas more frequently affected by thermal anomalies
retrieved from L8-OLI and S2-MSI data of 2013–2021, they do not represent the most
dangerous eruptive events for this volcano.
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Figure 10. Map of the areas affected by thermal anomalies (number of L8-OLI and S2-MSI scenes)
at Mt. Etna, generated by analysing satellite data of 2013–2021 through the NHI algorithm, under
the GEE platform. Google terrain is in the background. Note the highest values (from red to purple)
retrieved over summit craters and the Valle del Bove.

Indeed, lateral eruptions are potentially much more dangerous, because they open
vents at low altitudes, and therefore near or inside cities, generating lava flows that can
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destroy large urban areas in a short time [22,23]. But summit eruptions can be the prelude
to lateral eruptions and must be analysed with extreme care.

After the brief but dynamically violent lateral eruption of 24–27 December 2018 [12,24,74],
Etna first produced a modest and discontinuous summit activity, which increased in the
second half of 2020, culminating first in almost continuous Strombolian activity at the SEC
(January 2021), and then in the 17 eruptive paroxysms of February–April 2021. Numerous
other paroxysmal events started from the night of 18–19 May 2021 and not yet finished at
the time of writing. This is a succession of events similar to that recorded during 2000–2001
when over 70 eruptive paroxysms were the prelude to two violent and dangerous flank
eruptions [75,76].

The increase in the intensity of the summit eruptions mentioned above was perfectly
recorded by the set of satellite observations, at different temporal, spatial, and spectral res-
olutions, analysed in this work. They alerted possibly in advance of imminent phenomena
and provided information also about the time duration and the energy released during the
different paroxysms. Both those aspects are of great relevance for imagining the possible
eruptive scenarios.

7. Conclusions

The paroxysms of 16 February–1 April 2021 were among the most intense eruptive
events occurring at Mt. Etna during the last decade, as indicated by the results of this work.

The latter indicates that the 17th paroxysm was the most powerful, with values of
radiative power up to about 14 GW (e.g., we retrieved VRP values in the range 1–2 GW
during the paroxysms of May 2016 [17]), and probably the most energetic of the time series.
Additionally, based on the information retrieved from L8-OLI and S2-MSI data, the 1st and
3rd paroxysm generated the largest thermal anomaly at Mt. Etna after April 2013. However,
this information needs to be better assessed, also because of the low temporal sampling of
analysed data especially before June 2015, when S2-MSI data were not available.

This study demonstrates the efficiency of the used multi-platform system in moni-
toring and quantifying Mt. Etna activity, despite the impact of a number of factors (e.g.,
clouds/plumes, pixel saturation, satellite viewing geometry, and atmospheric effects) on
the identification and mapping of volcanic thermal anomalies from space. This system
may provide reliable information also about subtle phases of thermal unrest (e.g., those
preceding intense eruptions), contributing to the volcanic risk mitigation also in other areas.
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Appendix A

Table A1. Summary of the Mt. Etna paroxysms of 16 February–1 April 2021.

Date of the Paroxysmal Event Start and End Times Eruption Features

1st (16 Feb) 17:05–18:00 UTC

Lava fountains (duration 45 min; 500–600 m high),
eruptive column (10 km a.s.l.), lava and pyroclastic

flows moving towards Valle del Bove and Valle
del Leone.
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Table A1. Cont.

Date of the Paroxysmal Event Start and End Times Eruption Features

2nd (17–18 Feb) 22:30–00:40 UTC

Lava fountains (duration 35 min; 600–700 m high),
eruptive column and ash impact on the ESE sector,

lava flow moving towards NE, SE (Valle del Bove) and
SW (southern flank).

3rd (19 Feb) 07:55–10:10 UTC

Lava fountains from 4–5 vents (duration 65 min;
600–700 m high), eruptive column (10 km a.s.l.), ash
impact on the SE sector, lava flows towards E (Valle
del Bove) and SW (southern flank), hydromagmatic

explosions (lava–snow interaction).

4th (20–21 Feb) 20:00–01:20 UTC

Lava fountains (duration 180 min, up to 1000 m high),
eruptive column (10 km a.s.l.), ash impact on the SW

sector, small (in length and volume) lava flows
towards E (Valle del Bove) and SW (southern flank).

5th (22–23 Feb) 20:30–10:38 UTC
Lava fountains (duration 50 min), Strombolian activity
and lava overflow, eruptive column (more than 10 km

a.s.l.), ash impact on the NW sector.

6th (24 Feb) 16:00–22:20 UTC
Lava fountains (duration 140 min; 500 m high),

eruptive column (11 km a.s.l.), lava flows towards E
(Valle del Bove) and SW (southern flank).

7th (28 Feb) 08:10–09:33 UTC
Lava fountains (duration 54 min; 700 m high),

eruptive column (11 km a.s.l.), ash impact on the E
sector, lava flows towards E (Valle del Bove).

8th (2 March) 10:45–14:50 UTC
Lava fountains (duration 120 min), eruptive column
(beyond clouds, up to 9 km a.s.l), ash impact on the

S sector.

9th (4 March) 00:20–08:30 UTC

Lava fountains (duration 130 min; 300 m high),
eruptive column (11 km a.s.l.), ash impact on the NE

sector, small lava flow, Strombolian activity at
Voragine Crater.

10th (7 March) 00:00–14:00 UTC
Lava fountains (duration 60 min), eruptive column
(10 km a.s.l.), ash impact on the E sector, lava flows
towards E (Valle del Bove, down to 2700 m a.s.l.).

11th (9–10 March) 18:00–03:30 UTC

Lava fountains (duration 163 min; 500 m high),
eruptive column (up to 9–10 km a.s.l.), ash impact on

the E sector, lava flows towards E (Valle del Bove,
down to 1770 m a.s.l.), discontinuous Strombolian

activity persists even after the end of the paroxysm,
until the next one.

12th (12 March) 03:20–10:00 UTC

Lava fountains (duration 175 min; 500 m), eruptive
column (up to 9–10 km a.s.l.), ash impact on the E

sector, lava flows towards E (Valle del Bove),
discontinuous Strombolian activity persists even after

the end of the paroxysm, until the next one.

13th (14–15 March) 20:10–02:50 UTC

Lava fountains (duration 170 min), eruptive column
and ash impact on the E sector, lava flows towards E

(Valle del Bove) and S (southern flank), discontinuous
Strombolian activity persists even after the end of the

paroxysm, until the next one.

14th (17–18 March) 00:30–06:00 UTC

Lava fountains (duration 170 min), eruptive column
and ash impact on the SE sector, lava flows towards E
(Valle del Bove, down to 2200 m a.s.l.), Strombolian
activity persists even after the end of the paroxysm,

until the next one.
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Table A1. Cont.

Date of the Paroxysmal Event Start and End Times Eruption Features

15th (19 March) 06:34–11:20 UTC

Lava fountain (duration 120 min), eruptive column
and ash impact on the ESE sector, lava flows towards
E (Valle del Bove), Strombolian activity persists even

after the end of the paroxysm, until the next one.

16th (23–24 March) 19:05–11:55 UTC

Lava fountains, (duration 480 min), eruptive column
(up to 6–7 km a.s.l.), ash impact on the SSO-SE sector,
lava flows towards E (Valle del Bove) and S (southern

flank), Strombolian activity and discontinuous lava
effusions persist after the end of the paroxysm, until

the next one.

17th (31 March–
1 April) 14:30–21:00 UTC

The paroxysm was preceded by an intense
Strombolian activity occurring on March 30th. Lava
fountains, (time duration 540 min), eruptive column
(9–10 km a.s.l.), ash impact on the SSW sector, lava
flows towards E, SE, SSE (Valle de Bove) and S, SW

(southern flank) up to 3.3 km long down to
1820 m a.s.l.
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