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ABSTRACT
This study analyzes the ability of polarimetric Synthetic Aperture Radar (PolSAR)
measurements to quantify post-earthquake damages. To reach this goal, a twofold
task is addressed: on one side a processing chain, which exploits multi-polarization
SAR features and a decision-tree classifier is proposed to quantify the levels of
damage in earthquake-affected urbanized areas using dual-polarimetric (DP) SAR
imagery. On the other side, a new damage index is developed that allows a fair spatial
inter-comparison of building-by-building information, collected via ground surveys
on the damaged areas, and SAR-derived damage maps. The proposed rationale is
showcased using measurements related to the Central-Italy Earthquake occurred in
2016 where both Sentinel-1 DP imagery and ground-based information are available.
Experimental results demonstrate the soundness of the proposed approach. The
main outcomes can be summarized as follows: a) DP features perform better than
single-polarization ones; b) DP features exhibit a larger sensitivity to lower damage
grades if compared to the single polarization (SP) feature; c) the accuracy of the
estimated damage levels depends on the requested granularity in the damage maps;
d) the accuracy obtained using DP features spans from ∼ 52% up to ∼ 71% when
5 and 2 damage classes are considered, respectively.

KEYWORDS
PolSAR; earthquake; classification; change detection.

1. Introduction

Earthquakes are tremendous natural disasters that cause casualties and damages. Al-
though the study of earthquake precursors is still an open matter and far away to
be considered operational (De Santis et al. 2015), a fast damage assessment is an
important step for post-disaster emergency response to reduce the impact of the dis-
aster (Stramondo et al. 2006; Gong et al. 2016). Within this context, remote sensing
plays an important role and the Synthetic Aperture Radar (SAR), due to its all-day
and its almost all-weather fine spatial resolution imaging capabilities, can be very
useful to observe damages caused by earthquakes. SAR methods are mainly based
on single-polarization (SP) measurements and consist of exploiting the interferomet-
ric coherence and/or the normalized radar cross section (NRCS) measured on image
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pairs collected before and after the earthquake (Stramondo et al. 2006; Yonezawa
and Takeuchi 2001; Matsuoka and Yamazaki 2004; Cihlar, Pultz, and Gray 1992; Hu
and Ban 2014; Rignot and van Zyl 1993; Uprety, Yamazaki, and Dell’Acqua 2013). In
(Yonezawa and Takeuchi 2001), a change detection analysis based on the interferomet-
ric coherence and the correlation between NRCS imagery collected before and after
the 1995 Hyogoken-Nanbu (Kobe) earthquake in Japan is performed using the C-band
European Remote-Sensing satellite ERS-1 SAR imagery. Experimental results show
that the interferometric coherence decreases within the damaged areas identified using
ground survey data collected after the earthquake. In (Matsuoka and Yamazaki 2004),
the backscattering resulting from damaged urban areas is discussed using C-band
ERS-1 SAR imagery and external building damage data obtained from a detailed field
survey related to the 1995 Hyogoken-Nanbu earthquake. Results show a significant de-
creasing in the backscattering coefficient and a lower correlation between the pre– and
post–event intensity images in areas severely damaged. In (Gamba, Dell’Acqua, and
Lisini 2006), an approach based on the joint exploitation of pixel-based and feature-
based information is proposed to detect damaged areas. Experiments, performed using
Environmental Satellite (ENVISAT) Advanced SAR (ASAR) imagery collected over
the city of Bam, Iran, during the earthquake occurred in 2003, show that the joint use of
the two sources of information provides the best performance. In (Uprety, Yamazaki,
and Dell’Acqua 2013) damages related to the Central Italy earthquake occurred in
2009 are analysed using very high resolution (VHR) TerraSAR-X HH-polarized SAR
imagery and optical measurements acquired by QuickBird. The damage analysis, per-
formed on a building basis, points out the benefits of SAR-observations to classify
buildings damages of different levels.

To improve the performance of SAR-based methods in observing earthquake dam-
aged areas, SAR measurements are often augmented with optical data (Stramondo
et al. 2006; Gong et al. 2016; Romaniello et al. 2017; Brunner, Lemoine, and Bruzzone
2010). In (Stramondo et al. 2006) the urbanized areas damaged by the earthquakes
occurred in 1999 and 2003 over the cities of Izmit, Turkey and Bam, Iran, respec-
tively, are observed using C-Band ERS (Izmit) and ENVISAT-ASAR (Bam) SAR
imagery and the joint combination of SAR and optical measurements collected by In-
dian Remote Sensing IRS1-C (Izmit) and the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) (Bam). Experiments, which consist of combining
pixel-based classification maps with ancillary ground surveys, show that the joint com-
bination of SAR and optical measurements allow detecting 3 classes of damaged areas
with an accuracy of 90%; while the accuracy decreased up to 60% when only SAR
imagery are used. In (Gong et al. 2016), very high resolution (VHR) post-earthquake
TerraSAR-X Staring Spotlight Imagery and original building footprint maps obtained
from a combination of post-earthquake Laser Imaging Detection and Ranging (LI-
DAR) data and in situ investigation, are exploited to identify buildings destroyed by
earthquakes. Then, machine learning classifiers are used to classify a building into
damage classes. Experimental results, undertaken on the Wenchuan earthquake in
China occurred on 12 May 2008, show that the method is able to distinguish between
collapsed and standing buildings, with an overall accuracy of approximately 90%. In
(Romaniello et al. 2017), X-band TerraSAR-X SAR imagery and optical measurements
collected by GeoEye-1 are jointly used to observe damages related to the Haiti’s earth-
quake. Two operational classifiers and ground based information are used to discuss
the performance of damage maps. Experimental results, show that a 66% accuracy is
achieved when only 3 damage levels are considered. The accuracy decreases up to 60%
when using only SAR measurements.
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Nowadays, the increasing number of spaceborne missions equipped with multi-
polarization SAR triggered new added-value products in different domains (e.g.; land,
forests, ocean, cryosphere and urban) (Lee and Pottier 2009). Within the urban do-
main, several studies have been proposed to exploit full-polarimetric (FP) SAR mea-
surements to detect damages due to earthquake (Watanabe et al. 2012; Sato, Chen,
and Satake 2012; Chen and Sato 2013; Park, Yamaguchi, and jin Kim 2013; Chen,
Wang, and Sato 2016; Chen, Wang, and Xiao 2018; Zhai et al. 2016; Zhai and Huang
2016). Although FP SAR offers the largest amount of scattering information about
the observed scene, hardware and budget considerations very often suggest the opera-
tional use of simpler polarimetric configurations, e.g.; the dual-polarimetric (DP) SAR
(Nunziata, Migliaccio, and Li 2015; Buono et al. 2016). Only few studies have been
proposed to exploit DP SAR measurements to observe urbanized areas damaged by
earthquakes (Watanabe et al. 2016; Karimzadeh and Mastuoka 2017; Ferrentino et al.
2018, 2019). In (Watanabe et al. 2016) the interferometric SAR coherence is used to
detect the damages due to the 2015 Gorkha (Nepal) earthquake. Experiments, under-
taken using DP ALOS-PALSAR 2 L-band SAR imagery, show that the cross-polarized
channel can help identifying damaged buildings with an accuracy around 35.1%. In
(Karimzadeh and Mastuoka 2017) DP SAR data are exploited to discriminate between
collapsed and preserved buildings, i.e.; a key information to perform damaged areas
detection, after the 2016 Amatrice (Italy) earthquake. Both intensity and coherence
features, evaluated using DP ALOS-PALSAR 2 L- and Sentinel-1 C-band SAR im-
agery, are exploited to show that cross-polarized channel can help identifying collapsed
building with an accuracy around 84%. In (Ferrentino et al. 2018), the sensitivity of
the inter-channel combination to earthquake-induced damages is investigated in DP
SAR imagery collected by Sentinel-1 over the Central Italy earthquake. In (Ferrentino
et al. 2019), the same data set is processed using a scattering-based change detector to
emphasize damaged areas. Experimental results shot that the approach outperforms
state-of-the-art ones in detecting damaged areas.

This study focuses on the quantitative analysis of earthquake-induced damages us-
ing DP SAR measurements and a properly processed ground information. The novelty
of this study is twofold: on one side a processing chain that exploits dual-polarimetric
SAR measurements to quantify the levels of damage is proposed; on the other side, a
new index is developed that, based on a proper processing of ground-truth data col-
lected via ground surveys in earthquake-affected area, allows a more consistent com-
parison with SAR-derived damage maps by providing the spatial distribution of dam-
ages by gorouping clusters of buildings. The processing chain ingests dual-polarimetric
features (Ferrentino et al. 2018, 2019) in an unsupervised decision-tree classifier to
generate a damage levels maps. The accuracy of SAR-based maps is discussed against
polygonal-based ground truth and contrasted with a state-of-the-art benchmark SP
method. Experimental results refer to the Central Italy earthquake occured in 2016
where both Sentinel-1 DP imagery and co-located ground information are available.
The remainder of the paper is organized as follows. In Section 2 the test site and
the data set are discussed. In Section 3 the theoretical background is described; while
experiments are shown and discussed in Section 4. Conclusions are drawn in Section
5.
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2. Test site and dataset

The satellite data set consists of three single look complex (SLC) DP polarized SAR
imagery collected before and after the 2016 Central Italy earthquake by the Copernicus
Sentinel-1 mission over the area of Amatrice (Lazio, Italy) in ascending orbits, with
an incidence angle of around 42◦ (see Table 1). The SAR scenes include the areas that
resulted in the largest damages, i.e.: the towns of Amatrice, Norcia and Accumoli The
vertically (V) polarized transmitted and received (VV) ground-projected excerpts of
the SAR imagery collected before and after the earthquake over the area that includes
the town of Amatrice (enclosed by the white dotted ellipse) are shown in Figure 1 (a)
and (b), respectively.

The ground truth is provided by the Istituto Nazionale di Geofisica e Vulcanologia
(INGV) Quick Earthquake Survey (QUEST) team and comes from a macro-seismic
survey performed immediately after the event on the damaged area (Azzaro et al.
2016; Graziani et al. 2019). The QUEST team analysed the damages of each of the
observed buildings according to the European Macroseismic Scale (EMS98) (Grünthal
1998). The latter distinguishes five damage classes (from negligible damages up to the
destruction of the building).

3. Theoretical facts

This section introduces the theory that underpins the methodology proposed to con-
trast change maps derived by multi-polarization SAR with ground information ob-
tained by ground surveys. Firstly, a new damage index is proposed that allows a fair
inter-comparison with SAR maps by preserving the spatial distribution of damages.
Secondly, the rationale that underpins the generation of damage maps from multi-
polarization SAR imagery is described. Finally, the methodology to estimate damage
levels from SAR maps is described.

3.1. Definition of the weighted damage index (WDI)

The field campaign provided a detailed building-by-building information on the dam-
age grades. However, this information cannot be straightforwardly compared with
SAR-derived maps for a twofold reason: on one side, the field campaign provides a
building-by-building information whose spatial mapping into the SAR image plane
is not straightforward. Hence, there is the necessity to define a single damage level
that accounts for the changes observed in an area whose size can be actually observed
in the SAR image plane. On the other side, EMS98 damage grades are not all de-
tectable by SAR imagery which, in general, tend to underestimate actual damages.
For instance, EMS98 damage grades 1 and 2 are expected to be hardly recognizable
by SAR since they call for slight-to-moderate damages in the vertical structures of the
buildings (e.g.; cracks). The only damages, belonging to this class, that may trigger
the SAR detection are related to the fall of loose stones from the upper part of the
buildings or the fall of brittle cladding and plaster. A damage of grade 3 results from
both larger and extensive cracks and the detachment of roof tiles, chimneys fracture,
buckling of reinforced rods and failure of individual infill panels hence, it is expected
to be detectable by SAR. Finally, damages of grade 4 and 5 are expected to result
in a well-distinguishable signature in the SAR imagery since they are related to very
heavy structural damages, with partial structural failure of roofs and floors up to the
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total collapse of building.
The above-mentioned discussion, together with the necessity to have a single damage
value which accounts for all the EMS-98 grades surveyed, suggests developing a new
damage index that we termed Weighted Damage Index (WDI):

WDI =

N∑
k=1

(Gk · Pk) (1)

where k = 1, ..., N stands for the k − th polygon identified in the area of interest
using the Global Urban Footprint (GUF) provided by the German Aerospace Center
(DLR) (Esch et al. 2017). It must be noted that the polygon can refer to a whole
municipality area or to a part of it. In this latter case, WDI is evaluated for the
portion of the municipality area belonging to the selected polygon. Gk stands for the
k− th EMS98 damage grade; while Pk is the percentage of buildings belonging to the
k − th polygon that call for a damage Gk. In simple terms, WDI, whose values are
bounded between 0 and 5, weights damage grades observed into cluster of buildings.
Hence, WDI equal to 0 stands for undamaged building cluster; while WDI=5 stands for
completely collapsed building clusters. The polygonal-based map of the earthquake-
affected area is depicted in Figure 2 where the labels “1” to “5” refer to WDI. In
conclusion, this index is expected to provide a fair way to intercompare SAR damage
maps with damages observed via ground surveys by preserving also spatial information,
i.e.; by linking the spatial distribution of the SAR-based damages with damage grades
observed in the different clusters of buildings.

3.2. Observing damages using DP SAR features

The discussion related to section 3.1 clearly points out that not all the actual damages
can be detected by SAR. Hence, SAR processing strategies that maximize the SAR
sensitivity to damaged area are needed to improve damage detection. Within this
context, a processing scheme based on the change detection is often adopted.
In this study, DP metrics are adopted and a new processing chain that consists of three
steps is proposed to quantify damages, see block diagram of Figure 3. The first step is
to pre-process DP SAR imagery by applying a 5×5 boxcar speckle filter and geocoding
the SAR scenes. The second step consists of observing damaged areas using a change
detection scheme that exploits a pair of DP SAR imagery collected before and after
the earthquake. The third step consists of quantifying damage levels by processing the
output of the multi-polarization features using an unsupervised decision-tree classifier.
Then, the performance of the SAR-based outputs is contrasted with the WDI to assess
the accuracy of the SAR driven damage maps. The theoretical background that relies
on the basis of the multi-polarization features is here reviewed and the output of the
features is first linked to the degree of damages affecting the built-up area, the last
steps are addressed in the next subsection.

The observation of damages induced by the earthquake in the urbanized areas is
performed using two DP metrics. The metric based on reflection symmetry (Ferrentino
et al. 2018) is contrasted with a scattering-based change detector (Ferrentino et al.
2019; Ferrentino et al. 2020).
Reflection symmetry is a property well-known in scattering theory (Baum and Kri-
tikos 1995; Cloude 2009). Accordingly, for every scatter at a given position, there is a
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matching one in the reflected position about some axis (not necessarily aligned with
the sensor’s polarization coordinates). This property, which is satisfied by natural dis-
tributed scenes, is such that the coherence between co- and cross-polarized channels
vanishes (Nunziata, Migliaccio, and Brown 2012):

〈SVVS
∗
VH〉 = 〈SHHS

∗
HV〉 = 0 (2)

Following this theoretical rationale, in (Ferrentino et al. 2018), a metric is proposed
to detect earthquake-induced damages in DP SAR imagery collected over urbanized
areas. The metric is based on the amplitude of the inter-channel correlation:

r =
∣∣〈ix,xi∗x,y〉∣∣ (3)

where i stands for the complex SAR imagery, {x, y} = {V,H} and |·| stands for
modulus.
The physical rationale can be summarized as follows. The reference scenario consists
of the SAR imagey collected before the earthquake. In this case, the r metric (3) is
expected to result in lower values when measured over natural scenarios (including
forests, grasslands, crop fields, etc.). On the other side, larger values apply over areas
that include man-made targets (e.g.; the urbanized area) since they call for deviations
from the reflection symmetry property.
When dealing with the SAR imagery collected after the earthquake, departures from
the reference scenario are expected over urbanized (man-made) areas which, due to
the presence of damaged building, are expected to call for a more reflection symmetric
behavior. In particular, the bigger are the damages, the lower are the expected r
values.
Following this theoretical rationale, r is evaluated using a couple of SAR imagery
collected before (rpre) and after (rpost) the earthquake and the deviation of the rpost

values from the reference rpre ones is investigated to provide information on the levels
of damage occurred in the urbanized areas. In fact, the deviation from the rpre values
measured over the urban area is expect to be correlated with the levels of damage. To
provide a metric that quantifies the deviation of rpost from rpre, the following feature
is used:

∆r =
rpre − rpost

rpre + rpost
(4)

Low ∆r values (theoretically ∆r = 0) are expected over urbanized areas not affected
by the earthquake; while deviations from ∆r = 0 are expected to correlate with the
levels of damage.

The second DP metric relies on the Rayleigh’s quotient

R (ω) =
ω†Cω

ω†ω
(5)
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that consists of finding the scattering mechanism ω that maximizes the scalar R (ω).
This is a well-known problem in matrix algebra and it can be shown that if ω is an
eigenvector of C, the extreme of R (ω) are related to the correspondent eigenvalues.
Following this rationale, in (Ferrentino et al. 2019) a change detection metric is pro-
posed that aims at maximizing the quadratic form associated to the difference between
two covariance matrices collected before and after the earthquake:

CCD = C2 −C1 (6)

where C1 and C2 are the covariance matrices that refer to two DP SAR scenes col-
lected before (C1) the earthquake and during the inter–seismic stage of the earthquake
(C2).
Hence, maximizing R (ω) (5) when C = CCD consists of solving the following eigen-
value problem (Ferrentino et al. 2019):

CCDω = λiω (7)

with λi being the i − th eigenvalue with M=2 (3) when dual-polarimetric (quad-
polarimetric) data are available. Note that, since CCD is no longer Hermitian and
positive definite (HPSD), the eigenvalues can be also negative. Hence, the following
metric is considered to detect earthquake-affected urbanized area (Ferrentino et al.
2019):

λ =
1

2

M∑
i=1

|λi| (8)

In this study, λ values are for the first time related to the level of damages occurred
in the urbanized area. In fact, it is worth expecting that λ is correlated to the lev-
els of damage, with low λ values associated to urbanized areas not affected by the
earthquake; while larger λ values are expected to occur when dealing with collapsed
buildings.

3.3. Analysis of the damage level

To analyze the levels of damage associated to the earthquake, a decision tree algo-
rithm is applied to the outputs of the DP processing, see equations (4) and (8). The
analysis aims at linking WDI levels to the output of the multi-polarization features.
The classifier consists of contrasting the output of the multi-polarization features with
thresholds. In this study, to match the reference ground truth (that consists of the
5 WDI classes depicted in Figure 2), 5 threshold (th) values are used to partition
the output. To select th values, an optimization approach is proposed that consists of
choosing the th values resulting in the best overall accuracy (OA) with respect to the
ground information. The OA is measured using the confusion matrix that consists of
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updating the diagonal elements when the damage level is correctly estimated or the
off-diagonal ones when misclassifications occur.

The optimization procedure is first applied to a training area that, excerpted from
the DP features, matches the ground truth enclosed in the dashed box of Figure 2
and includes 24 polygons and all of the 5 classes. The optimization procedure can
be summarized as follows: 1) The 5 initial th values, bounded in the intervals [0, 0.1]
for ∆r and [0, 0.3] for λ, are selected for each multi-polarization feature. The upper
bound of the intervals is chosen as the mean value of the metric evaluated over the
damaged area. The selected values are such that the first and the last one coincide
with the extreme of the interval, i.e.; (th0 = 0, th4 = 0.1) and (th0 = 0, th4 = 0.3)
for ∆r and λ, respectively. The remaining 3 th values are randomly selected in the
reference interval. 2) The decision tree classifier is run with the selected 5 th values
and OA is evaluated. 3) The 3 th values we left free to vary in the previous step,
are incremented/decremented by ∆th = 10−3 until a maximum OA is reached, see
Table 2. 4) The classification’s score related to the training data set is listed in Table
3 where the parameters of the confusion matrix are listed for both r and λ. The
calculation of the confusion matrix provides descriptive parameters: OA, producer
accuracy (PA), user accuracy (UA), and kappa coefficient (K) (Jensen 2015). PA is
the probability that a value in a given class is correctly classified; UA is the probability
that a value predicted to be in a certain class really is that class; and OA measures how
all the reference classes are correctly mapped. The K coefficient provides an overall
analysis of the classification performance with respect to a reference random classifier.
In particular, K < 0 (K = 0) stands for an accuracy that is worse (no better) than
the one achieved using a random classifier, while when K tends to 1, the achieved
accuracy is significantly better than the random classifier. In addition, in Table 3 is
also listed a SP feature, namely the intensity correlation difference (ICD) (Romaniello
et al. 2017), that is used for reference purposes. It can be noted that a satisfactory
OA is achieved for both the DP features, with ∆r and λ resulting in OA larger than
75% and 73%, respectively. The ICD feature calls for the worst result with an OA
smaller than 40%. The K coefficient suggests the best performance is provided by ∆r
(K> 64%), while K> 63% when applies for λ. Again, the worst score is achieved by
ICD (K= 14%). The analysis of PA shows that the multi-polarization metrics exhibit
a sensitivity to lower-grade damage levels better than the SP one. In general, all the
metrics call for a performance that increases with increasing the damage levels, as
expected. In conclusion, the extra-information carried on multi-polarization metrics
plays a key role in improving the detection of lower-level damage grades.

Once the threshold values are available for the two DP features, the decision tree
classifier is applied to the validation data set that consists of the whole scene (Quinlan
1986).

4. Experiment

In this section, experimental results obtained processing the SAR dataset augmented
with auxiliary external ground truth information are discussed. First, damaged areas
are observed using the DP features (4) and (8). Then, the levels of damage are quanti-
fied using decision-tree classifier applied to the whole SAR scene; finally, the accuracy
of the levels of damage, estimated by DP SAR imagery, is discussed using the WDI
map.

The first experiment is related to ∆r and consists of processing the Sentinel-1 SAR
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scene collected before (22 August 2016) and after (28 August 2010) the earthquake,
see Figure 1 (a) and (b), respectively where an excerpt of the VV-polarized ground-
projected SAR imagery is shown. The area includes the city of Amatrice (enclosed in
the white dotted ellipse), and several smaller towns. By visually inspecting the squared-
modulus SAR imagery related to the pre- and post-event, no well-distinguishable dif-
ference associated to the earthquake can be detected. This implies that a tailored
processing is a mandatory step.
The output of the ∆r (4) processing is depicted in Figure 4 (a) where, to focus on
the urbanized areas affected by the earthquake, a masking is performed guided by the
external ground truth polygons of Figure 2. By analyzing the image, one can note a
granularity in the ∆r values that confirms the correlation between ∆r and the levels of
damage and suggests different levels of damage both in the larger city of Amatrice and
in the smaller towns. To better appreciate this granularity, a smoothing N×N window
is applied with N=15 to reduce random variability. This N value is the one that opti-
mises OA. The filtered output, depicted in Figure 4 (b), can be visually compared with
the ground information depicted in Figure 2, noting a fairly good agreement in terms
of variability of the levels of damage. To discuss the levels of damage in a quantitative
way, the decision tree classifier is used. The map, classified at pixel level, is depicted
in Figure 4 (c). The city of Amatrice is well zoned in terms of damage levels as well as
many of the smaller towns. The accuracy of the SAR-based map is discussed against
the WDI map using the confusion matrix calculated now at object (polygon) scale.
Indeed, to correctly compare the SAR-driven map with ground information that is
provided on a polygonal basis, the former is converted into a polygonal-based map,
see Figure 4 (d), using the polygons extracted from Figure 2 and considering, for each
polygon, the mean value, rounded to the nearest integers towards infinity, of the dam-
age levels of Figure 4 (c). The map of Figure 4 (d) shows a fairly good agreement with
the ground information of Figure 2. The parameters of the confusion matrix, obtained
contrasting pixel-by-pixel the map of Figure 4 (d) with the WDI map listed in Table
4, show a large superiority of ∆r (∼49%) with respect to ICD (∼31%) confirming
that the DP feature performs best in terms of OA. ∆r still performs best when the
K coefficient is considered. In fact, K is equal to ∼ 35% and ∼ 5% for ∆r and ICD,
respectively. Even in this case, PA (see Table 4) shows that DP information allows a
better recognition of lower WDI levels with respect to SP information. To discuss the
classification performance when SAR-driven maps characterized by a reduced granu-
larity are available, classification results and ground information related to the classes
1 to 3 and 4 to 5 are grouped into two classes based on the assumption that higher
levels of damage (1 to 3 grades in EMS98 corresponds to light damages, while 4 to
5 in EMS98 scale correspond to strong damage to completely destroyed buildings)
are more detectable from satellite imagery, than un-damaged or very low damaged
areas. This kind of information is expected to drive information on areas significantly
affected by damages. The confusion matrix listed in Table 5 shows that better results
are achieved in terms of OA although, at the except of a lower K coefficient. It must
be also pointed out that, when reducing the number of classes, the DP feature perfor-
mance slightly improves with respect to the SP one in terms of OA. This means that
the richer information provided by polarization diversity plays a key role when finer
granularity in the damage maps is needed.

The second experiment consists of processing λ in a fashion similar to what discussed
in the previous experiment. The outputs of the λ processing are shown in Figure 5.
The λ values related to the areas of interests are depicted in Figure 5 (a); while
the smoothed values are shown in Figure 5 (b). Again, one can note a fairly good
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agreement with the ground truth of Figure 2 in terms of variability of WDI levels.
The damage levels map is depicted (at a pixel scale) in Figure 5 (c). The map shows a
larger variability in terms of damage levels with respect to the r-based map of Figure 4
(c). The polygonal-based map depicted in Figure 5 (d) shows a fairly good agreement
with the ground information of Figure 2. To quantitatively assess the classification
performance against the WDI map, the confusion matrix is evaluated, see Table 4. It
can be noted that λ scores better than ∆r, performing best in terms of OA (∼52%) and
K (∼37%). The analysis of PA confirms that λ performs better than ICD in observing
all the damage levels. The performance, when the classification results and ground
information related to the classes 1 to 3 and 4 to 5 are grouped in two classes, are
listed in Table 5 where one can note that λ performs best achieving an OA and a K
coefficient equal to 71% and 39.5%, respectively. This means that the scattering-based
change detector exhibits a pronounced sensitivity even when the number of classes is
reduced and a coarser granularity is needed.

5. Conclusion

In this study, multi-polarization SAR measurements are used to quantify post-
earthquake damages. To achieve this goal, a twofold task is addressed: on one side
a processing chain is introduced to quality damage levels from multi-polarization SAR
imagery. On the other side, a new index termed as WDI is proposed that accounting
for the change levels of clusters of buildings, allowing a fair comparison with the SAR-
derived damage map. The processing chain consists of using DP SAR features to be
ingested in a decision-tree classifier.

The performance of the damage level maps obtained processing Sentinel-1 DP SAR
imagery collected over the area damaged by the 2016 Central Italy earthquake and
using ground truth based on ground surveys and processed through the proposed WDI
show the ability of DP SAR measurements to provide reliable information on the level
of damages of urbanized areas. The main outcomes can be summarized as follows:
a) DP metrics outperform the SP one in correctly identifying damage levels; b) DP
metrics call for a sensitivity to lower damage levels better than the SP one that often
results in a significant underestimation; c) the performance of the metrics depends on
the number of damage level classes with an accuracy spanning from around 52% up
to around 71%.

References

Azzaro, Raffaele, Andrea Tertulliani, Filippo Bernardini, Romano Camassi, Sergio Del Mese,
Emanuela Ercolani, Laura Graziani, et al. 2016. “The 24 August 2016 Amatrice earth-
quake: macroseismic survey in the damage area and EMS intensity assessment.” Annals of
Geophysics 59.

Baum, C.E., and H.N. Kritikos. 1995. Electromagnetic Symmetry. Electromagnetics Library.
Taylor & Francis.

Brunner, D., G. Lemoine, and L. Bruzzone. 2010. “Earthquake Damage Assessment of Build-
ings Using VHR Optical and SAR Imagery.” IEEE Transactions on Geoscience and Remote
Sensing 48 (5): 2403–2420.

Buono, A., F. Nunziata, M. Migliaccio, and X. Li. 2016. “Polarimetric Analysis of Compact-
Polarimetry SAR Architectures for Sea Oil Slick Observation.” IEEE Transactions on Geo-
science and Remote Sensing 54 (10): 5862–5874.

10

Page 10 of 17

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing and Remote Sensing Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Chen, S. W., and M. Sato. 2013. “Tsunami Damage Investigation of Built-Up Areas Using Mul-
titemporal Spaceborne Full Polarimetric SAR Images.” IEEE Transactions on Geoscience
and Remote Sensing 51 (4): 1985–1997.

Chen, S. W., X. S. Wang, and M. Sato. 2016. “Urban Damage Level Mapping Based on
Scattering Mechanism Investigation Using Fully Polarimetric SAR Data for the 3.11 East
Japan Earthquake.” IEEE Transactions on Geoscience and Remote Sensing 54 (12): 6919–
6929.

Chen, S. W., X. S. Wang, and S. P. Xiao. 2018. “Urban Damage Level Mapping Based on
Co-Polarization Coherence Pattern Using Multitemporal Polarimetric SAR Data.” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1–11.

Cihlar, J., T. J. Pultz, and A. L. Gray. 1992. “Change Detection with Synthetic Aperture
Radar.” International Journal of Remote Sensing 13 (3): 401–414.

Cloude, S. 2009. Polarisation: Applications in Remote Sensing. OUP Oxford.
De Santis, A., G. De Franceschi, L. Spogli, L. Perrone, L. Alfonsi, E. Qamili, G. Cianchini,

et al. 2015. “Geospace perturbations induced by the Earth: The state of the art and future
trends.” Physics and Chemistry of the Earth 85-86: 17 – 33.

Esch, Thomas, Wieke Heldens, Andreas Hirner, Manfred Keil, Mattia Marconcini, Achim
Roth, Julian Zeidler, Stefan Dech, and Emanuele Strano. 2017. “Breaking new ground in
mapping human settlements from space – The Global Urban Footprint.” ISPRS Journal of
Photogrammetry and Remote Sensing 134: 30 – 42.

Ferrentino, E., F. Nunziata, M. Migliaccio, and A. Vicari. 2018. “A Sensitivity Analysis of Dual-
Polarization Features to Damage Due to the 2016 Central-Italy Earthquake.” International
Journal of Remote Sensing 0 (0): 1–18.

Ferrentino, E., F. Nunziata, H. Zhang, and M. Migliaccio. 2020. “On the Ability of PolSAR
Measurements to Discriminate Among Mangrove Species.” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing 13: 2729–2737.

Ferrentino, Emanuele, Armando Marino, Ferdinando Nunziata, and Maurizio Migliaccio. 2019.
“A dual–polarimetric approach to earthquake damage assessment.” International Journal
of Remote Sensing 40 (1): 197–217.

Gamba, P., F. Dell’Acqua, and G. Lisini. 2006. “Change Detection of Multitemporal SAR Data
in Urban Areas Combining Feature-Based and Pixel-Based Techniques.” IEEE Transactions
on Geoscience and Remote Sensing 44 (10): 2820–2827.

Gong, L., C. Wang, F. Wu, J. Zhang, H. Zhang, and Q. Li. 2016. “Earthquake-Induced Build-
ing Damage Detection with Post-Event Sub-Meter VHR TerraSAR-X Staring Spotlight
Imagery.” Remote Sensing 8 (11): 887–908.

Graziani, Laura, S. Mese, A. Tertulliani, Luca Arcoraci, Alessandra Maramai, and A. Rossi.
2019. “Investigation on damage progression during the 2016–2017 seismic sequence in Cen-
tral Italy using the European Macroseismic Scale (EMS-98).” Bulletin of Earthquake Engi-
neering .

Grünthal, G. 1998. European Macroseismic Scale 1998 (EMS-98). 1st ed. Cahiers du Centre
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Table 1. Sentinel–1 SAR data set

Acquisition
date

Resolution
(range× azimuth)

(m)

Acquisition
mode

Polarization
Angle of

incidence (◦)

10 August, 2016 2.33 × 13.92 Ascending DP (VV+VH) ≈ 42
22 August, 2016 2.33 × 13.92 Ascending DP (VV+VH) ≈ 42
28 August, 2016 2.33 × 13.92 Ascending DP (VV+VH) ≈ 42

Table 2. Optimisation procedure

Step Optimisation procedure

1

To select the 5 th values
- th0 and th4 are constrained to be equal to the low and
upper bounds of the feature values.
- th1, th2 and th3 are randomly selected in the internal
of the feature values.

2 To run the decision tree algorithm and evaluating OA
3 To tune th1, th2 and th3 and to iterate step 2-3 until a maxim OA is reached.

Table 3. Confusion matrix related to the training area and contrasted with the WDI map of Figure 2.
UA (%) PA (%) OA (%) K (%)

Feature
WDI class

1 2 3 4 5 1 2 3 4 5

∆r 0 100 82.8 69.8 75.95 0 45.9 77.7 59 92 75.13 64.2
λ 0 100 77.1 69.8 75.95 0 20.1 80.3 63.7 92.2 73.3 62.4

ICD 0 100 87.6 30.2 4 0 27.9 35 73.6 100 39.4 14

Table 4. Confusion matrix related to the 5 WDI classes obtained from the polygonal-based map.
UA (%) PA (%) OA (%) K (%)

Feature
WDI class

1 2 3 4 5 1 2 3 4 5

∆r 0 17.3 71.5 61.6 75.9 0 60 69.8 24.8 63.9 48.7 34.6
λ 0 17.3 84.7 55.5 75.9 0 34 57.9 38.5 65 51.7 36.8

ICD 0 9 69.2 39.3 3.6 0 22.8 30.3 34.5 37.3 30.6 4.8

Table 5. Confusion matrix related to two WDI classes obtained merging WDI classes 1 to 3 and 4 to 5.
UA (%) PA (%) OA (%) K (%)

Feature
WDI class

1 (1-3) 2 (4-5) 1 (1-3) 2 (4-5)

∆r 45.2 77.1 79.6 41.5 55.9 18.4
λ 70.3 72.2 83.4 55.1 71 39.5

ICD 79.1 22 66.8 34.7 59.9 1.2
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Figure 1. Excerpt of VV-polarized Sentinel-1 ground-projected SAR imagery collected in an ascending mode
over the area of Amatrice, Italy: (a) before (22 August 2016) and (b) after (28 August 2016) the earthquake.

Figure 2. Polygonal ground truth obtained using the WDI scale. The labels 1 to 5 refer to the damage levels.

On the bottom side of the image, an enlarged version of the area enclosed by the dashed black box is shown.
This area is used to train the decision tree classifier.
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Figure 3. Block diagram of the earthquake damage classification scheme.
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Figure 4. Unfiltered (a) and filtered (by a 15×15 pixel boxcar) (b) ∆r values related to the damaged areas
inspected using the ground truth of Figure 2. SAR pixel-based (c) and polygonal-based (d) damage maps
obtained using the decision tree classifier.
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Figure 5. Unfiltered (a) and filtered (by a 15×15 pixel boxcar) (b) λ values related to the damaged areas

inspected using the ground truth of Figure 2. SAR pixel-based (c) and polygonal-based (d) damage maps
obtained using the decision tree classifier.
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