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SUMMARY 

Magnetic anisotropy has proved effective in characterizing primary, spreading-

related magmatic fabrics in Mesozoic (Tethyan) ophiolites, e.g. in documenting lower 

oceanic crustal flow. The potential for preservation of primary magnetic fabrics has 

not been tested, however, in older Paleozoic ophiolites, where anisotropy may 

record regional strain during polyphase deformation. Here we present anisotropy of 

magnetic susceptibility results from the Ordovician Thetford Mines ophiolite 

(Canada) that experienced two major phases of post-accretion deformation, during 

the Taconian and Acadian orogenic events. Magnetic fabrics consistent with modal 

layering in gabbros are observed at one locality, suggesting that primary fabrics may 

survive deformation locally in low strain zones. However, at remaining sites rocks 

with different magmatic origins have consistent magnetic fabrics, reflecting 

structurally-controlled shape preferred orientations of iron-rich phases. Sub-

horizontal NW-SE oriented minimum principal susceptibility axes correlate with poles 

to cleavage observed in overlying post-obduction, pre-Acadian sedimentary 

formations, indicating that the magnetic foliation in the ophiolite formed during 

regional NW-SE Acadian shortening. Maximum principal susceptibility axes plunging 

steeply to the NE are orthogonal to the orientation of regional Acadian fold axes, and 

are consistent with sub-vertical tectonic stretching. This magnetic lineation is parallel 

to the shape preferred orientation of secondary amphibole crystals and is interpreted 

to reflect grain growth during Acadian dextral transpression. This structural style has 

been widely reported along the Appalachian orogen, but the magnetic fabric data 

presented here provide the first evidence for transpression recorded in an 

Appalachian ophiolite.  
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1. INTRODUCTION  

 Ophiolites are fragments of oceanic lithosphere emplaced onto continental 

margins during orogenesis and frequently preserve evidence of their intraoceanic 

tectonomagmatic evolution by seafloor spreading. Paleomagnetic analyses have 

been used extensively to decipher the tectonic rotation history of various ophiolites, 

principally in the Tethyan realm (e.g. MacLeod et al., 1990; Morris et al., 1998; 

Inwood et al., 2009; Maffione et al., 2015), and magnetic fabric (anisotropy) 

techniques have previously been used to understand the development of accretion-

related petrofabrics in ophiolitic rocks. For example, in the slow spreading rate, Late 

Cretaceous Troodos ophiolite of Cyprus, anisotropy of magnetic susceptibility has 

been used to determine both the emplacement directions of sheeted dykes 

(Staudigel et al., 1992) and the pattern of magmatic flow in lower crustal gabbros 

(Abelson et al., 2001), along with their relationship to the well-documented spreading 

structure of the ophiolite (MacLeod et al., 1990; Allerton and Vine, 1991; Morris and 

Maffione, 2016). Similarly, AMS has been used in the fast-spreading rate, Late 

Cretaceous Oman ophiolite to examine dyke emplacement (Rochette et al., 1991) 

and magmatic fabric development in layered and foliated gabbros (Yaouancq and 

MacLeod, 2000; Meyer, 2015). In the case of lower crustal gabbros in Oman, 

alteration (involving serpentinization of olivine crystals) has resulted in the production 

of secondary magnetite grains, but their orientation and distribution has been 

controlled by the crystallographic orientation of primary silicate phases, leading to 
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AMS fabrics that still act as a reliable proxy for primary magmatic fabrics (Yaouancq 

and MacLeod, 2000; Meyer, 2015).  

 Here we present magnetic fabric results from the more ancient, Thetford 

Mines ophiolite in the Canadian Appalachians. This Ordovician ophiolite formed in a 

forearc setting at 480 Ma (Laurent and Hébert, 1989; Olive et al., 1997; Whitehead et 

al., 2000) and was obducted onto the Laurentian margin shortly afterwards (470–460 

Ma; Tremblay et al., 2009). It experienced two Paleozoic deformation episodes 

during regional contraction and shortening (Tremblay et al., 2009). We demonstrate 

that in this case magnetic fabrics within most of the ophiolite reflect the latest 

Acadian phase of regional deformation (related to accretion of Avalonia onto the 

Laurentian margin), rather than seafloor-spreading processes, with primary 

magmatic fabrics being obliterated by a pervasive tectonic overprint during folding in 

a dextral transpressive regime. 

 

2. THE THETFORD MINES OPHIOLITE 

 The Thetford Mines ophiolite is located in the southern Québec Appalachians 

belt that consists of three lithotectonic assemblages: (1) the Cambrian-Ordovician 

Humber zone, a remnant of the Laurentian passive continental margin; (2) the 

Cambrian-Ordovician Dunnage zone (Williams, 1979), a remnant of the Iapetus 

Ocean; and (3) the Silurian-Devonian Gaspé Belt (Tremblay and Pinet, 2005), 

representing a sedimentary cover sequence. The Humber and Dunnage zones were 

amalgamated during the Ordovician Taconian orogeny, involving closure of the 

Iapetus Ocean and emplacement of a large ophiolite nappe (now preserved in the 

dismembered Southern Québec ophiolites; Tremblay and Castonguay, 2002; 

Tremblay and Pinet, 2005). The Gaspé Belt successor basin and underlying 
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Dunnage zone were subsequently regionally deformed and metamorphosed during 

the Devonian Acadian orogeny (Tremblay and Pinet, 2005). 

 Oceanic rocks of the Dunnage zone in the area of the present study consist of 

the following assemblages (Fig. 1): (1) the Thetford Mines ophiolite; (2) the Saint-

Daniel Mélange; and (3) sedimentary rocks of the Magog Group. The ophiolite has a 

boninitic geochemistry and is inferred to have formed in a forearc setting (Laurent 

and Hébert, 1989; Olive et al., 1997; Tremblay et al., 2009). U/Pb dating of 

plagiogranites in the ophiolite indicate formation at 479 ± 3 Ma (Whitehead et al., 

2000), whereas amphibole and mica ages from its metamorphic sole yielded ages of 

477 ± 5 Ma and 469 – 461 Ma, respectively (Whitehead et al., 1995; Castonguay et 

al., 2001). This indicates that oceanic detachment of the ophiolite occurred 

immediately after crustal formation. Debris flow deposits of the Saint-Daniel Mélange 

and the overlying Magog Group rocks are both interpreted to represent a sequence 

of forearc basin sediments developed on the ophiolitic basement (Schroetter et al., 

2006), with a major erosional unconformity at the base. 

 The Thetford Mines ophiolite is approximately 40 km long and 10-15 km wide, 

and may be divided into the Thetford Mines and Adstock-Ham massifs (Fig. 1), with 

the former dominated by a ~5 km thick mantle section and the latter by a thicker 

crustal sequence of plutonic and extrusive rocks. Plutonic sequences in both massifs 

consist of dunitic, pyroxenitic and gabbroic cumulates, cross-cut by mafic and 

ultramafic dykes, which grade up locally into a poorly exposed sheeted dyke 

complex (Tremblay et al., 2009). The extrusive sequences are dominated by 

boninitic lava flows and pillow lavas and felsic pyroclastic rocks. 

 Structural reconstructions suggest that the seafloor spreading history of the 

Thetford Mines ophiolite involved development of an oceanic core complex, marked 
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by detachment faults that exhumed the upper mantle and lower crustal sections to 

the seafloor (Tremblay et al., 2009), as seen in slow-spreading systems in the 

present-day Atlantic and Indian Oceans (e.g. Blackman et al., 2011; MacLeod et al., 

2017). Structures associated with this early phase of spreading-related intraoceanic 

deformation were then superimposed by syn-obduction NW-verging shear zones and 

folds associated with the Taconian orogeny and then by post-obduction NW-verging 

folds and faults developed during the Acadian orogeny (Figs 1b and c). This last 

regional deformation event resulted from collision between the Avalonia terrane and 

the irregular margin of Laurentia and its Taconian accreted terranes in the Devonian 

(Malo and Kirkwood, 1995; Sacks et al., 2004) 

  

3. SAMPLING AND METHODS 

 Samples were collected from 12 sites representing four localities in the 

Thetford Mines ophiolite (Fig. 1) using a portable rock drill. The orientation of drill 

cores was measured using both magnetic and sun compasses, along with the 

orientation of any magmatic structures present. Layered gabbros were sampled at 

three sites in the southwest sector of the ophiolite (sites TM05-07; Fig. 1), along a 

road cut adjacent to the shore of Lac Breeches, where a clear and consistent 

magmatic foliation defined by variations in modal composition was observed 

between sites. Nine sites were collected in the northeast of the study area near the 

Mount Adstock-Ham Massif (AHM; Fig. 1), north of Lac St. François. Site TM10 was 

sampled in pillow lavas and tabular lava flows sampled as sites TM11 and 12, with 

pillows and flows having very similar orientations. Sites TM02, 03 and 04 were 

collected in a road cut where sub-vertical dykes (sites TM03, 04) cut through well-

developed, elongate pillow lavas (site TM02) at a high angle. Site TM09 sampled 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggaa173/5827533 by U

niversity of C
alifornia, San D

iego user on 28 M
ay 2020



elongate pillow lavas exposed in a disused quarry, and site TM08 was located in 

serpentinized dunite adjacent to Lac Rond. The average orientations of pillow lavas 

and dykes were determined from multiple measurements at each site for use as 

structural corrections, and the way-up of lavas noted (based on typical pillow 

morphologies). All sampled lavas had subvertical or overturned orientations, dipping 

~80-105º and appear tectonically stretched (Table 1). Finally, a roadside exposure of 

massive gabbro was sampled at site TM01. No primary structures were observed at 

either this site or in the serpentinized dunite (site TM08). 

 We measured the anisotropy of low-field magnetic susceptibility (AMS) of 145 

standard (11 cm3) samples using an AGICO KLY-3S Kappabridge. AMS is a 

petrofabric tool that reflects the preferred orientation of grains, grain distributions 

and/or the crystal lattices of minerals that contribute to the magnetic susceptibility of 

a rock (e.g. Tarling and Hrouda, 1993; Borradaile and Jackson, 2004). AMS 

corresponds to a second order tensor that may be represented by an ellipsoid 

specified by the orientation and magnitude of its principal axes (kmax, kint and kmin, 

being the maximum, intermediate, and minimum susceptibility axes respectively) 

(Tarling and Hrouda, 1993). The AMS of a rock may result from contributions from 

diamagnetic, paramagnetic and ferromagnetic minerals. Susceptibility tensors and 

associated eigenvectors and eigenvalues were calculated using AGICO Anisoft 4.2 

software.  The relative magnitude of the susceptibility axes defines the shape of the 

AMS ellipsoid, which can be: (1) isotropic (kmin = kint = kmax) when crystals are not 

aligned preferentially and when strongly magnetic grains have a random distribution; 

(2) oblate (kmin << kint ≈ kmax) when crystal alignment defines a foliation plane; (3) 

triaxial (kmin < kint < kmax); or (4) prolate (kmin ≈ kint << kmax) when crystal alignment 

defines a lineation. However, the presence of some minerals (e.g. single domain 
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magnetite; Potter and Stephenson, 1988) and/or interference between signals 

carried by different minerals may complicate the structural interpretation of AMS 

data. Here we describe the strength of anisotropy using the corrected anisotropy 

degree (PJ; Jelínek, 1978), where PJ = 1.0 indicates an isotropic fabric and, e.g., PJ = 

1.05 indicates 5% anisotropy. The shape of the ellipsoid is described by the shape 

parameter (T), where -1.0 < T < 1.0 with positive/negative values of T indicate 

oblate/prolate fabrics respectively (Jelínek, 1978). We also determined the 

anisotropy of isothermal remanent magnetization (AIRM) for selected specimens in 

order to check for presence of inverse magnetic fabrics, following the methodology of 

Potter and Stephenson, 1988. A direct field of 80 mT was applied sequentially along 

specimen x, y and z axis, with alternative field (AF) demagnetization of specimens at 

100 mT between IRM acquisition steps. Although higher direct fields would be 

required to achieve a saturation IRM, 80 mT was selected to ensure complete AF 

demagnetization could be achieved between field applications. Eigenvalues and 

eigenvectors of the AIRM tensors were calculated using the “EigenCalc” v. 1.1.0 

program of Rick Allmendinger. 

 Rock magnetic experiments were performed to investigate the nature of the 

ferromagnetic minerals contributing to the AMS. Curie temperatures were 

determined from the high-temperature  (20–700°C) variation of magnetic 

susceptibility of representative samples, measured using an AGICO KLY-3S 

Kappabridge coupled with an AGICO CS-3 high-temperature furnace apparatus. 

Curie temperatures were determined from these data using the method of  etrovsk  

and Kapi ka  200  .  

Isothermal remanent magnetization (IRM) acquisition experiments were conducted 

on representative samples using a Molspin pulse magnetizer to apply peak fields up 
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to 800 mT with resulting IRMs measured using an AGICO JR6A fluxgate spinner 

magnetometer. Finally, scanning electron microscope (SEM) observations of 

oriented thin sections were used to further establish the source of the AMS signal. 

Polished thin sections were carbon coated and analysed with a JEOL 7001 FEG-

SEM at the Electron Microscopy Centre of the University of Plymouth. Backscattered 

electron (BSE) images were acquired with 15 kV accelerating voltage and 10 mm 

working distance. Energy dispersive spectroscopy (EDS) point analysis was used for 

phase identification. The preferred orientations of crystal long-axes in BSE images 

were then determined using ImageJ software (Schneider et al., 2012) and analysed 

using OSXStereonet (Cardozo and Allmendinger, 2013). 

 

4. RESULTS 

Rock magnetic properties 

 Lavas, dykes and massive gabbros of the Thetford Mines ophiolite have 

consistently weak low field magnetic susceptibilities of ~400 – 500 x 10-6 SI (Table 1; 

Fig. 2). These values suggest a dominant contribution from paramagnetic silicate 

minerals or a combined paramagnetic and ferromagnetic signal but with < 0.03 

weight percent of magnetite present (Fig. 2). In contrast, serpentinized dunite 

samples have much higher susceptibilities (~70 x 10-3 SI) consistent with a 

dominantly ferromagnetic source. The temperature dependence of susceptibility in 

lavas and dykes (Fig. 3a) shows initial decreases with temperature, consistent with a 

dominantly paramagnetic signal following the Curie-Weiss law (Tarling and Hrouda, 

1993) in these rocks, combined with a minor ferromagnetic signal with Curie 

temperatures of ~570 – 600°C, indicating presence of minor magnetite. Some 

samples show evidence for magnetite production during laboratory heating, shown 
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by higher susceptibilities during the cooling cycle and by peaks in susceptibility 

above 400°C (Fig. 3a). IRM experiments on these rocks (Fig. 3b) confirm the 

presence of a low coercivity phase (most likely to be magnetite), but with saturation 

IRMs that are very low in intensity (< 100 mA/m) and again consistent with low 

weight percentages of magnetite. In contrast, thermomagnetic curves for samples of 

layered gabbro (sites TM05 – 07) show evidence for susceptibilities dominated by a 

ferromagnetic signal with magnetite Curie temperatures of ~580°C and with no 

discernable contribution from paramagnetic phases (Fig. 3a), although saturation 

IRM values are again lower than comparable rocks in younger (Tethyan) ophiolites 

or in drill core samples from the lower oceanic crust (e.g. Morris et al., 2016; 

MacLeod et al., 2017). 

 Serpentinized dunites sampled at site TM08 have Curie temperatures of 

~580°C and IRM curves showing presence of a low coercivity phase (Fig. 3), 

indicating production of near stoichiometric magnetite in these rocks during 

serpentinization. The degree of serpentinization, S, may be determined using a 

linear, inverse correlation between S and bulk density () defined by Miller and 

Christensen (1997): 

S = (3.3 – )/0.785 x 100% 

Densities of samples from site TM08 range from 2.62–2.71 g/cm3, corresponding to 

serpentinization degrees of 69–86%. Bulk susceptibilities of 0.059–0.079 SI 

correspond to volume fractions of magnetite of ~2.0-2.5% (Thompson and Oldfield, 

1986). These values are consistent with relationships derived from an extensive 

database of abyssal and ophiolitic serpentinized peridotites reported by Maffione et 

al. (2014). 
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Magnetic anisotropy results 

 The majority of individual specimens exhibit oblate AMS fabrics, with a mean 

T value of 0.33, although 22% of specimens have prolate fabrics with a mean T 

value of -0.18 (Fig. 4a; Supplementary Table 1). The strength of anisotropy is 

described by the corrected anisotropy degree, PJ, and ranges from 1.01 to 1.60 for 

individual specimens (Fig. 4a). Mean PJ values vary by lithology, from 1.04 in the 

lavas and dykes, through 1.07 for gabbros, to 1.34 in the serpentinized dunites 

(where high values may reflect a strong distribution anisotropy carried by magnetite 

within serpentinized olivine crystals). There is no preferred relationship between PJ 

and T (Fig. 4a), and no correlation between PJ and mean susceptibility (Fig. 4b), 

indicating that the degree of anisotropy is not dependent on variations in 

ferromagnetic concentration. 

 At a site level, clustering of kmax and kmin axes define the magnetic lineation 

and the pole to the magnetic foliation, respectively. Oblate fabrics are characterized 

by clustered kmin axes orthogonal to girdle distributions of kmax and kint axes, whereas 

prolate fabrics by clustered kmax axes orthogonal to girdle distributions of kint and kmin 

axes. In triaxial fabrics, the three principal susceptibility axes form distinct groups. 

 In the layered gabbro sites, kmin axes coincide with the pole to the magmatic 

layering observed in the field, with a girdle distribution of kmax and kint axes, defining 

an oblate fabric parallel to the modal layering (Fig. 5a). Combined with evidence for 

magnetite dominating the rock magnetic properties of these rocks, this suggests that 

the fabric is due to the shape-preferred orientation of magnetite grains distributed in 

the plane of layering. This fabric compares well with those observed in layered 

gabbros in other ophiolites (e.g. in Oman (Meyer, 2015); Fig. 5c), and indicates that 

magmatic fabrics are preserved at this locality. 
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 At the majority of other sites fabrics are triaxial and marked by discrete 

clusters of principal axes, with the exception of the massive gabbros sampled at site 

TM01 where a prolate site-level fabric is developed (Fig. 6). At all these sites, kmin 

axes are sub-horizontal/shallowly plunging and aligned NW-SE whereas kmax axes 

plunge steeply to the NE. This arrangement of principal axes is consistent across all 

sites regardless of both their magmatic origin and the orientation of associated 

magmatic structures (where observable in the field), with pillow lavas, lava flows, 

dolerite dykes, massive gabbros and serpentinized dunites all sharing the same 

fabric style. This strongly suggests that the fabric in these rocks developed 

tectonically and does not reflect primary magmatic processes. The origin of this 

tectonic fabric is discussed below by comparison with the regional structural 

framework of the Thetford Mines ophiolite and the Canadian Appalachians in 

general. 

 Anisotropy of isothermal remanent magnetization (AIRM) ellipsoids 

(Supplementary Table 2) show widely varying degrees of alignment with the 

orientation of the corresponding AMS principal susceptibility axes. Fig. 7a shows 

AIRM principal axes rotated to align the corresponding kmax axes to the vertical and 

kmin axes to a horizontal north direction to allow comparison of the degree of 

alignment of AIRM and AMS fabrics, and Fig. 7b shows the relationship between the 

angular difference between maximum anisotropy axes and the intensity of IRM 

acquired at 80 mT. Specimens from the layered gabbros have angular differences of 

<25°, confirming presence of normal AMS fabrics in these rocks. Serpentinised 

dunite from site TM08 shows near perfect alignment of AMS and AIRM fabrics in 

these magnetite-rich rocks, again confirming presence of a normal AMS fabric. 

Specimens from all other sites, however, show widely scattered AIRM axes, showing 
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no correspondence between weakly developed AIRM fabrics carried by magnetite 

and AMS fabrics dominated by silicate phases (see below). 

 

 

5. DISCUSSION 

Source of the AMS signal 

 The dominantly triaxial AMS fabrics in the Thetford Mines ophiolite samples 

are likely to reflect a combination of flattening during deformation (producing 

clustering of kmin axes) and a preferred orientation of the long axes of minerals 

(producing clustering of kmax axes). The source of the dominant fabric signal in these 

generally fine-grained rocks may be determined via examination of oriented thin 

sections using backscatter SEM microscopy. These observations reveal that kmax 

axes in the lavas are parallel to the preferred orientation of the long axes of 

secondary amphibole crystals (Fig 8), inferred to represent an alignment of crystal c-

axes. This supports a secondary origin for the observed fabrics involving grain-

growth during deformation, resulting in alignment of newly-formed amphibole crystals 

parallel to the long axis of the finite strain ellipsoid. Biedermann et al. (2015) recently 

showed that kmax axes in single amphibole crystals lie parallel to their 

crystallographic b-axes, rather than their c-axes. However, Biedermann et al. (2018) 

demonstrated that in rocks where amphibole c-axes are preferentially aligned (their 

“c-fiber texture”  then mean AMS kmax axes lie parallel to the lineation defined by the 

preferred alignment of crystals.  

 Fabrics due to the growth of secondary amphiboles during alteration and 

deformation may also account for the low quantities of magnetite present in the 

Thetford Mines ophiolite compared to other ophiolites and oceanic crustal rocks, as 
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magnetite may be destroyed during alteration, mobilizing iron that then becomes 

incorporated into the newly formed amphibole crystals. 

 

 

Implications of the magnetic fabric results for the regional tectonic regime 

 The consistent AMS fabric between sites that have different magmatic origins 

in the NE of the study area is consistent with complete tectonic overprinting of any 

primary fabrics in this part of the ophiolite. In contrast, the layered gabbro locality 

preserves magnetic fabrics that parallel the modal layering observed in the field (Fig. 

5a). This clearly shows that primary fabrics of magmatic origin are preserved in the 

SW part of the Thetford Mines ophiolite, presumably within a low-strain domain. 

Alternatively, the moderate dip of the layered gabbros may indicate a position close 

to a hinge zone within the major upright fold structures that dominate the present-day 

structure (Fig. 1b), allowing this locality to escape pervasive overprinting by a 

tectonic fabric that developed elsewhere. The consistency of fabrics at all other sites 

is illustrated in Fig. 9a, which shows Kamb contoured distributions (Cardozo and 

Allmendinger, 2013) of the kmin and kmax axes combined from all sites (excluding the 

layered gabbros). The origin and timing of acquisition of this tectonic fabric can be 

established by comparing the AMS results with fold geometries and field structural 

data from the wider region.  

 The major deformation phases in the Canadian Appalachians that could 

potentially produce the observed fabric are the Taconian (Ordovician) and Acadian 

(Devonian) orogenic events. The Taconian event resulted from closure of the Iapetus 

Ocean and obduction of the Southern Québec ophiolites (Pinet and Tremblay, 1995; 

Tremblay and Castonguay, 2002; Sacks et al., 2004). The Acadian event involved 
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collision between the Avalonia terrane and the margin of Laurentia and its Taconian-

accreted terranes, including the Thetford Mines ophiolite (Malo and Kirkwood, 1995; 

Sacks et al., 2004). Acadian deformation dominates the present-day structure of the 

area and resulted in development of upright folds during NW-SE contraction (Fig. 

1b), and is superimposed on a series of earlier SE-verging recumbent folds (Fig. 1c; 

Tremblay et al., 2009). 

 The structural style of the Acadian folding is best described using field 

structural data from the overlying, post-obduction but pre-Acadian sedimentary 

sequences. Field data from St-Julien (1987) shows that poles to bedding define a 

great circle distribution forming a -girdle that indicates Acadian fold axes plunging 

shallowly to the SW (Fig. 9b). Poles to Acadian cleavage planes are oriented NW-SE 

with shallow plunges, while bedding cleavage intersection lineations and fold axes 

observed in the field have shallow plunges to the SW (consistent with the -axis 

determined from bedding data; Fig. 9c). The correlation between kmin axes (Fig. 9a) 

and poles to cleavage (Fig. 9c) strongly suggests that the tectonic fabric represented 

by the magnetic fabric data formed during upright folding associated with Acadian 

contraction. 

Magnetic fabrics in folded rocks commonly show an alignment of kmax axes 

along the intersection of axial planar cleavage and primary foliation planes (e.g. 

bedding; Borradaile & Tarling, 1981; Hrouda et al., 2000; Parés, 2015; Fig. 10a). 

This relationship results from overprinting of an initial magnetic fabric (characterised 

by alignment of kmin axes perpendicular to the primary foliation) by a tectonic fabric 

(characterised by kmin axes aligned perpendicular to cleavage) (e.g. Housen et al., 

1993). Such composite magnetic fabrics are usually dominantly oblate in shape with 

kmax axes typically aligned perpendicular to the direction of maximum tectonic 
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shortening and parallel to fold axes (e.g. Averbuch et al. 1995; Hirt et al. 2000; 

Parés, 2015; Fig. 10a). However, AMS kmax axes in the Thetford Mines ophiolite 

plunge steeply to the NE (Fig. 9a) and are demonstrably not related to fold 

geometries in this way, as fold axes in the ophiolite and associated sedimentary 

cover sequences are shallowly plunging and oriented NE-SW. Instead, kmax axes 

form a magnetic lineation that is broadly orthogonal to the regional fold axes (Fig. 

10b), implying a component of sub-vertical stretching during NW-SE contraction and 

fabric development. 

Deformation processes capable of producing sub-vertical stretching during 

folding include: (i) flexural flow along fold limbs during shortening; and (ii) 

transpression (resulting from a combination of pure shear and simple shear 

deformation). Importantly, Tikoff and Greene (1997) showed that transpression will 

produce horizontal stretching lineations in systems where the convergence angle is 

< 20°, but that the long axis of the finite strain ellipsoid (and hence the stretching 

lineation) will soon become vertical in any high-strain transpressional zone that 

deviates even slightly from simple shear. Strain modeling indicates that stretching 

lineations are always vertical for systems with high convergence angles (i.e. 

undergoing pure shear dominated transpression; Tikoff and Greene, 1997). 

Both the Taconian and Acadian orogenies in the Canadian Appalachians are 

known to have been characterized by transpressive regimes. Transpression during 

Acadian continental collision has been reported in the Gaspé Peninsula (to the NE of 

the Thetford Mines ophiolite; Malo et al., 1995; Sacks et al., 2004), in contrast to 

thrust-dominated, dip-slip tectonics in southern Québec (SW of the ophiolite; Malo et 

al., 1995). These along-strike variations in structural style are interpreted to result 

from collision during the Devonian of Gondwana-derived terranes with an irregular 
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Laurentian margin inherited from the opening of the Iapetus Ocean (Malo et al., 

1995; Sacks et al., 2004). Further to the SW in the northern Appalachian region of 

Maine in the United States, Early Devonian (Acadian) oblique convergence also 

involved dextral transpression (Solar and Brown, 2001). This resulted in dextral, SE-

side-up displacement within the Central Maine Belt shear zone system (Solar and 

Brown, 2001). Dextral transpression resulting in vertical stretching lineations has 

also been reported by Waters-Tormey and Stewart (2010) even further to the SW in 

the Blue Ridge area of Southern Carolina, with variations in lineation orientation 

across this area inferred to result from changes in the effective convergence angle 

across structural domains (as in Tikoff and Greene, 1997). 

Given the extensive evidence for Acadian transpression in the Appalachian 

orogen and the clear correlation between kmin orientations and the NW-SE Acadian 

shortening direction (Fig. 9), we suggest that the sub-vertical stretching implied by 

the steeply plunging kmax axes provides the first evidence for transpressive shear 

recorded in the Thetford Mines ophiolite. Assuming a pure-shear dominated 

transpressive regime characterized by NE-SW trending major structures, the 

orientation of the kmax axes would be consistent with dextral shear superimposed on 

a SE-side-up pure shear component (as observed elsewhere in the Appalachian 

orogen; Solar and Brown, 2001). 

 

 Implications for the interpretation of AMS data in complexly deformed 

terranes 

 With the exception of the layered gabbros sampled in the far SW of the study 

area, AMS results from the Thetford Mines ophiolite provide evidence for complete 

tectonic obliteration of any magmatic or tectonic fabric that existed prior to the 
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Acadian orogeny. This suggests that the AMS signal in these deformed ophiolitic 

rocks reflects only the last major stage of the regional strain history. This has also 

been suggested in a number of other tectonic settings. For example, Anderson and 

Morris (2004) demonstrated that folded low-grade metasedimentary rocks at 

Widemouth Bay in the Variscan belt of SW England exhibit AMS fabrics that record 

late-stage normal faulting, with no record of prior depositional or fold related fabrics. 

Similarly, Hrouda et al. (2014) describe AMS fabrics in an ophiolite in the Bohemian 

Massif (Czech Republic) that are carried by paramagnetic mafic silicates (including 

amphiboles and biotite) and that relate to the last exhumation and retrogression 

event experienced by the ophiolite. Interestingly, Hrouda et al. (2014) showed that 

massive metagabbros in this example suffered only weak deformation and partially 

preserve intrusive magnetic fabrics, similar to the situation described here. 

 Finally, we note the potential for erroneous interpretation of the AMS data 

from any one lithology or site within the Thetford Mines ophiolite, as AMS principal 

axes at individual sites are observed to coincide with macroscopic magmatic 

structures (e.g. dyke margins; Fig. 6). Only a comparison of data from multiple sites 

sampled in different lithologies allows identification of the dominant tectonic overprint 

in these rocks, highlighting the danger of interpreting results from sites in isolation in 

complexly deformed terranes. 

 

6. CONCLUSIONS 

 Anisotropy of magnetic susceptibility data are frequently used as a proxy for 

magmatic and tectonic fabrics in a wide range of rock types in various geological 

settings (e.g. Borradaile and Jackson, 2004; Parés, 2015). Previous studies of AMS 

in ophiolites have been used mainly to examine magmatic fabrics developed during 
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crustal accretion, but the majority of studies have been conducted in Mesozoic 

ophiolites that have not experienced polyphase deformation during multiple orogenic 

events. Our data from the Ordovician Thetford Mines ophiolite of the Canadian 

Appalachians demonstrate that primary magmatic fabrics in more ancient, 

Palaeozoic ophiolites may be completely obliterated during post-obduction 

deformation, and may only survive locally in low strain zones. A clear correlation 

between AMS principal axes and the geometry of Acadian upright folding in the 

Thetford Mines ophiolite indicates that fabrics in this example record only the last 

phase of its complex strain history. Importantly, the AMS data provide the first 

evidence for sub-vertical stretching within the ophiolite related to the transpressional 

deformation of the Appalachians that has previously only been documented in 

deformed sedimentary successions. 
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Fig. 1. (a) Simplified geological map of the Thetford Mines ophiolite showing site 
locations (after Pagé et al., 2009); (b) structural profile along line A-A’ on the 
geological map (after Tremblay et al., 2009) showing the current geometry of the 
ophiolite resulting from two superimposed folding events, with upright folds due to 
the final, Acadian phase of regional deformation; (c) schematic cross-section along 
the same line illustrating retro-deformation of the ophiolite and restoration to its 
inferred geometry prior to Acadian folding (after Tremblay et al., 2009). 
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Fig. 2. (a) Histogram of low field magnetic susceptibilities for rocks of the Thetford 
Mines ophiolite; (b) relationship between bulk susceptibility and mineral 
concentrations (wt%) (Tarling and Hrouda, 1993). Note that low susceptibilities in 
most of the Thetford Mines ophiolite indicate less than 0.1 wt% magnetite in these 
rocks or a major contribution from paramagnetic silicate minerals. 
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Fig. 3. Representative examples of (a) the variation of low field magnetic 
susceptibility with temperature and (b) isothermal remanent magnetization 
acquisition curves for rocks from the Thetford Mines ophiolite. 
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Fig. 4. (a) Borradaile-Jackson polar plot of corrected anisotropy degree, PJ, and 
shape parameter, T (Borradaile and Jackson, 2004; Jelínek, 1978); (b) plot of 
corrected anisotropy degree, PJ, against bulk susceptibility. 
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Fig. 5. (a) Equal area stereographic projection of principal anisotropy axes of 
samples from layered gabbros in the Thetford Mines ophiolite. Principal directions of 
the mean tensor are represented by large symbols, with ellipses representing 95% 
confidence regions calculated according to Jelínek (1978). Great circle/star = plane/ 
pole to plane of modal compositional layering measured in the field and shown in (b); 
(c) Equal area stereographic projection of an example of AMS data from layered 
gabbros in the Oman ophiolite (Meyer, 2015). Symbols as in (a). 
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Fig. 6. Site-level AMS results from the Thetford Mines ophiolite. Principal directions 
of mean tensors at each site are represented by large symbols, with ellipses 
representing 95% confidence regions calculated according to Jelínek (1978). Great 
circles = orientation of magmatic structures measured in the field (lava and dyke 
planes).   
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Fig. 7. (a) Equal area stereographic projection of anisotropy of isothermal remanent 
magnetization (AIRM) principal axes (small symbols) for selected specimens after 
rotating the corresponding AMS principal axes to a common reference frame (kmax 
vertical, kmin horizontal to the north, kint horizontal to the east; large symbols). 
Squares/triangle/circles = maximum/intermediate/minimum principal axes of 
anisotropy, respectively; (b) the relationship between the angular difference between 
AIRM and AMS maximum principal axes and the intensity of IRM acquired in an 80 
mT field. 
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Fig. 8. (a) Example of a backscatter scanning electron microscope image of a pillow 
lava specimen from the Thetford Mines ophiolite. Kmax for this specimen (white 
arrow) lies in the X-Y plane; (b) rose diagram showing the preferred orientation of 
secondary amphibole crystals in the specimen X-Y plane. The mean orientation of 
867 measurements of amphibole crystal long-axes (azimuth = 017°; black arrow) is 
parallel to kmax (azimuth = 016°). This is consistent with the AMS signal being carried 
by paramagnetic amphiboles formed by secondary grain growth during deformation. 
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Fig. 9. Equal area stereographic projections of: (a) the contoured distributions of kmin 
and kmax axes of anisotropy of low field magnetic susceptibility ellipsoids of samples 
from the Thetford Mines ophiolite (excluding the layered gabbro locality), showing 
clusters of NW-SE-oriented shallowly plunging kmin axes and NE-oriented steeply 
plunging kmax axes; (b) poles to bedding in the post-emplacement, pre-Acadian 
sedimentary cover of the ophiolite, defining a girdle distribution indicating a shallowly 

plunging SW Acadian fold axis orientation. Star =  axis (= 222/23) (data from St-
Julien, 1987); and (c) L1 fold axes and bedding-cleavage intersection lineations 
(mean orientation = 217/28) and contoured poles to Acadian cleavage planes (data 
from St-Julien, 1987). 
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Fig. 10. (a) Schematic diagram illustrating the commonly observed relationship 
between fold geometries and kmax axes, whereby kmax lies parallel to fold axes and 
the bedding-cleavage intersection lineation; (b) relationship between fold geometry 
and kmax axes in the Thetford Mines ophiolite, where kmax is orthogonal to fold axes, 
indicating a sub-vertical tectonic stretch inferred to result from deformation in a 
transpressive setting. 
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