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1 Introduction

In the recent decades, the continuous improvement of 
quality and quantity of seismographic equipment has 
increased the amount of data produced by seismologi-
cal networks in such a way that its visual analysis by 
human analysts has become an impracticable task. At 
the same time, the progress in computer technology 
has allowed the development of automatic process-
ing tools, among which deep neural networks have 
shown the capacity of supporting in an efficient way 
the human capacities.

The application of neural networks to waveform 
analysis to detect seismic signals from the back-
ground noise, phase picking, and event location has 
started in the 1990s with the early work of Romeo 
(1994) and Wang and Teng (1995, 1997). Following 
these pioneristic efforts, a quantity of papers has pop-
ulated the scientific literature (Gentili and Michelini 
2006; Tiira 1999; Zhao and Takano 1999). In particu-
lar, significant results have been achieved in the most 
recent studies by Perol et  al. 2018; Li et  al. 2018; 
Chen et  al. 2019; Kriegerowski et  al. 2019; Lomax 
et al. 2019; Mosher and Audet 2020.

In this paper, we propose an innovative approach 
using just seismic waveform images rather than time 
sequences as input to neural networks. More specifically, 
the waveform analysis consists in two steps as follows:

• Training a convolutional neural network to auto-
matically classify digital waveform segments col-
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lected by the Italian Seismological Instrumental 
and Parametric Database (ISIDe) of the Istituto 
Nazionale di Geofisica (INGV) (ISIDe Working 
Group 2007)

• Training a regression neural network to estimate 
the distance between the earthquake epicenter and 
the station recording the signal, from waveform 
segments previously classified by the previous 
step

2  Methodology used

Neural networks are a subset of machine learn-
ing techniques. By definition, “machine learning” is 
meant to be the use and the development of computer 
systems able to achieve specific tasks by means of a 
learning process rather than a set of explicit instruc-
tions. More specifically, artificial neural networks 
(ANN) are algorithms inspired by the structure of the 
primate cerebral cortex designed to learn abstract fea-
tures from the input data to support the desired output 
(O’Shea and Nash 2015; Rawat and Wang 2017).

The most general problem solvable by a neural net-
work is trying to predict a variable (said answer or 
label) when some other variables (said predictors) are 
known. For example, in a seismological context, the 
predictors could be a single waveform segment and 
the label could be the classification if the total signal 
contains an earthquake or not. In this example, the 
main task of a neural network would be to “learn” if 
provided data contains proper features to perform a 
correct classification.

Any “learning process” requires a training step and 
specific data to learn from. That is why the first effort 
when dealing with neural networks is providing the 
system with data containing both the predictors and 
the labels. Once such data are provided and the sys-
tem has been successfully trained, then the algorithm 
is able to automatically predict the answer for any 
other data sets including the same kind of predictors.

Depending on the type of answer, neural networks 
can be divided into two groups. If the output variable 
is categorical or included in a limited set of discrete 
values, then the network is said to be a classification 
one. Basically, a classification network is characterized 
by groups of possible outputs and it has to learn how 
to determine which group is the right one for the input 
data. In our example, the groups are “earthquake” 

and “not earthquake.” So, the specific example would 
require a classification network. If the answer is a 
continuous number, then the network is said to be a 
regression one. The regression networks are designed 
to learn a mathematical dependency between the input 
and output variable so that the output number can be 
calculated according to the input data.

A common practice to evaluate the “prediction 
capability,” once the training process is finished, is 
using “test data.” Basically, a randomly chosen fraction 
of input data and their corresponding labels provided 
by the user are excluded from the training process, 
so that the “already trained” system can be applied 
to them getting their “predicted labels.” For this data, 
both “predicted” and “real” labels are available and can 
be compared to estimate the accuracy of the model. 
An additional practice used to better check “predic-
tion capability” is the k-fold procedure. Basically, 
rather than simply dividing the available labelled data 
into two groups (training and test), a set of test data 
groups are selected and multiple training processes 
are performed, using each group as test data and the 
remaining data as training data. So, for example, if 
20% of percentage is established for test data, then a 
fivefold procedure is applied: all data are divided into 
five groups (each of them having 20% of data) and five 
training processes are used using the remaining 80% of 
data for training and the 20% of that group as test. This 
allows a better estimate of method accuracy.

A general schema of ANN is shown in Fig.  1 as 
described in Romeo (1994). The basic ANN elements are 
neurons inserted into proper layers and connected to all or 
to a partial subset of other neurons of the network. The 
first layer is defined “input layer” and its neurons’ num-
ber is the same as input data so that each single input is 
“passed” to a single neuron and then, after convenient 
mathematical steps, passed to the next layer where its pro-
cessing goes on till the last layer, where the output can be 
compared to the provided labels to check their match.

All mathematical steps involve ANN parameters 
called weights and biases, and the final output is 
strongly dependent on their values. When the train-
ing process starts, such values are randomly chosen 
and, after comparing the predicted outputs with the 
provided labels, a backward process starts modifying 
the weights and the biases. Such propagation involves 
the iterative adjustment of the parameters vector with 
the goal of minimizing the differences between the 
observed and predicted values (Cao and Parry 2009).
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Convolutional neural networks (CNNs) are a sub-
set of ANN specifically designed to extract local 
features from matrices. Their structures are more 
complex and their layers basically consist of filters 
applied to matrices (Cao and Parry 2009; Indolia 
et  al. 2018). The main task of CNN is to recognize 
“local” rather than “global” features. This means that 
each neuron, rather than collecting data coming from 
all inputs (or neurons of the previous layer), focuses 
just on a limited number of them. To accomplish this 
task, CNN consists of sequences of four layer types: 
convolutional layers, pooling layers, fully connected 
layers, and a single softmax layer.

Convolutional layers are the most important to 
inspect local features and their characteristics can be 
summarized in Fig. 2.

As one can see, just a limited number of inputs/neu-
rons are connected to each neuron of the next layer. By 

means of such strategy, each neuron can inspect specific 
areas. The convolutional layer outputs are matrices.

Pooling layers are designed to subsample the 
convolutional layers output in order to reduce their 
sizes. An example is shown in Fig.  3 showing a 
polling layer output. The final matrix contains the 
maximum value of all 2 × 2 submatrices starting 
from matrix layer input. Rather than maximum, it 
is possible to use different functions such as mini-
mum, average, and others.

Fully connected layers are basically the ones shown 
in Fig. 1 and they are inserted into the CNN to change 
the output matrices coming from convolutional and 
pooling layers from a 2d structure to a 1d one.

Generally, the first fully connected layer in a 
CNN is followed by other fully connected layers as 
shown in Fig. 4.

Fig. 1  General neural net-
work architecture (Romeo 
1994)

Fig. 2  Convolutional layer representation
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Softmax layers transform the numbers included 
into the last fully connected layer into probabilities 
of each label. Finally, the predicted label is the one 
correspondent to the higher softmax value.

Convolutional networks have extensively been used 
to classify images and a very famous one is Alexnet 
(Han et al. 2017; Indolia et al. 2018; Krizhevsky et al. 
2017). The main capability of Alexnet is extracting 
meaningful features from images. Such features allow 
the final layers of the network to be used for differ-
ent classifications or regression problems. The main 
advantage of using Alexnet is that this is a pre-trained 
network and the weights are already pre-calculated to 
recognize primitive image features (such as geometri-
cal figures, segments, and so on). So, the network is, for 

a large part, already trained and optimized to be used 
and the training step consists just in tuning the pre-cal-
culated parameters. This ensures a quick and optimal 
training compared to a general network designed from 
scratch. Furthermore, a smaller number of input data 
have to be provided compared to a new neural network.

Finally, using simple and few proper modifica-
tions, Alexnet can be used for both purposes: classi-
fication and regression. More specifically, replacing 
the softmax layer with a single fully connected layer, 
it is possible to transform the classification Alexnet 
architecture into a regression one; both architectures 
are shown in Fig. 5.

Another important concept to introduce when 
describing neural networks is the “loss function.” 

Fig. 3  Pooling layer repre-
sentation
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Basically, the loss function determines, at each itera-
tion of training progress, how much the labels pre-
dicted by the network are different from the real ones 
(they are known for training data). Such “loss func-
tions” may also have complicated expressions but, 
for Alexnet, the functions used to define the loss are 

cross-entropy (Ho and Wookey 2019) for the classifi-
cation and the mean-squared error for regression.

There are additional pre-trained networks (such as 
VGG and Resnet) that could be used, but in this paper, 
we decided to use Alexnet as it is less computing time 
and hardware resources demanding. However, we have 

Fig. 5  Alexnet architecture 
representation for both clas-
sification and regression
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also checked that Resnet and VGG have similar or 
worse results than Alexnet (see additional material at 
https:// gitlab. com/ aless andro. pigna telli/ autom atici nspec 
tionm ateri al/-/ blob/ main/ auxil iary_ mater ial. zip).

In this work, we show that three components seis-
mic wave plots can be used (just as images without 
using digital waveforms) to feed an Alexnet neural 
network to be trained in order to perform the follow-
ing two tasks:

1) Determine if a waveform segment contains an 
earthquake signal (and more specifically if the 
source of such signal is near of far from the 
recording station).

2) Estimate the distance between the seismic event 
and the stations recording the waveform.

We show that results are accurate enough to pro-
vide a general neural network for an automatic detec-
tion system.

3  Data and resources

We used 8348 three-component waveforms from 
earthquakes with magnitude > 3 that occurred in 

the Italian peninsula from 2015 to the present and 
recorded at seismic stations of the INGV network. 
The seismic network of INGV consists of broadband, 
short period, and high gain seismometers. The wave-
forms were automatically downloaded from the Ital-
ian Seismological Instrumental and Parametric Data-
base (ISIDe, http:// terre moti. ingv. it/ iside) by means 
of web scraping procedures. As stated in the previ-
ous section, in this work, we have accomplished two 
tasks. For both of them, our “input data” have been 
plotted as the one shown in Fig. 6: basically, the three 
components of a seismic wave recorded by INGV 
stations for a period of 5 min. We used three-compo-
nent seismograms as it is well known that the verti-
cal component is the most useful to detect the P wave 
first motion and the horizontal components show 
more clearly S waves arrivals. It could have some 
relevance in the task of estimating the epicentral dis-
tance from the full set of three components.

The image has been intentionally left without any 
title or label to avoid network being influenced by 
parametric data during the training process.

Such images have been used for both work tasks. 
More specifically, for the first task, a set of 2700 
images have been manually selected and divided into 
three groups: “yes local” group (signals showing a 

Fig. 6  An example of 
a neural network input 
image. It contains the three 
components (E-W, N-S, 
and vertical) of seismic 
waves. The image has been 
intentionally left without 
any axes labels to avoid 
numbers influencing the 
neural network training 
process

https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
http://terremoti.ingv.it/iside
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Fig. 7  Accuracy and 
confusion matrix obtained 
by the Alexnet classification 
network for the first fivefold 
step

Fig. 8  Accuracy and 
confusion matrix obtained 
by the Alexnet classification 
network and averaged on all 
the fivefold procedure steps
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clear earthquake at less than 150 km from the record-
ing stations), “yes regional” group (signals show-
ing a clear earthquake at more than 250  km from 
the recording station), and “no” group (signals not 
showing a clear earthquake or too much disturbed 
by noise). More specifically, in order to balance the 
“event” and “no event” samples, we have chosen 
1626 “no,” 571 “yes local,” and 573 “yes regional.”

Such images have been used for the first step of 
this work. So, the Alexnet network has been trained 
to learn how to perform the image group assignment.

Once this process was completed, we used the 
trained network to automatically select three-compo-
nent seismograms to perform the second processing 
task for a total of 8348 samples.

More specifically, some earthquakes have been 
randomly chosen from the ISIDe database and (start-
ing from the nearest to the farthest station of the 
Italian network) three seismograms of 5  min length 
have been downloaded from each station. The start-
ing record points have been randomly selected in a 
range of 5 min before the origin time of the respective 
earthquake. This “random shift” has been inserted to 
avoid that the network could be influenced by the dis-
tance from the starting recording point and the first 

arrival of the seismic waves as, in a possible auto-
matic process, the earthquake origin time is unknown 
and the time windows passed to the network would 
start from a random point.

For each downloaded data set, we have also 
recorded the distance from the earthquake epicenter 
and the station (so we could have both input data and 
their labels), and for the purpose of this work, we 
have excluded the signals recorded by the stations 
more distant than 500 km.

Once the automatic download process has been 
completed, we have first filtered data by means of 
the first step trained network (so only earthquakes 
classified data have been selected) and then used the 
downloaded signals to feed the Alexnet network and 
trained it to estimate the distance from the image.

4  Results

For both tasks described in the previous section, we 
decided to use 20% of the available data from the test 
process. To better estimate method accuracies, we 
also used a fivefold procedure, so we have performed 
5 times the training process and each time, we used 
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20% data for testing to estimate the capability of the 
two trained networks to generalize the prediction to 
an independent data set.

Common ways to estimate classification networks 
prediction are the accuracy (defined as the ratio 
between the number of correctly classified data and 

the total data) and the confusion matrix (Lantz 2013). 
A confusion matrix is a table counting when the pre-
dicted classes agree or disagree with the true values. 
Conventionally, the rows represent the true classes 
and the columns represent the predicted ones. The 
number in the intersection between rows and columns 

Fig. 10  a Two local earthquakes of magnitudes 3.0 and 3.2, 
origin time 15  s apart, recorded by station ESML (Etna Vol-
cano). True distance: 10 km; predicted distance: 103 km; b the 

INGV (ISIDe) seismic bulletin reporting the two events (high-
lighted in gray) recorded in Fig. 10a
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represent how many records characterized by the row 
true classes have been classified with the predicted 
one specified by the column. So the numbers along 
the diagonal show all the records correctly classified 
and the other numbers the wrong cases. In addition 
to the overall accuracy, confusion matrices indicate 
the accuracy of the method for each single class. For 
our experiment, both accuracy and confusion matrix 
are shown in Fig. 7 (the first matrix obtained by the 
fivefold procedure). All other k-fold results are very 
similar, as one can see at https:// gitlab. com/ aless 
andro. pigna telli/ autom atici nspec tionm ateri al/-/ blob/ 
main/ auxil iary_ mater ial. zip. In our case the accuracy 
is 96.03%, showing that using images rather than time 
sequences does not affect at all the neural network 
prediction capability. To resume all the results of the 
fivefold procedure, we computed the average percent-
age confusion matrix shown in Fig. 8.

For the second task, the results are shown by the 
plot of Fig. 9 (the first regression obtained by the five-
fold procedure. All other k-fold results are very simi-
lar, as one can see at https:// gitlab. com/ aless andro. 
pigna telli/ autom atici nspec tionm ateri al/-/ blob/ main/ 
auxil iary_ mater ial. zip), where the black line shows 
the ideal “perfect prediction line” and the red spots 
show the actual predictions. As one can see, there is 
a good match between real and predicted distances 
(especially for the lowest ones which are the most 
important for a possible automatic system) and we 
have checked that for each very wrong estimate, there 
is a specific reason explaining such error as shown in 
Sect. 5.

In order to estimate the regression quality, we per-
formed a linear regression using the real distances 
as independent variable and the predicted distances 
as dependent variable. If the neural network worked 
perfectly, we would expect a regression line pass-
ing through the origin and with angular coefficient 
1 (black line of Fig.  9). As we can see from Fig.  9 
(dashed line), the real regression line is very near to 
the ideal “perfect prediction line.” In fact, the cal-
culated coefficients are linear term = 1.0371 and 
intercept =  − 9.1424  km. Moreover, the t Student 

statistical test applied to the coefficients gives p val-
ues very near to zero (more specifically both for the 
linear term and the intercept the values are lower than 
1e-27) meaning that the linear relation is statistically 
highly significant even if the scatter plot shows some 
outliers.” Furthermore, we estimated the data scatter-
ing level by computing the percentage error median 
13.89% and the interquartile range 22.88%.

5  Discussion and conclusions

In order to understand and classify the network 
errors, we have analyzed some of the outliers, i.e., 
the cases in which the value of the epicentral distance 
predicted by the neural network was largely different 
from the real value reported on the ISIDe bulletin. As 
an example, in Figs. 10 and 11, we report a couple of 
anomalous cases; in one case (Fig.  10a), two earth-
quakes of respective magnitudes 3.0 and 3.2 occurred 
15  s apart in the same epicentral area, so that the 
neural network has instead regarded them as a single 
event considering the time interval between the two 
first onsets as the difference between the arrival of P 
waves and that of S waves. This happened in the area 
of the Etna volcanic district (as reported by the INGV 
bulletin in Fig. 10b) where seismic sequences are fre-
quent (Alparone et al. 2015).

Another common case (Fig.  6a), where the neural 
network has proven some difficulties in providing the 
expected distance, is when a small but nearby earth-
quake is also recorded at a station, masking the trace 
of an almost simultaneous but much farther event, even 
if the latter has a larger magnitude. In the specific case 
shown in Fig. 11, the SSFR station received a seismic 
signal from a nearby event (at 61 km distance) of mag-
nitude 2.7, which occurred 2 min after an earthquake of 
magnitude 3.0 located 320 km far from the same sta-
tion. The latter event was the one to be identified by the 
automatic testing procedure. In this case, the predicted 
distance calculated by our neural network was 74 km. 
The presence of the magnitude 2.7 earthquake was con-
firmed at other nearby stations, so that the distance pro-
vided by the neural network cannot be considered a real 
mistake.

In conclusion, in this study, we have tested the 
hypothesis that data images of three-component seismic 
waveforms contain much of the information included in 

Fig. 11  a Local event of magnitude 2.7 recorded at 61  km 
from the SSFR station masked the recording of a farther event 
of magnitude 3.0 at a distance of 320 km; b the INGV (ISIDe) 
seismic bulletin reporting the events (highlighted in gray) 
recorded in Fig. 11a

◂

https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
https://gitlab.com/alessandro.pignatelli/automaticinspectionmaterial/-/blob/main/auxiliary_material.zip
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time series or, at least, the information required to clas-
sify if a seismic event is included or not in the data set 
under analysis and to give an approximate estimate of 
the distance between the seismic event epicenter and 
the recording station. To prove such a claim, we applied 
a deep neural network algorithm to plots of waveform 
segments obtained from the ISIDe database of the Ital-
ian INGV seismological network to classify the presence 
of seismic events inside a waveform segment and to esti-
mate the respective epicentral distance. The results show 
a classification accuracy of about 96% and a very good 
fit in terms of distance prediction capability.

We performed the same analysis also using other 
pre-trained networks such as VGG or Resnet. We got 
very similar results for regression while, for classifica-
tion VGG performance, it seems to be lower than the 
other two. We put such additional results together with 
Alexnet one into auxiliary material at https:// gitlab. 
com/ aless andro. pigna telli/ autom atici nspec tionm ateri 
al/-/ blob/ main/ auxil iary_ mater ial. zip.
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