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Abstract: In the last decades, thermal infrared ground-based cameras have become effective tools to
detect significant spatio-temporal anomalies in the hydrothermal/volcanic environment, possibly
linked to impending eruptions. In this paper, we analyzed the temperature time-series recorded by
the ground-based Thermal Infrared Radiometer permanent network of INGV-OV, installed inside the
Solfatara-Pisciarelli area, the most active fluid emission zones of the Campi Flegrei caldera (Italy).
We investigated the temperatures’ behavior in the interval 25 June 2016–29 May 2020, with the aim
of tracking possible endogenous hydrothermal/volcanic sources. We performed the Independent
Component Analysis, the time evolution estimation of the spectral power, the cross-correlation and
the Changing Points’ detection. We compared the obtained patterns with the behavior of atmospheric
temperature and pressure, of the time-series recorded by the thermal camera of Mt. Vesuvius, of
the local seismicity moment rate and of the CO2 emission flux. We found an overall influence of
exogenous, large scale atmospheric effect, which dominated in 2016–2017. Starting from 2018, a
clear endogenous forcing overcame the atmospheric factor, and dominated strongly soil temperature
variations until the end of the observations. This paper highlights the importance of monitoring and
investigating the soil temperature in volcanic environments, as well as the atmospheric parameters.

Keywords: Campi Flegrei; ground thermal image temperatures; exogenous/endogenous phenom-
ena; monitoring atmospheric parameters

1. Introduction

In the last decades, thermal remote sensing has been largely used in surveys and in
the analysis of thermal behavior of active volcanic areas. Different specific devices, such
as portable or ground/airborne sensors and satellites [1–4], can reveal thermal anomalies
linked to volcanic activity, as well as mapping volcanic deposits [5]. Thermal remote
explorations are largely used to monitor the state of volcanoes by detecting thermal surface
variations likely linked to endogenous dynamics and possible eruption precursors. The
thermal infrared ground camera is an effective tool to reveal such variations. Indeed,
thermal ground monitoring allowed detection of the intensification of the thermal activity
prior to the 18 May 1980 eruption at Mount St. Helen’s [6]. Some days before the Santa
Ana volcano lake eruption, Hernández et al. [7] measured a significant increase in the
surface lake temperature and an intensification of the fumarolic emissions, by using thermal
infrared images acquired with a handheld camera. A handheld thermal camera was also
used by Calvari et al. [8] to monitor the Mt. Etna and Stromboli volcanoes. When both
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the volcanoes erupted in 2002–2003, the acquired thermal images showed a failure on the
volcanoes’ flanks before the eruptive fractures’ opening. Hilman et al. [9] used the thermal
infrared radiometers (TIR) on board of an Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) to detect thermal surface anomalies related to the gas
emissions around Papandayan and Domas craters (Indonesia). Their results suggested that
SO2 emission measurements and land surface temperature corrections are highly correlated.
Afterward, those authors [10] applied the satellite imaging to increase the effectiveness of
upflow zone detection in those areas.

The surface thermal behavior of Campi Flegrei caldera (CFc; Southern Italy) has been
monitored using different thermal infrared (TIR) devices: satellite thermal sensors [11],
ground-based TIR permanent network (TIRnet) [12–15] and handheld TIR cameras [16].
The relative studies are mainly devoted to analyzing the thermal observables at a local
scale, inside the caldera. Indeed, the interaction between some atmospheric parameters
and TIRs, such as the rainfall episodes and variations in ground temperature in Solfatara,
was already explored [17]. At even smaller scales, the heating due to anthropogenic noise
is also known [18,19], as well as the effects due to the topography which are expected to
cause local wind perturbation that increases the gas flux.

The present work mainly aims at the identification of possible sources at larger spatial
scales (tens of kilometers) that might affect the CFc thermal behavior, in order to better
characterize the local hydrothermal/volcanic dynamics. Besides the spatial investigation,
the analysis was also focused on the variations in TIRs over large time scales (from weeks
to years), as at small time scales (of the order of a few days).

Here, the behavior of a Solfatara–Pisciarelli shallow hydrothermal system is inves-
tigated in the time span of 25 June 2016–29 May 2020, by processing data acquired by
TIR ground cameras belonging to the surveillance TIRnet of INGV in correspondence to
selected active fumarole emission areas of CFc (Figure 1). A first comparison was carried
out among all the TIRs of CFc, the atmospheric parameters (Tatm and Patm) and the TIR of
Mt. Vesuvius (VES), to identify/discriminate possible exogenous sources at a large spatial
scale. Then, the evidenced CFc ground thermal patterns were compared to the spatio-
temporal behavior of the seismicity rate [20,21] and CO2 emission flux [22] in order to
better characterize possible endogenous sources acting in the first 3 km of depth [23]. Such
endogenous sources are linked to the hydrothermal/volcanic dynamics, such as magma
movements, pressured gas injection at depth, regional or local stress field variations and
so on.

This work evidenced how TIRs are able to track endogenous hydrothermal/volcanic
effects, as well as to identify an overall general atmospheric trend.
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Figure 1. TIR network. (a) On the left, CFc TIR cameras (red dots) and Capo Miseno meteo station 
(green dot). On the right, Vesuvius TIR camera (red dot); (b) Digital Terrain Model (DTM) of Solfa-
tara crater [24] with locations of TIR stations (red dots) and studied framed areas (orange, blue and 
green areas) mapped in GIS environment using Field of View (FoV) values of infrared sensors (After 
Caputo et al. [15], Figure 1a). 
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started with alternating unrest episodes, characterized by an increase in uplift velocity 
and seismic crises, termed ‘bradyseism’ [30,31]. The most recent bradyseismic episodes 
occurred in 1968–1972 and 1982–1985. 

In 2004, CFc started a new inflation phase, characterized by an increasing ground 
uplift [32–36] consisting in a total maximum vertical displacement of ~0.80 m [22] by fre-
quent shallow seismicity [20,37–40] and by increasing degassing activity [23,41]. 

According to Chiodini et al. [23], the bradyseismic phenomena are due to the 
dynamics of the magmatic–hydrothermal system. The authors depict a deep gas accumu-
lation zone located at about 4 km of depth, possibly related to small magma/fluid injec-
tion, and a hydrothermal reservoir at about 2 km of depth, where upwelling magmatic 
fluids mix with meteoric water. 

Hydrothermal/volcanic fluid emission is mainly centered in the Solfatara–Pisciarelli 
area (Figure 1) characterized by the Solfatara ~3.8 ka old tuff-cone. The CO2 anomalies’ 
pattern follows the structural alignments, suggesting that the faults and the fractures 
mainly control the diffuse gas emission [42]. The main fault system is along the NW–SE 
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Figure 1. TIR network. (a) On the left, CFc TIR cameras (red dots) and Capo Miseno meteo station
(green dot). On the right, Vesuvius TIR camera (red dot); (b) Digital Terrain Model (DTM) of Solfatara
crater [24] with locations of TIR stations (red dots) and studied framed areas (orange, blue and
green areas) mapped in GIS environment using Field of View (FoV) values of infrared sensors (After
Caputo et al. [15], Figure 1a).

2. Materials and Methods
2.1. The Study Area

The Campi Flegrei volcanic area is a resurgent nested caldera about 65 km2 wide,
located in Southern Italy (Figure 1) and generated by two high magnitude volcanic
eruptions: the Campanian Ignimbrite (~40 ka) and the Neapolitan Yellow Tuff eruption
(~15 ka) [25–28]. After the last eruption (Monte Nuovo, 1538 AD [29], CFc was affected by
a diffuse subsidence until the second half of the 20th century. After this date, ground uplift
started with alternating unrest episodes, characterized by an increase in uplift velocity
and seismic crises, termed ‘bradyseism’ [30,31]. The most recent bradyseismic episodes
occurred in 1968–1972 and 1982–1985.

In 2004, CFc started a new inflation phase, characterized by an increasing ground
uplift [32–36] consisting in a total maximum vertical displacement of ~0.80 m [22] by
frequent shallow seismicity [20,37–40] and by increasing degassing activity [23,41].

According to Chiodini et al. [23], the bradyseismic phenomena are due to the dynamics
of the magmatic–hydrothermal system. The authors depict a deep gas accumulation zone
located at about 4 km of depth, possibly related to small magma/fluid injection, and a
hydrothermal reservoir at about 2 km of depth, where upwelling magmatic fluids mix with
meteoric water.

Hydrothermal/volcanic fluid emission is mainly centered in the Solfatara–Pisciarelli
area (Figure 1) characterized by the Solfatara ~3.8 ka old tuff-cone. The CO2 anomalies’
pattern follows the structural alignments, suggesting that the faults and the fractures mainly
control the diffuse gas emission [42]. The main fault system is along the NW–SE direction,
while the minor one follows the NE–SW trend (Figure 1b). Bocca Grande and Bocca Nuova
are the main fumarole vents inside the Solfatara crater and are located at the intersection
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between the two main fault systems (Figure 1b). The Pisciarelli fumarole field, elongated
toward the NW–SE faults system, has shown a significant growth in hydrothermal activity
during the ongoing unrest phase, with a recent increase in shallow seismicity [22].

2.2. Thermal Infrared Surface Data and Atmospheric Temperature and Pressure Data

The Osservatorio Vesuviano (OV) is a Section of the Istituto Nazionale di Geofisica e
Vulcanologia (INGV) mainly designated to the surveillance of the Neapolitan volcanic area
by managing a large number of monitoring networks. Since 2006, the Thermal InfRared
Permanent Network (TIRnet) has been monitoring the ground thermal anomalies due
to diffuse degassing activity at CFc and the Vesuvio crater [12,13,43,44]. The network is
overall composed of five stations at CFc and one at the Mt. Vesuvius crater (Figure 1). In
the CFc area, three stations are installed inside the Solfatara cone (SF1, SF2 and SOB), one
station in the Pisciarelli area (PIS), one station at the southern slope of Mt. Olibano (OBN).
The SF1 station acquires frames of the SE inner slope of the Solfatara crater, including
Bocca Grande and Bocca Nuova fumaroles. The SOB station acquires frames of a restricted
diffuse degassing area on the top of the SE rim of the Solfatara edifice. The SF2 station
targets the cryptodome beside the inner NW slope of Solfatara. The PIS station monitors
the area close to the base of the NE Solfatara external slope (Figure 1b). The TIR camera
installed at Mt. Vesuvius (VES) is located about 24 km away from the Solfatara–Pisciarelli
area and it targets the fumaroles located inside the crater in the western inner slope. The
distances between the sensors and the target areas range from 80 m to about 340 m. The
TIR stations use FLIR infrared cameras A645SC/A655SC holding a Focal Plane Array (FPA)
uncooled Microbolometer detector. The sensor thermal sensitivity is <0.03 ◦C ± 30 ◦C, the
accuracy ± 2 ◦C, the spectral range 7.5–14 µm and the resolution 640 × 480 pixels. Every
TIR station captures three frames of the target areas, at nighttime (00:00, 02:00, 04:00 a.m.)
to avoid the effects of sun heat radiation accumulated by the soil.

UMTS and WiFi transmission systems are used to telemeter the acquired scenes to
the INGV-OV monitoring center in order to be processed daily by the Matlab© application
ASIRA (Automated System of InfraRed Analysis, Naples, Italy) [44]. Raw TIR images
are processed to generate thermal infrared surface temperature time-series with daily
maximum TIR temperature values (◦C; Figure 2).

In this work, ground temperatures recorded in the time span 25 June 2016–29 May
2020 (Figure 2) were used.

Air temperature (Tatm, in ◦C) and atmospheric pressure (Patm, in mbar) time-series
are recorded by a VAISALA WXT520 meteorological station, installed inside Capo Miseno
lighthouse (Bacoli, Italy). The station is composed of an OTT data logger LogoSens2 which
acquires a sample every ten minutes and then transmits the data to INGV-OV center by
HIPERLAN (HIgh PErformance Radio LAN).

Tatm shows drastic minima and maxima that interrupt the overall trends. These
anomalies correspond to the time range in which the air temperature is unusually cold or
hot. For example, in January 2017, southern Italy was affected by an intense cold, with
anomalous low altitude snowfalls, while January 2018 was unusually hot.

All the time-series are pre-processed, i.e., de-seasonalized (correction for annual peri-
odicity, i.e., 365 d) and corrected for tidal constituents (Mf lunisolar fortnightly, 1366 days;
Msf lunisolar synodic fortnightly, 1476 days; Mm lunar monthly, 2755 days; Msm so-
lar monthly, 3181 days; Ssa solar semiannual, 18,263 days; Sa solar annual, 36,526 days)
according to the procedure described in [14,15,44].

The temporal trends of the time-series are best highlighted by a moving average over
31-day-long time windows (about 1 month) shifted by 1 day (red line in the Figure 2).
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Figure 2. Analyzed time-series of ground temperatures: (a) from top to bottom, Tatm, VES, PIS and
SOB (black lines); (b) from top to bottom, Patm, OBN, SF1 and SF2 (black lines), as indicated by
the vertical axis labels. The red curves are the moving averages, estimated over 31-day-long time
windows shifted by 1 day. In the plot of Tatm and Patm, we added cyan stars in correspondence to
exceptional snowfalls. A red star marks the 2020 lockdown due to the COVID-19 pandemic.

2.3. ICA Method

In order to reveal which among the waveforms related to the frequencies involved in
the TIR time-series can be considered independent, we adopted the Independent Compo-
nent Analysis (ICA), that is, a decomposition method in the time domain [45].

This technique exploits the statistical independence of the sources, whose linear com-
bination is supposed to form each experimental series (each TIR). At a first approximation,
the kurtosis can be used for estimating the independence; a more general approach requires
that the negentropy and/or the mutual information be evaluated [45].

The mathematical model can be formulated considering that each TIR is a mixture
of some unknown sources, x = As, where x represents the five TIR series, the matrix A
provides the coefficients of the linear superposition and basically takes into account the
medium effects, and s is a vector of at most five unknown independent sources. The model
requires that the number of the recordings, x, must be at least equal to the number of
the unknown sources, s. Under these hypotheses, the ICA goal is to obtain a matrix of
separation W ≈ A−1, such as the vector y = Wx being an estimate y∼s of the original
independent signals. Several approaches are proposed in the literature, such as the Mutual
Information, the maximum likelihood, etc., to retrieve the sources and W. To estimate them,
we adopted the non-Gaussianity method, which uses as contrast function the negentropy.
The latter was approximated by the fixed-point FastICA algorithm [45].

ICA has been successfully applied in the field of volcano seismology [33,46–49].

3. Results
3.1. ICA Results

The application of ICA was carried out on homogeneous variables, i.e., on the five
available CFc TIRs. To get robust results, the series were band-pass filtered in the range
(1 year 3 days). The results of the decomposition are reported in Figure 3, where both
the separated waveforms and the related power spectral densities (PSD) are shown. As
can be seen, some characteristic peaks appear in broader spectra corresponding to spe-
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cific periodicities, in agreement with those evidenced by spectral analysis reported in
Caputo et al. [15].
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Consequently, five independent components (ICs) were identified in the following
non-overlapped bands: IC1 at (85–115) days; IC2 at (150–160) days; IC3 at (40–50) days; IC4
at (30–40) days. The last extracted component (IC5) has a more complex spectral behavior
with two relevant peaks in the following bands: (10–20) days and (55–65) days.

3.2. Time Evolution of the Spectral Power

Based on the information provided by ICA, we estimated the energy contained in
the main spectral peaks over the time. The PSDs were evaluated on 180-days-long win-
dows, shifting each 30 days, implying a superposition of 83.3%. The spectral power was,
then, calculated by integrating the PSD of the TIR in the following bands: (10–20) days;
(30–50) days; (55–65) days; (85–115) days for all the stations. Notice that the periodicity
around 150 days was not included in the present analysis due to the shortness of the
time-series. The results are reported in Figure 4: the y-axis is almost the same for allowing
comparison among the traces.

The overall behavior of TIRs at CFc seems to be independent of the specific band
for each station. From a comparison among the different stations, one observes a sort of
amplitude attenuation moving away from SOB. Looking at Vesuvius, the behavior at all
the time scales is similar to those at CFc in the first part, up to the end of the year 2017 (the
day 540 in Figure 4 corresponds to 16 December 2017), implying a common exogenous
origin, changing drastically after that.

It is noteworthy that the 10–20 d-band stronger deviates from the overall patterns.
In particular, in the time-range late 2019–end of observations, this component shows a
spectral power level inside the Solfatara crater (SF1, SF2 and SOB) significantly higher than
the other bands/TIRs. We recall that the uncertainty on the date is of about ±90 days, since
every spectral power value was estimated over a range of 180 days.
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3.3. Changing Points Analysis

To quantify the similarities that emerged in the spectral and ICA analyses, we first
compared the TIR time-series of CFc with VES, and all the TIRs with the air temperature
by using the cross-correlation function for each of the identified frequency bands. The
results are summarized in Table 1. In general, it emerges that the longer the period, the
higher the correlation coefficient. The high correlation among the CFc TIRs, VES and the
air temperature in correspondence in the longer periods could reflect the influence of large
scale atmospheric factors on the ground temperature.

Table 1. Cross-correlation values of time-series.

XCorr 10–20 Days 30–50 Days 55–65 Days 85–115 Days

Ves vs. PIS 0.24 0.33 0.70 0.70
PIS vs. Tatm 0.23 0.49 0.49 0.70
Ves vs. Tatm 0.43 0.77 0.72 0.90
SF1 vs. Tatm 0.47 0.53 0.57 0.81
SF2 vs. Tatm 0.39 0.54 0.62 0.89
SOB vs. Tatm 0.28 0.45 0.39 0.73
OBN vs. Tatm 0.33 0.45 0.63 0.84

To deeper investigate the similarity among the time-series, we performed a Changing
Points (CPs) analysis by using Matlab function findchangepts [50]. This function partitions
the input time-series into adjacent segments that minimize the sum of the squared residual
error of each segment from its local mean, and returns the changing points and, optionally,
the trend inside each segment. The algorithm requires one to specify the maximum number
of CPs to retrieve, as input parameter. To fix the maximum number of CPs, we let it vary
over a wide range of values (from 1 to 20) and then evaluated how many output CPs
are estimated. For each series, we found at most 8 CPs and, hence, we set the maximum
number of CPs parameter to this value. We checked also the rms option, which evaluates
the root-mean-square level of the most significant signal changes, and obtained the same
results. The results are shown in Figure 5.
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Tatm has 8 CPs, whereas for VES and PIS, we found 7 CPs, as reported in Table 2
and represented in Figure 5 (green lines). The linear trends variation in ◦C between the
consecutive CPs is indicated in Table 2 as well. Almost all the time-series show one or two
CPs in correspondence with the main air temperature minima: 5 February 2017; 5 June
2019; 12 May 2020. This behavior common to all could be ascribed to the sensibility of soil
temperature to strong air temperature anomalies. For all the time-series, further support
for that hypothesis comes from the stability of the first 3 CPs’ position as varying the CPs’
number parameter in the Matlab function.

Table 2. Changing Points of Tatm (CPTs), VES (CPVs) and PIS (CPP) time-series. The minus/plus signs indicate decreas-
ing/increasing trends. The trend is referred to the linear trend between CPs, in ◦C.

Tatm
CPTs Date

Trend 1

(◦C)
Ves

CPVs Date
Trend 1

(◦C)
PIS

CPPs Date
Trend 1

(◦C)

1 4 January 2017 +0.81 5 January 2017 +3.30 12 December 2016 +1.52
2 5 February 2017 min, 14.93 22 January 2017 +17.49 21 January 2017 max, 67.38
3 29 December 2017 −2.12 29 September 2017 −7.68 16 January 2018 −7.27
4 28 February 2018 max, 19.03 21 December 2017 −8.88 2 May 2018 +2.70
5 26 April 2019 −0.77 2 April 2018 −5.51 16 April 2019 stable, 0.00
6 5 June 2019 min, 14.52 4 September 2018 −3.50 20 May 2019 min, 59.84
7 22 March 2020 −0.11 2 July 2019 −6.16 10 December 2019 +1.55
8 12 May 2020 min 15.66 +0.68 −0.62

−6.77
1 starting from the beginning or the preceding CP.

Figure 5 highlights a common pattern of Tatm, VES, PIS, SOB and OBN from the
beginning of the observations to the end of year 2017: (1) increasing until the first CP; (2)
a minimum between the first and the second CPs; (3) decreasing. The slight differences
among homologous CPs throughout the various time-series could be attributed to a differ-
ent site response to a specific solicitation, due to local rheology and/or topography which
modulates the geophysical and geochemical signals [33–35,42]. Taking into account the
differences and distances among the instruments, the common pattern can be ascribed to
an exogenous, large spatial scale effect.

The similarities among Tatm and Patm and VES and OBN likely indicate a significant
influence of external meteorological conditions on these TIRs. VES shows also an overall
decreasing trend, in agreement with other observations [22].
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Hereinafter, we indicate the CPs of Tatm, VES and PIS as CPT, CPV and CPP following
the scheme of Table 2.

Interesting patterns are visible for SOB and, mainly, for PIS (Figure 5). Starting
from the end of 2017, Tatm presents a maximum (29 December 2017, CPT-3) that ends in
correspondence with CPT-4 (28 February 2018). Otherwise, in the same time range, PIS
continued to increase, until CPP-4 (2 May 2018). From this CP, PIS continues to follow a
different behavior. In particular, this TIR has a CP on 10 December 2019 (CPP-7) not present
in Tatm nor in Patm. Concerning SOB, even if the CPs of this TIR have the correspondent
ones in Tatm, from the beginning of 2018, the time-series amplitude pattern is more like
PIS. The difference between PIS and SOB on December 2019 (CPP-7) seems not driven by
external factors.

A correlation analysis [51,52] of PIS and SOB TIR data acquired during 2016–2017
and 2018–2020 shows that at zero lag, the time-series are correlated well above the 95%
confidence level (blue lines in Figure 6); in addition, the periodicity observed in 2016–2017
(Figure 6, top), and likely related to Tatm, strongly reduces in 2018–2020.
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Figure 6. Correlation analysis between PIS and SOB for the time-range 2016–2017 (top) and 2018–2020
(bottom). The blue lines mark the confidence limits (95%), above which the correlation among the
time-series is considered significant.

For SF1 and SF2 (Figure 5), we found overall flat trends, both interrupted by 8 and
7 CPs respectively, marking the minima and maxima that exactly correspond to the main
minima and maxima of atmospheric temperature (Table 2). SF1 has an overall constant
trend in correspondence of about 53 ◦C. SF2 has a linear slight increasing pattern, starting
from about 64 ◦C to 66.4 ◦C. These trends are possibly attributable to the presence of
several continuous heat sources inside the Solfatara crater, acting as a mechanical system
in thermal equilibrium with a heat bath at a fixed temperature.

The described results are compatible with the existence of an overall exogenous large
scale effect that significantly influences the ground temperatures. This effect dominates over
the trends until the end of 2017. At the beginning of 2018, the CFc TIRs start to significantly
deviate by this exogenous pattern (though still present), above all, in correspondence
with exceptional long-lasting (several weeks) meteorological phenomena (main, minima
and maxima).

CFc TIR Time-Series, Seismicity and CO2 Flux

We compared the temporal pattern of the TIR PIS with the cumulative seismic moment,
which is proportional to the seismic energy [53], and CO2 flux [22], to check a possible link
with endogenous sources.
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The seismic moment was obtained by applying the relationship [54] for the CFc area:

LogM0 = 9.9 + 0.9·Md (1)

where M0 is the seismic moment expressed in Nm and Md is the duration magnitude.
As shown in Figure 7, the seismic energy/moment increased starting from 2018. The

most significant changes in the rate of energy release occurred in December 2019 and
April 2020 in concomitance with Md 3.1 and 3.3 earthquakes. The interval of increasing
seismic energy corresponds to the TIRs’ deviation from the atmospheric trend, suggesting
that since 2018, TIR patterns could be more affected by endogenous dynamics. Indeed,
since 2018, signs of variations were also detected in earthquake number and location.
Bellucci Sessa et al. [20] observed an increase of both seismic swarms and background
seismicity, particularly marked in 2019. In this last year, the location became shallower,
with hypocenters in the first 2 km of depth. Moreover, the authors evidenced a progressive
spatial clustering of the seismicity, started in 2016 (and even more evident in 2019), inside
the area of Solfatara–Pisciarelli.
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In a similar manner, the temporal pattern of PIS temperature is correlated with the
CO2 flux released at Pisciarelli, measured using the accumulation chamber method [42].
The flux is continuously acquired by a multiparametric station, employed 20 m downwind
of Pisciarelli main boiling pool. Starting from the beginning of 2018, the CO2 flux showed
a growing oscillating trend, and presented a marked peak in early 2020 [22].

4. Discussion and Conclusions

In this study, we have analyzed time-series over about four years (25 June 2016–29 May
2020) of the surface temperatures extracted from thermal infrared images acquired by the
TIR stations operative in the SolfataraPisciarelli volcanic complex. Investigations regarding
the thermal behavior of this area, characterized by the main hydrothermal/volcanic emis-
sion of CFc, are aimed to contribute to the identification of possible endogenous and/or
exogenous sources. The analyses were carried out by comparing the patterns of CFc ther-
mal infrared surface temperatures, with the air temperature and atmospheric pressure
measured at Capo Miseno meteo-station. In order to find eventual large-scale influence on
TIR trends, a comparison was also carried out with the TIR station at Mt. Vesuvius. CFc
TIR time-series are also compared with the cumulative seismic moment release of the CFc
seismicity and the CO2 flux at the Pisciarelli site.
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Although seasonal periodicity was removed from all the time series, atmospheric
factors clearly still influenced the surface temperatures. Both the spectral-ICA and CP
analyses have demonstrated the existence of a non-negligible impact of atmospheric effects.
The spectral content of the estimated ICs, which is common to the CFc TIRs, matches the
main spectral content of the atmospheric time-series and of VES TIR, in agreement with
Caputo et al. [15]. For all the TIRs, we followed the time-evolution of the spectral bands
identified by the application of ICA. For all the bands, we found a common pattern for both
CFc and Mt. Vesuvius, until late 2017. Then, the CFc TIRs started to differentiate from the
VES series’ trend, although some common features were still present. The cross-correlation
analysis has shown similarities among the TIRs: the longer the period, the higher the
correlation level, in agreement with the influence of a large scale factor.

The common patterns observed in 2016–2017 were confirmed by the CPs analysis,
in which we found compatible CPs’ positions and trends among all the TIRs, except for
SF1 and SF2. The latter TIRs had, indeed, almost flat trends all over the observation
time, suggesting a surface temperatures field inside the Solfatara crater due to a system in
thermal equilibrium.

The footprints of a background exogenous large scale influence were mainly testified
by the coincidence of the CPs of most series, with the maxima and minima of Tatm, which in
turn corresponded to exceptional long-lasting (several weeks) meteorological phenomena.

The interplay between the atmosphere parameters and the ground temperatures is
nontrivial. Behind the seasonal periodicity (that we have corrected), the influence of the
atmospheric factors on the surface temperatures could be twofold: a direct effect, linked
to ground heating and/or the atmospheric loading; and an indirect effect on the flux of
hydrothermal fluids, such as CO2 flux, which in turn affects the surface temperatures [42].
Indeed, the link between atmospheric exogenous effects and gas emissions has been also
noticed for CFc and Mt. Vesuvius [42,55,56], as well as in other worldwide cases [57,58].

At the beginning of 2018, while Tatm values decreased after reaching a maximum,
PIS temperature continued to increase. Since then, PIS has deviated from the atmospheric
trend. The different behavior of PIS could not be simply attributed to a local site effect,
since SOB, which points towards the top of the SE slope of the Solfatara crater, shows a
pattern similar to PIS. The year 2018 was also peculiar for seismic activity, since an increase
of both seismic swarms and background seismicity were observed [20]. According to
Bellucci Sessa et al. [20], in this period, seismicity began also to cluster in the study area.
Moreover, a consistent fluid transfer was detected starting from 2018 by using polarization
analysis of seismic noise [59]. In addition, CO2 flux measured at the Pisciarelli site showed
some anomalies in the flow rate [22]. These evidences strongly support the hypothesis of a
common endogenous source to explain the patterns observed in the time span between
2018–2020.

Another strong indication of an endogenous driving of the ground temperatures in
the Solfatara–Pisciarelli area appeared in December 2019, when we recorded a significant
temperature decrease at PIS (about −4 ◦C in 20 days). At the same time, the spectral
power time-evolution of Solfatara TIRs (SF1, SF2 and SOB) showed an increase of soil
temperature in the 10–20 d band. Simultaneously (6 December 2019), a remarkable seismic
swarm occurred beneath the Pisciarelli area, causing one of the most significant increases
of seismic energy rate of the last years. From this time, the earthquake locations became
shallower, with hypocenters in the first 2 km of depth [20]. A significant rising of CO2
concentration was also recorded after the December 6 swarm, superimposing to an already
growing trend, suggesting a consistent increase of the emitted fluid flux at Pisciarelli boiling
pool. No evident variation of CO2 flux was evidenced inside the Solfatara crater [22].

The impact of the hydrothermal/volcanic source over the surface temperatures is
also evidenced by the correlation analysis performed for PIS and SOB in 2018–2020. The
correlation analysis results are also in agreement with the geophysical/geological models
of the shallow hydrothermal system of the Solfatara–Pisciarelli complex reported in recent
studies [60–63]. These studies evidence the presence of a resistive clay-rich cap rock
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extending underneath the study area, at depths from 0 to 50 m b.s.l. This cap rock is
interrupted by conductive gaps, due to fracture zones (where subvertical faults exist). The
fractures allow the pressured fluids to up-flow from a deep hydrothermal system to reach
the surface, where the highest values of gas flux are recorded, in particular, at Solfatara SE
rim fumaroles and Pisciarelli boiling pool. On the other hand, underneath the Pisciarelli
area, a shallow moderate resistive zone is observed, interpreted as a zone where the outflow
occurs, deepening toward the region where most of the recent seismicity is located.

In conclusion, the results of the analysis performed in the study area allowed one to
identify the time periods in which endogenous hydrothermal/volcanic sources strongly
influenced TIR surface temperatures from those periods in which exogenous factors prevail.
Concerning the endogenous driving, the most interesting patterns occurred at the end
of 2019 at the Pisciarelli area. We hypothesize a simple conceptual model to explain the
evidenced patterns. The seismic swarm that occurred in December fractured the medium,
increasing the permeability and, likely, opening a preferential uprising path for the pres-
surized fluids towards the boiling pool at the Pisciarelli emission area, where the CO2
flux is routinely measured. The ejection of the gases could have caused a depressur-
ization of the hydrothermal/volcanic system, which in turn caused the lowering of the
ground temperatures.

On the other hand, in the Solfatara crater, the fluid circulation remained almost
unchanged after the swarm; thus, a possible moderate fluid injection caused the growth of
the ground thermal energy rate.

The present study has confirmed the important contribution of TIR observations in
monitoring hydrothermal/volcanic system. TIR datasets are, indeed, useful to detect the
effect of the endogenous source when the hydrothermal/volcanic forcing becomes strong
enough to overcome the atmospheric effects. Moreover, the use of a network of TIR stations
is fundamental to exclude local site effects.

Nevertheless, we stress the importance of monitoring the atmospheric parameters in
hydrothermal/volcanic environments, since the ground temperatures, the gas flux and
the seismicity patterns have been demonstrated to share evident correspondences with
atmospheric behaviors (especially wet–dry seasons’ periodicity) [40,42,56].
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