11. Geomorfologia dell'area

11.1 Deformazioni Gravitative Profonde di Versante: parte generale e di campagna

I fenomeno morfologico senza dubbio più evidente nell'area in esame è la enorme trincea di M. di Roccatagliata. Questa determina una netta separazione

Figura 11.1: M. Roccatagliata, versante sud-occidentale
tra due blocchi di roccia che costituiscono il rilievo, distanziati in larghezza di circa 50 metri. Il fenomeno è legato ad un processo di deformazione gravitativa profonda di versante (DGPV) (Figura 11.1).

Le DGPV sono fenomeni intermedi tra i processi morfologici gravitativi, quali i movimenti franosi in genere, ed i processi legati alla tettonica gravitativa, per motivi di scala, di stress prodotti e di tempi di evoluzione del fenomeno. I fattori che sottendono i processi di DGPV sono di diverso ordine, connessi con l'attività endogena ed esogena e con i caratteri dei materiali rocciosi coinvolti.

Un parametro molto importante è l'elevata energia del rilievo o stress topografico (Dramis, 1984), per ogni pendio esiste infatti una altezza critica superata la quale il pendio non è più stabile. Il rapporto tra i grandi sollevamenti tettonici, che sottendono all'incremento dell'energia del rilievo, e l'attività dei processi erosivi che tendono a smantellarlo è di proporzionalità diretta. Se i sollevamenti sono rapidi e le condizioni climatiche sono favorevoli, si verifica un approfondimento del reticolo idrografico con la creazione di valli lunghe dai versanti acclusi. Un episodio di rapido sollevamento della penisola italiana si ebbe a partire dalla fine del Pleistocene inferiore (700.000 anni), a questo fenomeno vanno riferiti numerosi processi DGPV osservabili attualmente.

Le variazioni climatiche possono influire sulla formazione di dislivelli elevati ed in definitiva sulla genesi di DGPV: infatti nei periodi di clima freddo ed arido la circolazione delle acque è ridotta e la quantità di apporti detritici dai versanti satura in breve tempo la capacità erosiva delle acque superficiali. Con il ritorno di climi più caldi le acque riacquistano la capacità erosiva ed incidono i materiali depositati nel fondo valle. Il risultato è un approfondimento del reticolo idrografico, che è più accentuato se l'area nel
contempo ha continuato a sollevarsi, e quindi una crescita dell'energia del rilievo che si è visto essere uno dei motori principali delle DGPV.

Un fattore importante nel controllo della stabilità dei versanti sono le caratteristiche lito-strutturali del substrato. Infatti a parità di condizioni climatiche due litotipi possono rispondere in modo diverso ai processi erosivi e di denudamento. Si pensi che solo in presenza di materiali coerenti è possibile la costruzione di versanti molto alti e quindi i fenomeni gravitativi profondi sono favoriti in substrati che il senso comune definirebbe più stabili e meno inclini ai movimenti franosi.

Generalmente una situazione a rischio di DGPV è determinata dalla presenza di rocce molto coerenti e a comportamento fragile, un calcare ad esempio, in appoggio su strati di materiale a comportamento plastico, un livello argilloso.

Le deformazioni gravitative profonde di versante sono attive per tempi molto lunghi senza manifestarsi, il movimento avviene a scatti. Si può parlare di cause preparatorie, condizioni climatiche di lungo periodo o cause tectoniche e lito-strutturali, e di cause determinanti quali le precipitazioni a carattere eccezionale o gli eventi sismici, questi ultimi possono agire aumentando in modo sostanziale le accelerazioni orientate ed in ultima analisi, la forza di gravità agente sulla massa instabile.

Le zone frontalì di una catena sono siti particolarmente adatti all'innescò di fenomeni di deformazione gravitativa profonda di versante per la coincidenza di vari fattori (Dramis & Sorriso-Valvo, 1994), tra cui il rilascio di stress residui.

Le strutture anticlinaliche tipiche di una zona di sovrascorrimenìo sono aree dove si concentrano sforzi tensionali, nel punto in cui il raggio di curvatura è minimo, che agiscono nella direzione della vergenza provocando fratture
dirette parallelamente all'asse della struttura. Le fratture oltre ad essere zone di debolezza sulle quali possono innescarsi processi di lateral spreading, agevolano la penetrazione dell'acqua in profondità e se si considera che i livelli su cui si impostano i piani di sovrascorrimiento hanno in genere un comportamento plastico o sono costituiti da rocce argillosse, è facile intuire che le cause predisponenti legate alla tettonica preparano il terreno all'azione della forza di gravità.

Nell'area in esame le condizioni favorevoli all'innesco di un fenomeno di DGPV sono numerose, e se alle cause strutturali si sommano gli eventi climatici del Pleistocene inferiore e medio, diventa facile spiegare l'origine delle strutture rilevate sul terreno.

Nel dettaglio si possono analizzare separatamente i fattori tettonici e lito-strutturali e quelli climatici.

M. di Roccatagliata è parte di una struttura anticlinalica costituente il fronte di quel particolare segmento di catena. Si osserva chiaramente, già dalla topografia, il piano di sovrascorrimiento della struttura carbonatica sui sedimenti terrigeni dell'anfianfossa tardo miocenica. Da ciò sono soddisfatte alcune delle condizioni che predispongono un sito alle deformazioni gravitative profonde: presenza di una zona ad alta energia di rilievo, sovraposizione di rocce coerenti su livelli a competenza minore e comportamento plastico (argille), collocazione nella parte frontale di una struttura a thrust, dove al rilascio degli forzi compressivi corrisponde l'innesco di stress tensionali.

Per quanto riguarda le condizioni climatiche basti ricordare che nell'area ci sono evidenze del passaggio da fasi a clima freddo ed arido, responsabile dei grandi accumuli di materiali detritici, a fasi di ripresa dell'attività erosiva in coincidenza al forte sollevamento regionale del Pleistocene inferiore e medio.
La struttura di M. di Roccatagliata è caratterizzata da una trincea normale all'asse che separa due blocchi calcarei dalle pareti verticali. Le verticalità maggiori si trovano sul blocco più esterno, che si affaccia sul Vallone Giardino, esso ha pareti la cui altezza supera i 100 metri, in particolare sul lato sud-occidentale (Figure 11.2, 11.3). Lo stesso blocco è attivamente interessato da fenomeni di crollo e *toppling*; ai suoi piedi, sul lato esterno, che guarda la valle, si osservano consistenti accumuli di blocchi crollati aventi anche dimensioni decametriche immersi nel detrito di falda.

![Diagram](image)

Simboli in LEGENDA: 1) depositi di frana; 2) argille, marnio argillose, arenarie (Messiniano); 3) calcari, calcareniti, calcari marnosi (Pre-essiniano); 4) falgie; 5) fratture; 6) zone di probabile deformazione plastica; 7) trincea.

Figura 11.2: Sezioni di M. di Roccatagliata che mettono in evidenza le DGPV cui è soggetto il rilievo, Buccolini 1995

Altre trincee sono state segnalate intorno a quella descritta, (Buccolini, 1996), esse sarebbero dirette secondo due sistemi di fratture principali, il primo coassiale alla piega ha direzione NW-SE ed il secondo perpendicolare alla struttura ha direzione NE-SW. Lo stadio evolutivo delle altre trincee è sicuramente embrionale, in nessun altro caso si è avuta la separazione di blocchi. L'autore propone infine la presenza di uno sdoppiamento di cresta alla
sommità di M. di Roccatagliata, tuttavia nella stessa zona sono stati individuati due stacchi morfologici, che si possono seguire dal punto più alto della cresta di Fonte Canale, dei quali il primo più in basso è relazionabile alla presenza di grosse bancate di materiale detritico nella formazione della Scaglia, già descritte in precedenza, ed il secondo, posto esattamente sulla cresta, in più punti sembra coincidere con una scarpata di faglia, in realtà ci sono ottimi motivi per ritenere che proprio la zona sommitale di cui si parla sia interessata da un importante linea tettonica a carattere distensivo, che ribassa i settori sud-occidentali.

Figura 11.3: Blocco occidentale di M. di Roccatagliata
Figura 11.4 Carta geomorfologica della Valle del Tirino: Giuliani et alii, 1995
11.2 Movimenti franosi

Nell'area sono stati riconosciuti numerosi fenomeni franosi a diverso stato di attività; in questo paragrafo verranno descritti i principali integrando i dati, dove necessario con la ricerca bibliografica.

L'evoluzione morfologia dell'area è strettamente collegata ad un ambiente prossimo a quello montano, infatti sebbene le quote massime non siano elevate (1200 m s.l.m. per M. Pietracorniale e 990 m s.l.m. per M. di Roccatagliata) l'area è circondata da rilievi che in buona parte dell'anno sono coperti da coltri nevose (Monte Morrone, Montagna della Maiella) influenzando non poco il clima locale. In una tale situazione è chiaro aspettarsi la produzione di abbondante detrito di falda, in modo particolare nelle zone frontalì delle strutture, predisposte a causa dell'intensa fratturazione, all'azione degli agenti meteorici ed in particolare ai fenomeni crioclastici. In effetti si possono osservare consistenti fasce di detrito alla base dei rilievi attualmente alimentate da sorgenti puntuali, canaloni, o lineari.

Tra fenomeni franosi riconosciuti nell'area si possono distinguere quelli che hanno coinvolto materiale roccioso e quelli che si sono verificati su materiali arenacei e argillosi.

Tra le frane avvenute in roccia si segnalano principalmente frane di crollo che evolvono a colamento quando consistenti masse di materiale, costituenti l'accumulo di frana, vengono a contatto con il substrato pelitico ed incrementano fortemente il sovraccarico e le pressioni neutre e fino al superamento della resistenza al taglio. Il substrato argilloso diviene dunque soggetto al colamento e si comporta come una nastro trasportato per il materiale crollato facendogli percorrere tratti considerevoli (Buccolini, 1996).
Sul versante orientale di M. Pietracorniale sono stati individuati diversi fenomeni franosi di crollo. Il più consistente e recente è il più meridionale. La zona di distacco è costituita da diverse nicchie coalescenti poste quasi alla sommità del rilievo. La zona di accumulo ha dimensioni considerevoli, blocchi di dimensioni decametriche si trovano fino alla strada per il paese di Pescosansonesco, ed il materiale di accumulo è costituito da blocchi eterometrici del tutto svincolati tra di loro.

Immediatamente a nord della nicchia suddetta si notano altre due nicchie, in stato quiescente, legate a fenomeni franosi di scivolamento; gli accumuli sono relativamente più vicini alla zona di distacco e mostrano delle aree in contrapendenza. L'entità e le masse in gioco di questi ultimi fenomeni sono inferiori a quelle osservati per il fenomeno più meridionale.

M. di Roccatagliata è circondato da versanti in frana. Una prima nicchia di distacco si trova sul versante nord-occidentale, si tratta di una frana complessa che nella parte terminale si comporta come una colata e raggiunge il fondovalle; nella zona di accumulo di detta frana sono state individuate alcune trincee. Sul versante nord orientale, in corrispondenza di Fonte Acquaviva, si trova una frana di dimensioni minori anch'essa è un fenomeno di scorrimento che evolve nella parte finale a colata (Buccolini, 1996). Sul versante orientale un ampio movimento franoso si mosse nel 1905 e raggiunse il fiume Pescara coinvolgendo la ferrovia che al tempo collegava Pescara a Roma, come documentato da Almagià nel 1910. Il fenomeno può essere classificato come un grande crollo evoluto in colata nella parte finale (Buccolini, 1996) esso potrebbe essere ancora in stato di attività.

Un enorme fenomeno di crollo interessa il lato orientale del paese di Pescosansonesco vecchio, si tratta di crolli e toppling in roccia che stanno facendo notevolmente arretrare il versante su cui poggia l'abitato (Figura 11.5).
Figura 11.5: Frana di crollo a Pescosansonesco
I movimenti franosi rilevati nelle aree in cui prevale il substrato argilloso sono principalmente delle colate. Una imponente colata si trova immediatamente a nord di Colle Soda dove il materiale partendo poco più in basso del fronte di sovrascorrimento di M. Pietracorniale scorre in modo plastico in una lingua esile e molto lunga che supera l'abitato di Pampanucci. Colate simili si osservano dalla strada che unisce il paese di Pescosansonesco a quello di Castiglione in litotipi a prevalente composizione argillosa. Sulla stessa strada è possibile notare delle nicchie nelle argille che sono state erose successivamente e presentano morfologia calanchiva (Figure 11.6, 11.7).
Figura 11.6: Effetti di una frana nei depositi flyschoidi arenaceo - pelitici sul tracciato stradale di Pescosansonesco

Figura 11.7: Colata di materiali argilloso - sabbiosi in località Pescosansonesco
11.3 Carsismo

Un fenomeno morfologico degno di rilievo è il paleocarsismo dell'area. Si nota una discreta evoluzione delle forme carsiche epigee; le rocce, soprattutto quando esposte su pareti verticali, mostrano la presenza di solchi e docce carsiche, le doline sono piuttosto rare: a Conte Canale è segnalata una depressione non drenata che potrebbe essere una dolina, ma nel corso del rilevamento non sono state osservate forme simili importanti. Si è notato piuttosto una singolare espressione del carsismo ipogeo. Nella zona di M. di Roccatagliata dalla trincea, lungo la cresta che passa sopra Fonte Canale, ed in vari punti della strada che scende verso il cimitero attraversando La Bruciagna, sono state note creazioni alabastrine a carattere ipogeo di dimensioni considerevoli. Si tratta di colonne (non è definibile se stalagmiti o stalattiti), composite aventi diametri anche di 20 cm, costituite di alabastro cristallino a strati concentrici, e di colate di alabastro costituitesi evidentemente in un sistema di vasche disposte a cascata. Inoltre nel detrito di falda si possono facilmente rinvenire moltissimi clasti e consistenti blocchi di alabastro. In genere tali forme si trovano al di sopra del livello stratigrafico delle Marne a Fucoidi, il che non stupisce, infatti questo poteva essere un buon livello di base temporaneo per un complesso carsico ipogeo, si fa notare che solo in prossimità delle Marne a Fucoidi si osserva presenza di acqua. Se dunque, come sembra probabile, nell'area è esistito un complesso carsico di dimensioni considerevoli, attualmente smantellato, almeno per la sua porzione sommitale, bisogna supporre dei processi recenti che abbiano sollevato il settore abbassando notevolmente il livello della falda lasciando inattivo il livello più superficiale.
Bibliografía

BIGI S. (1993) - Caratterizzazione geologico - strutturale della zona esterna dell'Appenino abruzzese il Gran Sasso e la Maiella. \textit{Tesi di Dottorato}, Università di Camerino

CARRARA C., (in stampa) - I travertini della Valle del Pescara tra Popoli e Torre de' Passeri (Abruzzo, Italia centrale). Il Quaternario, in stampa.

CASNEDI R., CENTAMORE E., FOLLOADUR U., MICARELLI A., GHISSETTI F. & VEZZANI L. (In preparazione) - Carta geologica della zona compresa tra il Fiume Tronto ed il Fiume Pescara. Scala 1:100.000

DELA PIERRE F., GHISETTI F., LANZA R. & VEZZANI L. (1992) - Paleomagnetic and structural evidence of Neogene tectonic rotation of the Gran Sasso range (Central Appennines, Italy) *Tectonophysics*, 1215, 335-348.

TUCCIMEI P. (1994) - U-series dating of speleothems and travertines from Esini River Valley (Central Italy) and their paleoclimatic and geomorphic significance. Plinius. 11, 195 - 200.

Appendice
Protopeneroplis striata WEYNSCHENK 30 x

Calpionella sp. 200 x

TAVOLA I
Rotalipora sp. e Radiolari, campione silicizzato

Globotruncana gr. limeiana (D'ORBIGNY) 50 x
Orbitolina sp. 30 x
Globotruncana stuarti (De Lapparent) 60 x

Orbitoides 30 x