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Abstract: Seismicity-based earthquake forecasting models have been primarily studied and devel-
oped over the past twenty years. These models mainly rely on seismicity catalogs as their data source
and provide forecasts in time, space, and magnitude in a quantifiable manner. In this study, we
presented a technique to better determine future earthquakes in space based on spatially smoothed
seismicity. The improvement’s main objective is to use foreshock and aftershock events together
with their mainshocks. Time-independent earthquake forecast models are often developed using
declustered catalogs, where smaller-magnitude events regarding their mainshocks are removed from
the catalog. Declustered catalogs are required in the probabilistic seismic hazard analysis (PSHA)
to hold the Poisson assumption that the events are independent in time and space. However, as
highlighted and presented by many recent studies, removing such events from seismic catalogs
may lead to underestimating seismicity rates and, consequently, the final seismic hazard in terms
of ground shaking. Our study also demonstrated that considering the complete catalog may im-
prove future earthquakes’ spatial forecast. To do so, we adopted two different smoothed seismicity
methods: (1) the fixed smoothing method, which uses spatially uniform smoothing parameters,
and (2) the adaptive smoothing method, which relates an individual smoothing distance for each
earthquake. The smoothed seismicity models are constructed by using the global earthquake catalog
with Mw ≥ 5.5 events. We reported progress on comparing smoothed seismicity models developed
by calculating and evaluating the joint log-likelihoods. Our resulting forecast shows a significant
information gain concerning both fixed and adaptive smoothing model forecasts. Our findings
indicate that complete catalogs are a notable feature for increasing the spatial variation skill of
seismicity forecasts.

Keywords: smoothed seismicity methods; global seismicity; foreshocks and aftershocks; earthquake
forecasting model

1. Introduction

Building earthquake forecasting models is a fundamental step in any probabilistic
seismic hazard analysis (PSHA). The spatial distribution of future seismicity is usually
estimated using a seismicity catalog using two commonly adopted approaches called
zonation [1,2] and smoothed seismicity [3,4]. In this work, we focus our attention on
the smoothed seismicity approach. This approach uses statistical techniques to build a
spatially gridded model using the epicenters of seismic events. One of the first examples
of the smoothed seismicity model was developed by [3] and used the Gaussian isotropic
spatial kernel to smooth the seismicity around epicenters. This model is based on only
one parameter, i.e., the sigma of the Gaussian kernel: the larger the sigma, the larger the
smoothing and vice versa. In the Frankel model, the sigma is fixed for any event, so it is
called “fixed smoothed seismicity”. Later, [4] developed a smoothed seismicity model that
allows changing the sigma of the Gaussian kernel, and in general the size of any spatial
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kernel function, according to the local density of earthquakes. The idea of this model is
that where we have more events, we can use a smaller sigma to better define the seismic
structures (i.e., the faults) that generate the seismicity. On the other hand, where we have
fewer events, we can use a larger sigma to increase the coverage of the model in those lower
seismogenic zones. In traditional PSHA, earthquakes are modeled using a Poisson process,
where the occurrence of a future earthquake is independent of previous earthquakes from
the same source [5]. The Poisson hypothesis holds for declustered catalogs. To include
aftershocks and foreshocks within traditional PSHA, Ref. [6] presented an approach based
on [7] theorem and its consequent generalization [8]. They demonstrated that the Poisson
distribution could approximate the distribution of exceedances (also considering seismic
sequences) in some specific conditions, e.g., for a probability of 10 percent or less of having
an exceedance in 50 years (a typical value used for PSHA). Ref. [9] somewhat revised
the initial [6] procedure. Rather than using their correction factor, Ref. [9] employed the
b-value and the annual rate of the complete catalog as input for PSHA computations.

Both [6] and [9] suggest using a declustered seismic catalog only for the spatial
estimation to avoid spatial bias introduced by the seismic sequence.

Therefore, a method that wants to introduce such sequences in the spatial estimation
for PSHA needs a technique to downweigh the importance of aftershocks and foreshocks.
Indeed, any seismic sequence should have the same importance in the spatial estima-
tion of seismicity, independently from the number of events in the sequence (which can
greatly vary between the sequences). The delcustering technique is the most dichoto-
mous approach: it gives a weight equal to 1 to the mainshock and 0 to all other events
in the sequence.

In their pioneering work, Ref. [10] developed a model to determine the spatial distri-
bution of seismicity, including also the aftershocks and foreshocks in the seismic catalog.
This approach uses a statistical model for the seismicity triggering, the ETAS model [11]
and the stochastic declustering procedure [12] to assign each event the probability to be an
independent event. In fact, in the ETAS model, events in the catalogs are distinguished as
independent and dependent instead of mainshocks and aftershocks. The aftershocks of a
seismic sequence, dependent on the sequence’s mainshock, obtain a very low weight in
this framework. Ref. [10] model consists of the multiplication of each spatial kernel for the
probability to be independent of the associated earthquake. Therefore, in this framework,
the spatial density distribution of a seismic sequence is mainly concentrated near the
mainshock of the sequence (i.e., the independent event that generates all the dependent
events of the sequence). Using this method, the fault that caused the seismic sequence is
only partially reconstructed.

Our new, simple approach tries to solve that problem using a uniform weight for all
the events of the same seismic sequence (i.e., 1/M, where M is the number of events in the
seismic sequence). In this manner, it is possible to describe the fault or the system of faults
in a more coherent way, avoiding giving excessive weight to the mainshock of the sequence.
Here, we use the global seismic catalog (CMT catalog), Ref. [13] to build four different
spatial seismicity models, fixed and adaptive smoothed seismicity with and without our
correction, to take into account the seismic sequences. Finally, we use the last ten years of
the catalog to compare the performances of the models, using the spatial likelihoods of the
models to measure their efficiency.

2. Dataset

We used the global centroid moment tensor (CMT) catalog containing 11,638 earth-
quakes with a depth ≤ 50 km recorded over the past almost 40 years between 1980 and
2019 [13,14]. We considered only events above the completeness magnitude as threshold
Mw = 5.5 [13,15]. The epicenter distribution of these events is shown in Figure 1. The
current seismic sequences present in the seismic catalog have been detected by the [16]
declustering algorithm, and the related parameters are provided and implemented in the
ZMAP software [17]. Figure 2 shows the mainshocks (red dots) and foreshocks/aftershocks
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(blue dots) in three zones in the world (Chile, Mexico, and Indonesia). Table 1 shows the
number of events present in each subcatalog. We stress that the declustered catalog (i.e.,
the catalog containing only the mainshocks of the sequences) has 6440 events, about 45%
less with respect to the complete catalog. This work aims to maintain as much data as
possible and use all the available earthquakes in the catalog for the spatial distribution
modeling. We underline that the use of a global catalog, instead of regional catalogs, has
some drawbacks: a high threshold for the completeness magnitude (in our case Mw 5.5),
difficulty in recognizing volcanic events, and large uncertainties in hypocentral estima-
tion. The main advantage is a large number of strong events, which can be collected in
a few years.
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Figure 1. Location of earthquakes in the global centroid moment tensor (CMT) catalog with a depth ≤ 50 km recorded over
the past almost 40 years between 1980 and 2019 [13,14]; blue letters indicate the zones of the zoom-in Figure 2.

Table 1. Number of events and time windows in the different catalogs from Mw ≥ 5.5.

Catalog Type Time Window Number of Events

Complete 1980–2019 11638

Declustered 1980–2019 6440

Complete–Learning 1980–2009 7977

Declustered–Learning 1980–2009 4718

Complete–Testing 2010–2019 3161
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Figure 2. Location of earthquakes in the global centroid moment tensor (CMT) catalog with a
depth ≤ 50 km recorded over the past almost 40 years between 1980 and 2019 [13,14]; (a–c) show the
mainshocks (red dots) and foreshocks/aftershocks (blue dots) in some zones in the world: Indonesia,
Mexico, and Chile.



Appl. Sci. 2021, 11, 10899 5 of 12

3. A New Smoothed Seismicity Approach

Building a spatial grid is the first step to constructing a spatial smoothed seismicity
model [3,4]. In this work, we used a global spatial regular grid, 0.5◦ by 0.5◦. Therefore, we
need to compute the contribution to each event in the seismic catalog to the generic i-th
spatial grid; the following equation describes that contribution:

fi =
N

∑
j=1

cKij Aidj (1)

where fi represents the normalized total seismic rate for the i-th spatial grid, N is the total
number of events in the complete (i.e., not declustered) catalog, c is the normalization factor(

c = 1
∑ fi

)
, Kij is the kernel function that depends on the distance between the center of the

i-th spatial cell and the epicentre of the j-th earthquake, Ai is the area of the i-th spatial cell,
and dj is the correction to take into account the foreshocks and aftershocks contribution to
the spatial model.

The following Gaussian kernel function [3] is used:

Kij =
1

2πσ2 e−
r2
ij

2σ2 (2)

where rij is the distance between the center of the i-th spatial cell and the epicentre of the
j-th earthquake, and σ is the free parameter of the model that rules the amplitude of the
smoothing. However, we note that different kernel functions can also be employed in
smoothing the epicenters from the earthquake catalog [4,18]. The smoothing distance, σ,
involved in each earthquake may be defined differently in various smoothed seismicity
models. For example, the fixed smoothed seismicity models practiced a single smoothing
distance for all earthquakes. The adaptive smoothed seismicity models represent unique
smoothing distances for each earthquake between an event and its nth closest neighbors
(NN), resulting in spatially varying smoothing distances [4]. The distance becomes smaller
in regions of high seismicity than in areas with sparse seismicity. It is one of the crucial
parameters in the smoothed seismicity models both for the earthquake rates and the spatial
variations of the earthquake activity rates in a region [19]. The correction parameter dj

represents the innovative part of our method. It is defined as following dj =
1
Sj

, where Sj is
the number of events in the seismic sequence and contains the j-th event. For example, if
a seismic sequence contains ten events, one mainshock, and nine aftershocks, each event
receives a weight, = 1

10 . Since the sum of all the weights is equal to one, the inclusion of
aftershocks does not create a spatial bias in the model [6], and it leads to a better description
of the fault that generated the sequence.

Using this simple correction may help better identify the active fault structures and
their features in a region. Removing all the aftershocks and foreshocks [3,4], giving
very high weight to the mainshocks only [10], may lead to an incomplete or biased
view of the spatial distribution of future seismicity. Conversely, considering all the
events in the sequence with a uniform weight, as in our method, increases the model’s
forecasting performance.

We underline that with Equation (1), we build normalized smoothed seismicity models,
i.e., the sum of all the rates in the spatial cells are equal to 1. In this work, we do not face the
problem of the total number of events and their magnitude frequency distribution, already
treated in [9]. In that work, the seismicity rates are corrected by a proposed technique
that allows counting all events in the complete seismic catalog by quickly adjusting the
magnitude frequency relationships. Our method differs from theirs, since we only deal
with the spatial distribution of the seismicity by using an equal weight for all the events of
the corresponding seismic sequence and incorporating aftershocks to improve the spatial
resolution of the model.
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4. Likelihood Testing for Spatial Variation of Seismicity

To perform the maximum likelihood estimation of the parameter σ (both for the
fixed and adaptive smoothing approach) and to assess the performance of the model,
we avoid considering the Poisson distribution of seismic events because this assumption
is rarely satisfied by the seismic catalogs [20,21]. Since we are interested only in the
spatial distribution of the events, and with Equation (1), we model the normalized spatial
distribution of events, we defined the log-likelihood (LL) of the observations with:

LL(X|M) =
N

∑
i=1

log( fi) (3)

where X is the set of the N observations (i.e., the epicenters of the events in the seismic
catalog), M is the spatial model, log is the natural logarithm, and fi is the seismic rate of the
spatial cell where the i-th event is located. We note that this formulation differs from the
spatial LL defined by [22] and has been commonly used in many seismic experiments [23],
since the Poisson hypothesis has been abandoned in our study. The LL of Equation (3) may
be ratified as the classical LL of a bivariate probability density function (represented by
the model, M) in case we assume the independence between the observations in the set X.
Additionally, in the case of nonindependent observations, the LL can be still used for scoring
the models (some authors, in this case, called the function “pseudo-likelihood”, [24].

To perform a pseudoprospective evaluation of the models first, we calculated the
log-likelihood values by dividing the earthquake catalog into two parts: (1) the learning
catalog, which contains the events recorded between 1980 and 2009 and is used to construct
trial smoothed seismicity models, and (2) the testing catalog, which covers the last ten
years of catalogs (2010–2019). The same LL of Equation (3) is also used to evaluate the
performance of the models.

We applied the fixed and adaptive smoothing methods with and without our cor-
rection to include aftershocks and foreshocks for a total number of four different models.
First, we used the learning catalog to compute the optimal smoothing parameters from
the maximum-likelihood estimations (MLE), which strongly vary with smoothing distance
(fixed smoothing) and neighbor number (adaptive smoothing). In the case of fixed smooth-
ing, we used a vector of possible sigma (from 5 km to 200 km, with a spacing of 5 km),
while for the adaptive smoothing, a set of possible neighbor numbers) are considered from
1 to 20, with a spacing of 1. The first part of the learning catalog (1980–1999) with a period
of twenty years is utilized to build various smoothed seismicity models with different
sigma and NN values. Finally, the nearest neighbor numbers and the correlation distances
are calculated through maximum-likelihood optimization for the four smoothed seismicity
models using the last ten years of the learning catalog (2000–2009). The results of these
estimations are summarized in Table 2 and Figure 3.

We underline that these obtained MLE values are suitable only in the case of a global
catalog: regional estimation of these parameters can lead to different MLE values (e.g.,
smaller sigma and larger NN).

Table 2. MLE of the parameters.

Model MLE

Fixed Sigma = 135

Adaptive NN = 1

Corrected Fixed Sigma = 115

Corrected Adaptive NN = 1
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5. Results

The final smoothed seismicity models are constructed using the entire learning catalog
and the optimized correlation distances, previously obtained and given in Table 2. The
models represent the bidimensional probability density function (PDF) of the seismicity
(the sum of all the rates is 1). The corrected fixed smoothed seismicity model is calculated
with a smoothing distance of 115 km, and it is 135 km in the case of the uncorrected
model. Both adaptive smoothed seismicity models are determined using the nearest
neighbor number equal to 1. These fixed and adaptive smoothed seismicity rate models
are illustrated in Figure 4a,b (not corrected, hereafter fixed and adaptive) and Figure 4c,d
(corrected, hereafter Fixedcorrected and Adaptivecorrected).

To check if our corrected models perform better than those uncorrected smoothed
seismicity models, we tested the Fixedcorrected and Adaptivecorrected models against the
two standard fixed and adaptive smoothed seismicity models. Therefore, we performed a
global pseudoprospective test, computing the LL (Equation (2)) of the four models using
the ten-year testing catalog (2010–2019). Here, we outline that our testing catalog is entirely
independent of the developed models. We preferred to endorse a similar computation
procedure adopted in the real global prospective tests of the Collaboratory for the Study
of Earthquake Predictability, CSEP, [23] and the global experiments [25,26]. We evaluated
the performance of the models using two different magnitude thresholds, Mw 5.5+ and
Mw6.5+, to check the robustness of our models’ forecasting locations and rates for future
earthquakes. The results of these comparisons are presented in Tables 3 and 4 for the four
developed models.
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Table 3. Log-likelihood (LL) values for the smoothed seismicity models for testing catalog from
magnitude Mw 5.5 (3161 events).

Model Log-Likelihood (LL)

Corrected Adaptive −29,632

Adaptive −29,639

Corrected Fixed −31,198

Fixed −31,297

Table 4. Log-likelihood (LL) values for the smoothed seismicity models for testing catalog from
magnitude Mw 6.5 (300 events).

Model Log-Likelihood (LL)

Corrected Adaptive −2850

Adaptive −2857

Corrected Fixed −2931

Fixed −2949

For a correct interpretation of the models’ LL, we recall that large LL values (i.e., the
ones nearest to zero) indicate relatively good performances of the models, and small LL
values (i.e., the ones further from zero) indicate relative bad performances of the models.

In general, our results show that the adaptive smoothed seismicity models (Adoptive
and Adaptivecorrected) produce larger LL values and reveal better forecasting performance
with respect to those from the fixed smoothed ones (Fixed and Fixedcorrected). The LL
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values are −29,632 and −29,639 for the corrected and uncorrected adaptive smoothed
models, while they are−31,297 and−31,198 in the case of the fixed corrected and corrected
smoothed seismicity models, respectively (Table 3). The largest LL value calculated for
the adopted smoothed seismicity models arises from the use of the correction parameter
including the foreshocks and aftershocks in the global catalog. So, in general, including
smaller earthquakes in the clusters increases the performance of the future Mw ≥ 5.5 and
Mw ≥ 6.5 earthquake forecasting capability in the smoothed seismicity models.

To understand if this increase is rather significant, we interpreted the difference of the
LL values for two models in terms of the Bayes factor [27], a common interpretation for
pseudoprospective experiments [28–30]. According to [27] table, we obtained “very strong
evidence” (difference in log-likelihood ∆LL > 5) in favor of our proposed method, both for
the fixed and adaptive approaches (Table 5). In Figure 5a–c, we also present the different
maps calculated between the normalized seismicity rates (linear scale) of the adaptive and
fixed corrected models (as Adaptivecorrected − Fixedcorrected), along with the events of the
testing catalog, in the same zones of Figure 2: Indonesia (Figure 2a), Mexico (Figure 2b),
and Chile (Figure 2c). Colors in light blue to red represent positive differences (i.e., the
rate of the adaptive model is higher with respect to the fixed model), deep blue represents
negative differences (i.e., the rate of the adaptive model is lower with respect to the fixed
model), and blue represents no difference.

Table 5. Log-likelihood differences (∆LL) between the models.

Models Magnitude for the
Comparison

Log-Likelihood Difference,
∆LL

Corrected Adaptive vs. Adaptive 5.5+ 7

Corrected Adaptive vs. Adaptive 6.5+ 7

Corrected Fixed vs. Fixed 5.5+ 99

Corrected Fixed vs. Fixed 6.5+ 18

Adaptive vs. Fixed 5.5+ 1658

Adaptive vs. Fixed 6.5+ 92
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6. Discussion

The comparison of the four global models, fixed and adaptive smoothed seismicity
with and without our correction for the inclusion of aftershocks and foreshocks, clearly
shows better performance of the models that use the correction. This positive result
indicates that using all events of a seismic sequence instead of only the mainshock increases
the forecasting capabilities of the smoothing seismicity models. Another very interesting
result is the better performance of the adaptive approach concerning the fixed approach,
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here demonstrated for a global catalog and two different magnitude thresholds, Mw 5.5+
and 6.5+. Looking at the normalized seismicity rates in Figure 4a–d, it is possible to note
the larger smoothing for the fixed models compared to the adaptive models in the zones
where the seismicity is higher. The difference between the adaptive and fixed smoothing
approaches is evidenced in Figure 5: the large smoothing for the fixed model leads to lower
rates with respect to the adaptive model in the zones where the earthquake rate for the
testing catalog is higher (pink and red colors in Figure 5). On the contrary, the rates of the
fixed model are higher with respect to the adaptive model in the areas adjacent to the more
seismic active zones (blue colors in Figure 5). Zones far from the main seismic regions (e.g.,
intraplate zones with very few earthquakes) have a very small difference between the fixed
and adaptive seismicity rate models (light pink color in Figure 5).

The significantly better performances obtained by the adaptive smoothed approach
(Table 5) confirm at a global scale the regional results obtained by [4] for California and [31]
for Italy. Our method is more straightforward than that of [10], because it does not require
a sophisticated stochastic declustering procedure [12]. Still, it only needs to identify
the events in a seismic sequence, in this work made with the classical [16] declustering
algorithm. Despite its simplicity, our method gives encouraging good results. A possible
future work could be a comparison between our approach and the [10] approach.

Our method is based on the assumption of stationarity of the seismicity (usually
accepted in long-term modeling); however, working in smaller time and spatial scales,
some regions may exhibit different spatiotemporal variations, useful to forecast stronger
seismic events [32,33]. Abandoning the stationarity assumption, smaller earthquakes can
also be used to try to determine the current state of the seismic cycle [34] and then identify
possible temporal variations in the long-term seismic rates.

7. Conclusions

The ten-year, global, pseudoprospective earthquake spatial forecasting experiment
gives us two critical results:

(1) In general, the adaptive smoothing approach has better performance with respect to
the fixed smoothing approach also for a global catalog with large events (Mw ≥ 5.5
and Mw ≥ 6.5);

(2) Using the simple correction described in this work, the inclusion of aftershocks and
foreshocks leads to better spatial performances of the smoothed seismicity models.

A possible future improvement of our method is to include the events below the
magnitude of completeness (Mw < 5.5) in the model to enhance and better describe the
active fault structures and their segments.
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