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Abstract: In July and August 2019, two paroxysmal eruptions dramatically changed the morphology
of the crater terrace that hosts the active vents of Stromboli volcano (Italy). Here, we document these
morphological changes, by using 2259 UAS-derived photographs from eight surveys and Structure-
from-Motion (SfM) photogrammetric techniques, resulting in 3D point clouds, orthomosaics, and
digital surface models (DSMs) with resolution ranging from 8.1 to 12.4 cm/pixel. We focus on
the morphological evolution of volcanic features and volume changes in the crater terrace and the
upper part of the underlying slope (Sciara del Fuoco). We identify both crater terrace and lava field
variations, with vents shifting up to 47 m and the accumulation of tephra deposits. The maximum
elevation changes related to the two paroxysmal eruptions (in between May and September 2019)
range from +41.4 to −26.4 m at the lava field and N crater area, respectively. Throughout September
2018–June 2020, the total volume change in the surveyed area was +447,335 m3. Despite Stromboli
being one of the best-studied volcanoes worldwide, the UAS-based photogrammetry products of
this study provide unprecedented high spatiotemporal resolution observations of its entire summit
area, in a period when volcanic activity made the classic field inspections and helicopter overflights
too risky. Routinely applied UAS operations represent an effective and evolving tool for volcanic
hazard assessment and to support decision-makers involved in volcanic surveillance and civil
protection operations.

Keywords: Stromboli; 2019 paroxysmal eruptions; UAS; Structure-from-Motion; photogrammetry

1. Introduction

Volcanoes are highly dynamic geomorphological features that shape the landscape
through eruptions and erosional processes, both on a short- and long-term time scale (hours
to tens of thousands of years). The topography of active volcanic areas represents the direct
(lava flows, fallout deposits, pyroclastic density currents) or indirect (lahar, landslides,
collapses) expression of eruptive activity. For this reason, observing volcanic activity and
resolving morphological changes on active volcanoes through time is key to understanding
active volcanic processes.
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The latter are monitored and quantified with a variety of techniques, including ground-
based surveys and imagery collected by satellites and crewed aerial platforms e.g., [1–10].
The last ten years have seen a very rapid increase in the application and use of Unoccupied
Aircraft Systems (UASs) as a platform for aerial observation and data acquisition [11,12].
Moreover, advances in the field of computer vision have also yielded software capable
of extracting 3D topography from multiple 2D images in a process called Structure-from-
Motion (SfM), e.g., [13].

When coupled with SfM, UASs provide several advantages over ground-based, satel-
lite, and crewed aircraft surveys. These advantages include the following: (1) limited
operating costs and rapid deployment allowing frequent, repeated surveys; (2) low altitude
flight operations for acquiring data at centimeter-scale resolutions and allowing for a close
and detailed observation of the volcanic activity up to the eruptive vents; (3) automated
mission planning and flight operation for consistent datasets; and (4) remote measurements
of hazardous environments with personnel able to remain at safe locations (or at least at a
greater distance compared to classic routine field inspections for hazard assessment).

The joint UAS–photogrammetry approach has been successfully applied for topo-
graphic imaging of volcanic areas in several studies e.g., ([14–17]; for an extensive review
see [12]). Darmawan et al. [18] investigated the topographic and structural changes (growth
of fracture networks and excavated volume associated with phreatic explosions) at the Mer-
api lava dome (Indonesia) by comparing the close-range photogrammetric data obtained
before and after the 2012–2014 eruptions. An interesting study by Carr et al. [1] shows
how the SfM photogrammetry allows for the calculation of the lava flow volume and long-
term average effusion rate, as well as documenting the changes in flow morphology and
monitoring the development of gravitational instabilities in Sinabung volcano (Indonesia).
Recently, Zorn et al. [19] presented the results of repeated UAS–SfM photogrammetry
survey flights with both optical and thermal cameras at the Caliente lava dome (part of the
Santiaguito complex at Santa Maria volcano, Guatemala) to create topography data and
orthophotos of the lava dome. This enabled the authors to remotely assess and characterize
a lava dome and lava flow, gaining insight on flow velocities, extrusion rates, surface
strain, lava viscosity, and temperature anomalies over different time periods. Moreover,
Andaru et al. [20] shows the essential role of multi-temporal unmanned aerial vehicle
(UAV) images in the monitoring of Mt. Agung’s lava dome, and in determining the areas
of potential lahar hazards during the crisis between 2017 and 2019. The authors combined
image enhancement, machine learning, and photogrammetry to improve the image quality,
remove point cloud outliers, and generate digital terrain models (DTMs) and orthoimages.
The obtained qualitative and quantitative data highlight the changes inside the crater and
on the surrounding slopes of the volcano.

Stromboli volcano in Italy is one of the most active volcanoes in the world, charac-
terized by the persistence of impulsive, low-to-moderate energy explosions occurring at
the minutes-to-hours scale at a crater terrace (750 m a.s.l.), sometimes interrupted by high
energy explosions occurring at the year-to-decade scale e.g., [21] and references therein.
Depending on the size of the explosion, the location, shape, and number of active vents
inside the crater terrace can vary strongly, or the entire morphology of the crater terrace
can be affected. Episodically, lava flows descend from the summit or fissures that open
in the Sciara del Fuoco (hereafter SdF), a depression that occupies the N steep side of the
volcano extending from the crater terrace itself to approximately 2000 m below sea level,
also continuously affected by the fallout of explosive products.

On 3 July and 28 August 2019, two paroxysms occurred and disrupted the entire
island, heavily changing the morphology of the crater terrace (Figure 1). Recently, Schmid
et al. [22] analyzed the topographic changes that occurred within the crater terrace of
Stromboli between May 2019 and January 2020, focusing on vent geometries and their
control on the directionality of explosions, ultimately contributing to dynamically defining
risk areas at Stromboli’s summit.
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Figure 1. Aerial images of Stromboli’s crater terrace taken before (a) and after (b) the 3 July 2019
paroxysmal eruption (photos by S. Branca, INGV-OE). N, CS, and LF stand for north crater area,
central-south crater area, and lava flows, respectively. Note that the metric scales are approximated
and are computed at the center of the scenes.

Here, based on the high-resolution SfM topographic models extracted from UAS
imagery collected prior, during, and after the paroxysmal eruptions, we present high
spatial and temporal resolution variations of the summit area morphology of Stromboli
and estimate the volume changes for the investigated period. Volume change estimation
and elevation difference maps permitted the identification of changes in terms of the
distribution and shifting of the vents within the crater terrace and toward the SdF, as well
as the accumulation of material in the upper SdF. The above-mentioned factors are very
relevant on steep-slope volcanoes and have significant implications for hazard assessment.
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2. Approaches and Methods
2.1. Volcanic Activity and the 2019 Paroxysmal Eruptions

Stromboli volcano, the easternmost island of the Aeolian Islands in southern Italy, is
well known for its Strombolian, persistent low-energy, and short-lived explosive activity
occurring with a time interval ranging from seconds to minutes from multiple vents located
within the summit crater terrace [23–25]. This characteristic activity is accompanied by
lava flows at intervals of a few weeks (lava overflows) to a few years and, occasionally, is
interrupted by discrete, more violent explosive events. The violent explosions are classified
as major explosions and paroxysms, or called small-scale and large-scale paroxysms,
respectively [26–28]. Small-scale paroxysms usually eject decimeter-sized blocks and
bombs in the upper part of the volcano for a few minutes, associated with moderate ash
and lapilli fallout at greater distances, e.g., [26]. Conversely, the large-scale paroxysms last
up to several minutes, feeding vertical columns of gas, scoriae, lithics, and pumices that rise
up to 10 km and launch meter-sized ballistics up to 2–3 km from the vent e.g., [21,23,29].

The main morphological changes currently affecting Stromboli are confined to the
crater terrace and the SdF. Both regions are the expression of a structural instability linked to
volcano-tectonic seismicity. Here, oversteepening and displacement due to dyke intrusions
are common, as is erosion due to both climatic and sea effects [30]. Moreover, the persistent
volcanic activity of Stromboli produces highly dynamic and rapid morphological changes
that involve the emplacement and possibly partial erosion of fall, lava flow, and pyroclastic
density current deposits, the building or collapse of craters, hornitos, and the onset of
sector collapses or landslides [31,32].

From September 2018 to mid-January 2019, the volcanic activity was characterized by
Strombolian explosions with the daily average hourly explosive frequency (HEF) ranging be-
tween 10 and 30, but it was usually higher than 15 explosions/h. This frequency corresponds
to “medium to very high”, according to the INGV-OE current classification of the explosive
activity at Stromboli (weekly reports at https://www.ct.ingv.it/index.php/monitoraggio-e-
sorveglianza/prodotti-del-monitoraggio/bollettini-settimanali-multidisciplinari, accessed on
20 July 2021). In the following months, the frequency values dropped on average to medium-
high and reached a low HEF in early June 2019. During our surveys, in particular, the activity was
characterized by high frequency but medium intensity in September 2018, and both frequency
and intensity in the medium ranges in May 2019. On 9 June 2019, a more sustained activity
resumed with a high HEF, and explosions characterized by a high to very high intensity. This
more energetic activity culminated, on 25 June, with a major explosion that involved the central
area [33,34].

The activity maintained very high frequency and intensity levels until, a few days
later, the first paroxysm (3 July 2019) deeply disrupted the crater terrace and part of the
upper portion of the SdF (Figure 1). This event involved both the north (hereafter N)
and the central-south (hereafter CS) crater areas [27,34–39]. The paroxysmal eruption
generated an eruptive plume rising 6–8 km above the island’s summit (924 m a.s.l., Vancori
peak) [34,38], while the incandescent pyroclasts set fire to vegetation on the flanks of the
volcano, resulting in a fire-damaged area of 39% of the total area of the island [40] and about
70% of the vegetated areas. Volcanic products from the laterally directed explosions and
the collapse of the external crater terrace generated two pyroclastic currents that travelled
down the SdF and then advanced on the sea for about 1 km from the coastline, generating
a tsunami with a maximum wave height of ~40 cm [41].

The 3 July paroxysm caused the destruction of all the monitoring instruments located
in the summit area, including the cameras on Pizzo, representing the only site from
where the observation of the crater terrace can be directly performed. Therefore, after
the first paroxysm, a visual observation of the crater terrace has only been provided by
volcanologists and volcanological guides in the form of ground-acquired photos and videos,
by volcanologists during sporadic helicopter overflights and by UASs.

Between 3 July and 30 August, the eruptive activity was characterized by lava flows
that extended down the southern sector of the SdF and reached between 500 and 200 m

https://www.ct.ingv.it/index.php/monitoraggio-e-sorveglianza/prodotti-del-monitoraggio/bollettini-settimanali-multidisciplinari
https://www.ct.ingv.it/index.php/monitoraggio-e-sorveglianza/prodotti-del-monitoraggio/bollettini-settimanali-multidisciplinari
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a.s.l. [42] and by very strong and frequent Strombolian activity at a set of small scoria cones,
particularly in the N crater area. In addition, gravel flows were continuously generated
in the southern and lower sector of the steep-sided SdF by the accumulation of material
coming from rockfalls at the lava flow front.

On 28 August 2019, the second paroxysmal eruption occurred, again modifying the
morphology of the summit area and producing an eruptive column estimated up to 6 km
above the summit [27,38,39,43–45]. Pyroclasts from the eruption and debris from the
collapsed rim of the CS area contributed to the generation of a pyroclastic current that
again travelled down the SdF and out to sea.

In the following days, the explosions were still very frequent and energetic, producing
rapid, significant changes within the crater terrace, and emplacing a continuous accumula-
tion of volcanic products (tephra and lavas). However, while the effusive activity stopped
after two days, the explosive activity remained high to very high up to mid-September,
and then started to gradually decline. Afterward, the eruptive activity evolved toward
low-medium level Strombolian explosions, interrupted on 18 January and 3 February 2020
by lava overflows within the SdF from the N sector of the crater terrace and between
28 March and 1 April 2020, when lava overflows, originating in the same sector, triggered
pyroclastic density currents down the SdF [46].

2.2. Data Collection and Processing

To document morphological changes in the summit area before and after the paroxys-
mal eruptions, we conducted eight photographic survey campaigns (Figure 2 and Table 1)
between 12 September 2018 and 20 June 2020, collecting multiple sets of UAS-based images
to build photogrammetric models of the crater terrace and its surroundings. We collected
over 2200 aerial images using a DJI Mavic 2 Pro UAS with a 1” CMOS 20MP sensor and
a 28-mm (35-mm equivalent) focal length lens, with the exception of the September 2018
survey, where the data were collected with a DJI M210-X4S (Table 1).
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Table 1. Details of the photogrammetric surveys; * Point cloud from Carr [47].

Survey Date 12 September
2018 * 11 May 2019 20 June 2019 4–5 August

2019
23 Sebtember

2019

26 November
2019 (Lava
Field Only)

25 January
2020 20 June 2020

UAS/Camera DJI M210,
Zenmuse X4S

DJI Mavic 2
Pro, L1D-20c

DJI Mavic 2
Pro, L1D-20c

DJI Mavic 2
Pro, L1D-20c

DJI Mavic 2
Pro, L1D-20c

DJI Mavic 2
Pro, L1D-20c

DJI Mavic 2
Pro, L1D-20c

DJI Mavic 2
Pro, L1D-20c

Weather Clear Clear Clear Clear Clear Cloudy Clear Clear

Flight path Manual Predefined Manual Manual Manual Manual Manual Predefined

# of images 379 279 47 230 175 150 353 646

Point density
(pts/m2) 72.9 156 143 81.5 121 82 131 34.9

Dense cloud
points 73,083,405 77,568,534 21,873,831 54,126,737 65,780,215 49,330,560 103,116,001 79,998,808

DSM resolution
(cm/pixel) 10.2 8.01 8.07 9.52 9.08 11 8.75 12.4

DSM area (m2) 604,228 283,218 82,994 242,273 229,748 315,752 412,707 444,710

With respect to other terrains, several additional difficulties characterize aerial photo-
graphic survey campaigns at Stromboli. The summit area has a highly irregular topography,
characterized by notched craters and slopes, hosting several open or (partially) clogged
vents of variable shape and aspect ratio. In addition, viewing conditions at Stromboli are
often limited by the presence of vapor/gas/ash plumes, and, at times, by atmospheric haze
and clouds. Furthermore, the persistent ordinary volcanic activity ejects very frequently
(at the minute scale) and almost unpredictably, lapilli to bomb-sized pyroclasts to a height
of up to 200 m, making the flight of the UAS itself unsafe.

Due to both volcanic activity and visibility conditions, we conducted predefined
flight missions only in May 2019 and June 2020, whereas for the remaining missions we
conducted manual flight operations to be able to avoid gas or ash plumes as well as
pyroclastic ejecta from explosions. The September 2018, May 2019, and June 2020 surveys
started from Pizzo (918 m a.s.l.), the June and November 2019 and January 2020 surveys
started from the shelters of Roccette (780 m a.s.l.), whereas the August and September
2019 surveys started at 400 and 300 m a.s.l., respectively, due to safety reasons and to
the restrictions issued by local and National Civil Protection authorities because of the
volcanic activity.

During the August and November 2019 surveys, active vents and fumaroles constantly
emitted plumes of ash, gas, and vapor, limiting the detail captured in the photographs
and precluding conventional nadir-viewing aerial surveys as well as views from multiple
angles. Moreover, in August 2019, the ash plume generated by gravel flows and rockfalls
along the SdF, originated by the lava flows in the upper SdF, further prevented ideal
conditions for image acquisition. As a result, the August 2019 survey lacks some portions
of the crater terrace, and the November 2019 survey is restricted to the lava field area.

Following image collection, we culled the photoset, removing images dominated by
the presence of the plume and ash from explosions, as well as dark and/or blurry pho-
tos. We then processed the acquired georeferenced images using the Agisoft Metashape®

software package (version 1.5.1–1.6.3) based on the Structure-from-Motion and multi-view
stereo photogrammetry algorithm (SfM–MVS) [13]. The workflow of our photogrammetric
analysis included the following: (1) manual image masking for areas with strong degassing,
areas covered by ash from explosions and/or unnecessary background; (2) camera triangu-
lation with image position and orientation and generation of sparse point cloud; (3) filtering
of the sparse point cloud to remove points with bad geometry, large pixel matching errors,
and large pixel residual errors; (4) generation of dense points clouds; (5) point clouds
alignment; and (6) generation of orthomosaics and DSMs. We set each survey’s processing
parameters in Agisoft Metashape® to high for photo alignment accuracy and high quality
and aggressive depth filtering for dense point cloud quality (see also Table S1). In the case
of the 4–5 August 2019 survey, poor visibility prevented complete alignment of the photos.
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The 3D point clouds were manually cleaned by removing anomalous floating points caused
by the presence of the volcanic plume.

Accurately measured control points to scale and georeference the SfM point clouds
and the derived DSMs are not available in the Stromboli crater terrace area due to the
persistent, and sometimes violent, volcanic activity. Therefore, the surveys were initially
scaled and georeferenced using GNSS information embedded in the image metadata. As it
was not possible to acquire GCPs for absolute positioning in the Stromboli crater terrace,
we further improved the spatial accuracy of our georeferenced 3D point clouds using
the Cloud Compare open-source software (http://www.danielgm.net/cc/, accessed on
20 July 2021). In Cloud Compare, using 12 visually identifiable control points located
in unchanged areas of the volcano (Figure S1), we selected the “align” tool to perform a
rigid-body transformation and align the unchanged portions of the point cloud derived
from the September 2018 survey to a point cloud derived from a 2012 0.5-m LiDAR digital
elevation model (DEM) of Stromboli [48]. Subsequently, we aligned all the remaining point
clouds to the September 2018 point cloud. This method is useful in aligning point clouds
quite precisely and proved to be a superior method with respect to a global alignment
using the iterative closest point (ICP) method [49], especially if the clouds to be aligned
have great differences over large extents. The root mean square (RMS) error for each model
alignment ranged from 0.17 to 0.77 m (see Supplementary Table S2).

Following processing and registration of the dataset, we converted our point clouds
into DSMs using the DEM generation tool in Agisoft Metashape® (inverse-distance weight-
ing method). In total, we generated 7 DSMs and 6 orthomosaics of the crater terrace along
with 1 DSM and 1 orthomosaics of the lava flow area (Figure 3, Figure S2 and Table 1).
We generated the DSMs with the default recommended resolution, which varies between
0.08 and 0.12 m, whereas the orthomosaics were generated with a resolution of 0.05 m. We
then exported our DSMs to a 0.15-m pixel size and imported the DSMs and orthomosaics
of each of the surveys into ArcGIS Pro to identify, map, and measure the crater terrace
morphological features.

Errors in our point clouds and DSMs result from a complex interplay of factors such
as camera shutter speed and exposure settings, lens specifications, camera calibrations
applied, flight design (e.g., flight-line geometry and altitude), ground sample distance,
photograph overlap, and disturbances from volcanic activity. We therefore applied several
strategies to mitigate errors, among which the most important were the following: (1) the
use of fast (>1/400 s) camera shutter speeds (i.e., exposure times) whenever possible, (2) the
variation of flight altitudes and camera orientation, (3) the application of best practices for
processing in Agisoft Metashape, e.g., [13,50], and (4) the removal of sparse cloud points
with large uncertainty via Photoscan’s gradual selection tools.

We observed some systematic errors when comparing models of September 2019
with both May 2019 and August 2019. These errors are probably related to some general
limitations of the SfM reconstruction on the margins of the September 2019 photogram-
metric model (e.g., the negative elevation difference values to the south of the lava field in
Figure 4c and the diffuse negative elevation difference values in the SdF sector—Figure 4d),
where a lesser degree of image overlap decreases the accuracy of the model. Nevertheless,
the central part of the model, our area of interest common to all surveys (dashed and dotted
polygons in Figure 5), is practically unaffected by this error.

http://www.danielgm.net/cc/
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for the crater terrace and upper SdF (SFCT-AOI); FT stands for “fratture Tibaldi” fissure swarm (white lines, see Discussion
and Conclusions Section).

We use the residual elevation differences with respect to the DSM of 12 September 2018
extracted at 6 checkpoints placed in the unchanged regions of our DSMs as the indication
of the vertical error, which ranges from 0.19 and 0.96 m, with an average value of 0.53 m
(Table S5 and Figure S1). Our models are, thus, sufficiently precise for the scale of changes
measured in this study.

2.3. DEMs of Difference and Volume Calculations

The SfM–MVS-derived DSMs obtained before and after the two paroxysms were
used to investigate changes in topography at the summit areas of Stromboli volcano.
By subtracting the pre-eruption DSM from our DSMs in the crater terrace, we provide
quantitative information about changes in height and volumetric losses or gains. We
used the freely available Geomorphic Change Detection (GCD) plugin for ArcGIS (see
http://gcd.riverscapes.xyz/, accessed on 20 July 2021) to create the DEMs of Difference
(DoD) and calculate height and volumetric change results.

http://gcd.riverscapes.xyz/
http://gcd.riverscapes.xyz/
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The 11 May 2019 DSM was used as pre-paroxysm surface, whereas the 4–5 August
2019 DSMs and 23 September 2019 DSMs were used as post-eruption surfaces for the 3 July
and 28 August paroxysms, respectively. The 20 June 2019 DSM represents the most recent
pre-paroxysm surface, but it was not used in the DoD calculation due to its smaller extent
in comparison with the other DSMs.

We exported all DSMs to a 0.25-m pixel size and then defined an Area of Interest (AOI)
for each time interval, to control the regions within our data that are considered during
change detection analyses. Taking into account the average vertical error of 0.53 m for our
models, we set the threshold elevation change (minimum level of detection or minimum
elevation change that can confidently be considered a true change) to 0.5 m.

The GCD plugin produced data output files containing topographic change informa-
tion, including thresholded and non-thresholded areas and volumetric changes, as well as
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estimated errors for each calculation (Tables S3 and S4). Presented volume estimates have
an average error of, e.g., +/− 10%.

3. Results

The availability of multitemporal SfM-derived DSMs allowed us to monitor the to-
pographic and morphological changes before, between, and after the paroxysms. The
morphology of the crater terrace area is well represented by all the datasets and the compar-
ison between the multitemporal DSMs reflects new changes caused by the volcanic activity.

3.1. Chronological Evolution of the Crater Area Morphology

Seven multidirectional hillshades of the DSMs were produced for the period spanning
from September 2018 to June 2020, covering the crater terrace and the upper SdF (Figure 3).
To locate the features in Figure 3 we refer to a grid made using A–G and 1–5 quadrants.
Each DSM represents a snapshot of the crater terrace morphology at the time of the different
surveys, implying that the detected changes between two consecutive surveys could have
resulted from multiple disruptive and constructive episodes, with some of these episodes
being partially or totally obliterated. Here, we highlight the usefulness of UAS studies
to quantitatively constrain topographic changes due to (1) ordinary eruptive as well as
paroxysmal activity with related deposition and excavation, (2) gravitational instability
as well as subsidence, and (3) lava effusion. The presented dimensions of the active vents
(Figure 3) are reliable (few decimeter precision) and concur with Schmid et al. [22]. The
volumetric changes are visualized using plain-view maps (Figures 4 and 5) and highlighted
along profiles (Figures 6 and 7).

During the pre-paroxysm interval, i.e., September 2018 to June 2019 (Figure 3b–d),
few major changes can be evidenced. In the CS crater area: (i) a small cone (hornito)
grows and successively dismantles (upper left D3); (ii) the main crater gradually enlarges
(from 58 to 73 m in diameter, lower left D3) by subsidence, causing the coalescence of the
different active vents and the formation of a hornito; (iii) the central area has been filled
by the accumulation of pyroclastic material (middle right of D3). In the N crater area:
(i) the right crater (E2) shows a progressive accumulation of material and a reduction in the
number of vents to a single one; (ii) the left crater (D2 and left E2) hosts multiple vents and
shows a process of gradual enlargement (from 38 to 48 m), craterization and the generation
and dismantling/burial of septa between the different active vents.

The 3 July 2019 paroxysmal explosion involved mainly the CS sector but produced
profound morphological changes affecting the whole crater terrace and the upper SdF, as is
evident from the 4–5 August survey (Figure 3e). In the CS area, a single main crater appears
(diameter 67 m, lower half of D3) and is shifted by 47 m to the east, while two minor vents
are present (upper left D3 and lower right C3). The destruction of a 110-m-long portion
of the crater terrace rim is evident (C3). Furthermore, the emplacement of a 195-m-wide
articulated lava field is visible west of the CS area onto the Sciara del Fuoco (A–B2,3,4).
In the N crater area (D–E2), a peculiar 105-m-long, SW–NE trending alignment of seven
active hornitos has now formed (Figure S3) and is shifted by up to 23 m toward the SdF
with respect to the alignment of the two previously existing craters.

The 28 August 2019 paroxysm again produced important morphological variations
(Figure 3f). In the N area, the morphology is restored to the pre-paroxysms period with
two craters in place of the aligned vents. The northward migration of the easternmost vent
position (E2) continues, while the westernmost vent moves south (approximately 18 m) to
its pre-paroxysm location, in the middle-left of D2, exhibiting the formation of a cone. In
the CS area, a main 95-m-long crater depression hosting multiple vents appears in lower
D3 and a new pit crater appears in the center of D3. The vent located in the upper left
of D3 remains unaltered, while the vent in the lower right of C3 deepened. All over the
surveyed area, particularly in its eastern sector (E3) and in the upper lava field (B2,3,4), the
presence of volcanic blocks up to 13.4 m in size is evident (lower right B2 in Figure 3f–h;
Figure S4). These were ejected during the explosive phase of the 28 August eruption and
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derived from the destruction of pre-existing volcanic structures. Moreover, in the lava field
area, the morphology of the cooled lava flows, well evident in August, is masked by the
volcanic debris cover produced by the paroxysm.
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In the period following the paroxysmal explosions, between January and June 2020,
two more surveys were performed (Figure 3g,h). In January 2020, a general reduction in
the diameter of the craters (54 m for the CS) can be observed in parallel with the growth
of the cones in both the CS and N crater areas. In the former one, the disappearance of a
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vent in lower right C3 is visible. In June 2020 (Figure 3h), a clear process of craterization
affects all the active vents of the crater terrace, with the formation of a large, multiple-vent,
115-m-long crater depression in the CS area, the reappearance of the vent in middle right
C3, and the widening of the vents in the N area.

3.2. Volume Change Estimation

Figure 4 shows the areas that have been modified by the removal or addition of surface
material for the period September 2018–June 2020 in the crater terrace and lava field areas.
The volume difference is provided for the following two common Areas of Interest: that of
only the crater terrace, hereafter CT-AOI, and that of the crater terrace and upper Sciara del
Fuoco, hereafter SFCT-AOI (Figure 5). These two areas have been affected by important
changes, with the CS and N craters, the lava flow area, and the upper SdF sector exhibiting
the largest changes between the DSMs.

The main changes between the two datasets preceding the July–August paroxysms
(i.e., September 2018 and May 2019, Figure 4a) are limited to the SW and NE crater areas,
and to the NE debris talus. In particular, the strongest morphological change that occurred
within the crater terrace was localized north of the main S crater where a hornito grew,
resulting in a predominant positive elevation difference (up to 17 m). In the NE debris
talus sector, the maximum accumulation of material from both volcanic activity and gravel
flows in the period considered is 3.3 m. In the other sectors of the SdF slope, the vast
majority of the analyzed area shows an elevation difference below the minimum level
of detection (0.5 m, see Section 2.3). The net volume difference calculated over the crater
terrace (CT-AOI) (see Figure 5) is 118,120 m3 (±18,385 m3; error 15.5%).

A significant modification of the morphology of the crater terrace area occurred as
a result of the first paroxysm in July 2019. Figure 4b shows the DoD between the May
2019 and August 2019 datasets: the most significant topographic features after the 3 July
paroxysm are the dismantling of both the CS and N crater rims toward the SdF, with surface
lowering up to −27 m (CS crater area) and the accumulation of material around the main
S crater with a maximum thickness on its southeastern sector of 27 m. The accumulation
of this material results not only from the pyroclastic deposit of the paroxysmal eruption
of 3 July but also from the previous and subsequent extremely high Strombolian activity.
The net volume difference calculated over the CT-AOI is −27,848 m3 (±1749 m3; error
6.3%), while it corresponds to 657,548 m3 (±68,475 m3; error 10.4%) for the SFCT-AOI in
Figure 5. Outside of the crater terrace, the prominent changes are due to the accumulation
of material in the southern sector of the SdF, with a maximum thickness of 29 m. It is worth
noting that this value includes an unknown amount of material deposited in that area as
a result of the 3 July paroxysmal blast, which was then covered by the lava flows in the
following days and weeks. The total volume accumulated in that sector corresponds to
597,445 m3 (±23,194 m3) over a surveyed area of 48,010 m2.

The morphological changes that occurred after the second paroxysm in August 2019
can be seen in Figure 4c, showing the DoD between the August 2019 and September 2019
datasets: in this case the changes related to accumulation of material are in the lava field
area (west of the crater terrace; 13 m), around the CS sector (17 m) and south of N craters
(17 m). The removal of material mainly occurred, instead, within the CS crater (−19 m)
and in the SdF sector of the N crater area and, to a minor extent, on the external SW and
NE slopes of the crater terrace. The net volume difference calculated over the CT-AOI is
97,330 m3 (±16,742 m3; error 17.2%), while it corresponds to 405,528 m3 (±65,723 m3; error
16.2%) for the SFCT-AOI, and of which 234,838 m3 (±21,696 m3) pertain to the lava field
over a surveyed area of 51,487 m2.

The DoD between September 2019 and January 2020 (Figure 4d), a period compris-
ing rather stable Strombolian activity, is characterized by the refilling of the vent areas
evidenced by the fact that the accumulation of material takes place mainly within the
CS (31 m) and N (18 m) craters. As the new vents of the N crater are closer to the SdF, a
maximum accumulation (7 m) of the material deriving from the explosive activity is visible
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at the foot of the NE debris talus. Interestingly, the diffuse erosion of all the upper slope
of the SdF is evident, while diffuse accumulation characterizes the areas to the NE and
SW of the crater terrace. The net volume difference calculated over the crater terrace is
237,410 m3 (±16,874 m3; error 7.1%), while only minor changes occur in the other sectors
of the SFCT-AOI.

The changes that occurred between January and June 2020 (Figure 4e), another period
characterized by stable Strombolian activity, are the deepening of the CS crater floor
(−22 m) and the accumulation of material in the central sector of the N area (17 m) and
along the NE debris talus (7 m). The net volume difference calculated over the crater terrace
is 21,424 m3 (±3664 m3; error 17.1%), with changes in the other sectors of SFCT-AOI only
pertaining to the NE debris talus.

Figure 4f shows the overall profound topographic changes that occurred during the
studied period, from September 2018 to June 2020. The DoD highlights a widespread
accumulation of material in most parts of the crater terrace and its surroundings with the
related maximum in the lava field area (39 m), in the CS sector (40 m), around the vents
of the N crater area (28 m), and in the upper portion of the NE debris talus sector (18 m).
The only sector where a negative elevation difference can be seen is in the western sector
of the N crater area pertaining to the SdF. The loss of material due to the two paroxysms
is concentrated in this sector, which corresponds to the starting area of a deep incision.
The net volume difference calculated over the crater terrace is 447,335 m3 (±20,758 m3;
error 4.6%). This latter value, representing the tephra volume deposited in the CT-AOI
throughout the entire period, is consistent with the sum of single intervals for which the
five different DODs were calculated (which gives an overall volume gain of 446,436 m3

and a difference of −899 m3 that corresponds to 0.2%, with respect to the DoD September
2018–June 2020). The net volume difference for the entire SFCT-AOI, throughout the entire
time period considered in this study, is 1,537,852 m3 (±80,093 m3; error 5.2%), of which
991,940 m3 (±30,305 m3) pertain to the lava field over a surveyed area of 60,300 m2.

Figure 5 shows the DoD between May 2019 and September 2019, covering the two
paroxysmal explosions with the pre- and post-eruption surfaces. The maximum material
losses occurred at the N crater, with maximum elevation differences of −26.4 m in its
central portion, and in the southern sector of the CS crater area with maximum elevation
differences of −22 m. In contrast, the maximum material gain occurred in the upper part of
the SdF depression, southwest of the crater terrace, where lava flows active between 3 July
and 28 August [43] and on 30 August [51] created a lava field with a maximum thickness of
41.4 m. It is worth noting that the amount of pyroclastic product emplaced in the lava field
area by the two paroxysmal explosions is unknown. The net volume difference calculated
over the crater terrace is 69,600 m3 (±4497 m3; error 6.4%). In the crater terrace area, the
maximum gain corresponds to the region east of the CS crater with an elevation difference
of 27 m derived from the accumulation of material that originated from the two paroxysms
and the intense Strombolian activity during the period considered. Considering the entire
SFCT-AOI throughout the time span, which includes the two paroxysmal eruptions, the
net volume difference is 1,065,537 m3 (±69,807 m3; error 6.5%), of which 823,823 m3

(±22,807 m3) pertain to the lava field over a surveyed area of 48,010 m2.

3.3. Topographic Variations

The cross-sections in Figure 6 show the shape of three topographic profiles across
the crater terrace area and the upper SdF (location of profiles in Figure 4) during the
considered period.

Profile one (Figure 6a and Figure S5) shows only minor changes between September
2018 and May 2019. The elevation difference is always positive along the entire profile with
a maximum thickness gain of 12 m. Between May and August 2019 the variation produced
by the first paroxysm is highlighted by the removal and addition of material in the CS crater
area, a maximum thickness gain of 13 m, and marked in the N one by a maximum thickness
loss along the profile of 22 m in correspondence with the SSW rim. The comparison of
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the cross-sections of August and September 2019, which includes the changes due to the
28 August paroxysm, highlights minor changes with respect to the first paroxysm, with
a maximum positive elevation difference of 13 m, located on the rim between CS and N
crater areas, and a minimum of 11 m in the NNE sector of the CS area. Between September
2019 and January 2020, only positive elevation variations are observed along the profile.
The maximum positive elevation difference of 21 m is located in the CS area. Finally, the
changes that occurred between January and June 2020 are both positive and negative in
the CS sector, where the material loss (maximum negative elevation difference of 14 m)
prevails over the accumulation and is only positive in the N crater area (maximum positive
elevation difference of 10 m). Considering the entire period, September 2018–June 2020, a
profile comparison highlights a general diffuse accumulation of material between the SSW
rim of the CS area and the NE debris talus included. This latter one gradually increases in
elevation during the observation periods with a total thickness gain of 17 m. The maximum
accumulation is located in the N crater area (28 m).

As in profile one, profile two (Figure 6b and Figure S6) shows only minor morpho-
logical changes between September 2018 and May 2019 in the N sector. In this period, the
only accumulation of material occurs in correspondence with the SE rim of the N crater
area with a gain of 7 m. Between May and August 2019, the variation due to the 3 July
paroxysm is highlighted by significant material loss on both the SE and NW rims, including
the upper sector of the SdF, with a maximum negative elevation difference of 20 m on the
former one and an accumulation of material in the SE sector of the crater terrace of 6 m.
Between August and September 2019, a period that includes the second paroxysm, the
morphological variations are mainly limited to the central sector of the N crater area with
maximum gain and loss of 10 and 5 m, respectively. The comparison of the cross-sections
of September 2019 and January 2020 highlights an accumulation of material all along the N
crater area (maximum gain of 7 m) and a minor diffuse erosion along the SdF slope (1–3 m).
For this latter feature, it has to be considered what is stated in Section 2.2. Between January
and June 2020, the main morphological variation is due to the craterization processes
deepening the N crater area crossed by profile two, with a maximum elevation loss of 15 m,
while a minor accumulation of material occurs in the SE sector of the N crater area (4 m). A
comparison of the profile along the entire period, September 2018–June 2020, highlights
the accumulation of material to the SE of the N crater area (maximum gain of 9 m) and a
minor one in correspondence with its northwestern rim. The maximum loss of material
occurs instead in the upper SdF (13 m) and to a lesser extent in correspondence with the N
southeastern rim.

Profile three (Figure 6c and Figure S7) crosses the crater terrace in its CS sector and the
lava field on its western slope and, compared to profiles one and two, shows the largest
morphology variations. The cross-sections of September 2018 and May 2019 highlight
only minor positive elevation variations confined on the two rims of the CS area with a
maximum gain of 8 m. The 3 July paroxysm, contrarily to what happens in profiles one
and two, produced a prevalent elevation gain evident in the central and eastern CS area
(maximum gain of 23 m) and at the bottom of the SW slope, where lava accumulates to
a maximum of 26 m. The only sector where erosion is evident is the SW rim of CS crater
area (−20 m), completely dismantled by the explosive eruption and by the opening of
the effusive vent. Between August and September 2019, the second paroxysm produced
limited but diffuse changes characterized by positive elevation differences (maximum
11 m) along the first two thirds of the profile, while a loss of material is present only
at the center of the CS area (−19 m) due to the craterization occurring in lower right
C3 (Figure 3f). The comparison of cross-sections of September 2019 and January 2020
highlights a stationary situation along the SdF and in the easternmost sector of the crater
terrace with the accumulation of material confined in the CS area (maximum gain of 26 m).
In the following period, January to June 2020, the main morphological variation is due
to the craterization processes deepening the CS crater area crossed by profile three, with
a maximum elevation loss of 19 m in its center. A comparison of the profile along the
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entire period considered highlights profound morphological changes characterized only
by positive elevation variations along all the trace with maximum accumulations of 34 m
in the lava field and 38 m in the CS crater area. Remarkable observations include (1) how
the minimum elevation for the base of the main craters both in the CS and N areas seems
quite stable over the entire period, mostly for the N area, and (2) the stability of the limits
of the crater terrace except for the SdF side and the NE debris talus.

Figure 7 shows the comparison of the cross-sections before and after the two paroxys-
mal explosions. The three profiles differ in terms of the prevailing gain or loss of material.
In fact, while profiles one and two are characterized by material loss (−25 and 24 m, re-
spectively; Figure 7a,b), profile three (Figure 7c) exhibits a predominant accumulation of
volcanic products (maximum 26 m in the CS area and 33 m in the lava field area).

4. Discussion and Conclusions
4.1. UAS Volcanology: Limitations and Advantages

Our datasets of repeated, high temporal resolution UAS surveys provide unprece-
dented spatiotemporal detail of the morphological changes at Stromboli’s summit area.
The survey flights allowed the generation of eight DSMs and seven orthomosaics of the
Stromboli’s summit with resolutions of 0.15 and 0.05 m, respectively. These datasets pro-
vide a reconstruction of the crater terrace and upper Sciara del Fuoco areas, allowing us
to identify and quantify morphological and volumetric changes. Here, we expand on
an earlier study [22] that focused on the immediate vicinity of the active vents and the
interdependence of morphology evolution and eruptive activity.

These results highlight the utility of UASs for volcano monitoring in providing cost-
effective and responsive data acquisition. Our decimetric-resolution DSMs of Stromboli’s
summit have more than one order of magnitude better resolution than other widely
available satellite-based products. For instance, although capable of capturing large areas
with a snapshot of their sensors, Pleiades-derived tri-stereo DEMs have a 1-m spatial
resolution e.g., [52,53] and are often affected by low visibility in the crater terrace due to
the presence of plume or clouds, whereas classical airborne LiDAR-derived DSMs can have
sub-metric spatial resolution, but at much higher costs.

Although performing UAS surveys of Stromboli’s summit area is challenging due
to its rugged terrain, steep slopes, the nature of the deposits, the frequent bad weather
in wintertime, as well as the unavailability of GCPs, regular UAS surveys coupled with
SfM remain the most responsive means to increase the frequency of detailed time-series
topography datasets and to track geomorphic changes, especially when these take place in
difficult or hazardous areas.

Our photogrammetric models reconstructed the crater terrace and upper Sciara del
Fuoco areas with varying degrees of completeness depending mainly on volcanic activity,
visibility conditions, the predefined or manual flight path, and the survey starting location.
As shown in James and Robson [13], with the use of consumer-grade cameras, and in the
absence of GCPs, SfM-derived datasets are able to provide topographic data with an overall
precision of ~1/1000 of the viewing distance. Given our viewing distances of ~150–400 m,
the 0.19 to 0.96 m distances between models are in line with this rule of thumb. The
systematic use of a fixed flight path in future surveys, including convergent imagery and
terrain following mode, will likely reduce the errors in photogrammetric reconstruction
when GCPs cannot be incorporated into the photogrammetric processing [4,54].

The lack of GCPs on 3D model uncertainties could be also mitigated by the use of
GNSS-RTK-enabled survey devices. Moreover, as successfully demonstrated by Thiele
et al. [5], thermal images could be used in an SfM workflow to mitigate the adverse effects
of degassing and poor visibility and provide more continuous time-series data than the
visible-light equivalents.

Taking into account the above-mentioned limitations, the developed workflow proves
to be adequate for acquiring multi-temporal high-resolution topography datasets from
SfM in a complex environment such as Stromboli’s summit. These datasets, in particular
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the volume change estimation and the elevation difference maps, permitted to identify the
changes in terms of the distribution and shifting of the vents within the crater terrace, the
dismantling of both the CS and N crater rims toward the SdF, following the two paroxysmal
eruptions, and the accumulation of material in the upper SdF. All the above-mentioned fac-
tors are very relevant on steep-sloped volcanoes in terms of hazard assessment for potential
tsunamigenic landslides. In fact, in landslide-prone slopes as the SdF, the identification of
the areas characterized by conditions of instability (e.g., N crater area after the 3 July 2019)
or piled up materials with different geotechnical properties (e.g., in the upper SdF lava
field) plays a crucial role for hazard assessment and risk mitigation strategies.

Unfortunately, despite the high temporal resolution of our surveys, the single visit
between the two paroxysmal eruptions (4–5 August 2019) does not allow us to extrapolate
the volumes of material removed and emplaced immediately after the two most energetic
events. It is, thus, fundamental, for the future development of this research, to plan more
frequent surveys, with rapid UAS deployment at the earliest signs of unrest as well as
immediately after effusive, major, and paroxysmal eruptions.

Moreover, UAS-derived topographic datasets can be easily combined with other
monitoring tools such as thermal infrared mapping, high-speed cameras, and field-based
measurements and observations.

4.2. Processes Controlling the Morphology Changes

Between September 2018 and June 2020, the occurrence of regular but variably intense
Strombolian activity, two paroxysmal explosions, and lava effusion produced different
magnitudes and rates of morphological changes at the crater terrace and in the SdF through-
out the studied period. Despite the important destructive processes generated by the two
paroxysmal explosions, the overall accumulation processes prevailed in characterizing
the dynamics in the crater terrace and upper SdF. Here, we analyze in detail the main
constructive and destructive processes affecting the crater terrace and upper SdF in the
studied period. By comparing our results with those of Schmid et al. [22], we observe a
general agreement in elevation changes, with measured values that differ by 10% or less.

4.2.1. Constructive Processes

The most important constructive processes are lava flows and overflows, and the
building up of cones, hornitos, and volcanic features due to Strombolian, major, and
paroxysmal explosive activity.

Lava field area. Within the lava field area, we observed the accumulation of both
lava flows and tephra deposits for a total of ~992,000 m3, corresponding to 2/3 of the
entire volume emplaced in the surveyed area during the studied period (~1,538,000 m3;
Figures 2, 3, 5 and 7c and Figure S2) and to approximately 1/6 of the total erupted lava
volume, quantified as 6.33 × 106 m3 [42]. The tephra deposit, smaller than the lavas in
terms of volume, originated from the two paroxysmal eruptions. The 3 July tephra deposits
have been partly buried and partly pushed down on the SdF by the lava flows, while
the deposit of 28 August is visible in Figure S2e,f on top of the cooling and inactive lava
field. The lava field at the beginning of August 2019 consisted of multiple overlapping
and well developed braided flows, characterized by lava tubes, skylights, and ephemeral
vents (Figures S2c,d and S8), with backward erosion at the upper effusive vent and shifting
southward of this latter one (from upper left to middle left in Figure S2c). Downslope, NW
of the field of view of Figure S2, the emplacement of lava flows on the SdF steep slope
produced a flow field characterized by continuous flow front failing and an accumulation
of debris on the shoreline and below sea level through the generation of gravel flows
(Figure S9). The maximum thickness of the deposit in the surveyed lava field area is 41.4 m
(Figure 5) and is localized in the proximity of a slope break on the SdF, where a gentler
slope favored the flows to slow down and pile up. A > 30-m-thick deposit is emplaced
SSE from the aforementioned maximum, where a sub-vertical 60-m-high cliff acted as a
levee favoring the accumulation of lavas. This cliff was generated in late medieval times
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and corresponds to the latest major sector collapse that occurred at Stromboli and the one
leading to the development of the present SdF morphology (lower left in Figure 5; collapse
“sc7b” in Francalanci et al. [55] and De Astis et al. [56].

The accumulation of lavas and tephra in the 2019 lava field sector has important
implications in terms of slope stability. In fact, it occurred in a sector where instability has
been highlighted since 2000. Here, a fissure swarm striking N30◦ toward the crater terrace,
the so-called “fratture Tibaldi” (~650 m a.s.l.; FT in Figure 5) [57,58], appeared between
autumn 1999 and May 2000. Between 2000 and 2006, a cumulative offset (at all fractures)
of 1 m was recorded and the dilation kept on increasing in the following years. The rate
of offset increase recorded at the main fracture was constant with values of ~7.5 cm in
September 2000, ~22 cm in January 2006 [58], and 31 cm in January 2011 (Figure 8a), when
it was measured for the last time by one of the authors (T.R.). The main fissure was still
visible in May 2019 (Figure 8b), while its surface expression is presently recognizable in
the aerial images (Figure 8c), orthomosaics (e.g., Figure S2f), and DSMs on top of the lava
and tephra deposit (between 25 and 30 m above the pre-eruption surface) after the 2019
eruptive period.
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Crater terrace. A widespread accumulation is evident within the crater terrace, mainly
due to the two paroxysms but also to the Strombolian activity. The SE rim of the CS crater
area (lower D3 in Figure 3e–h) is characterized by the maximum accumulated thickness
of 40 m throughout the entire period, 27 of which derive from the 3 July eruption and the
subsequent intense Strombolian activity (Figure 4b). This place and, to a minor extent, the
ridge between the CS and N crater areas (lower D2 in Figure 3e–h) are the only stable and
non-eroded sectors where the pyroclastic material has apparently not fallen back into the
transient crater linked to the 3 July eruption. On the contrary, the second paroxysm of
28 August deposited more pyroclastic material on the ridge separating the CS and N crater
areas (>10 m; Figure 4c). The intense Strombolian activity following 28 August caused
both localized deposition and proximal accumulation that led to the generation of cones.
In addition to the CS crater southeastern rim and the ridge between the CS and N crater
areas, the sectors where a prominent accumulation is evident are (i) the CS western rim,
involved in the collapses accompanying the two paroxysms, and (ii) E and NE of the CS
area (Figure 3 and E3 and lower E2 in Figure 4), where the crater terrace is protected by
gravitational erosive processes.
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NE debris talus. Despite its average slope acclivity of 32–39◦, the NEdt represents a
site of accumulation of the products mainly deriving from the Strombolian activity and
where gravel flows and rockfalls tend to regularly redistribute the material along this slope.
The NEdt is characterized by a maximum thickness gain of 17 m. This is due to the fact that
the NEdt is sustained at its foot by the remnants of the 2007 and 2014 lava field deposits. It
is worth noting that the maximum accumulation of 3.3 m of material from both volcanic
activity and gravel flows along the NEdt, is in agreement with the results reported in Di
Traglia et al. [53] from a Pleiades DEMs comparison for the period May 2017–June 2019.
Moreover, until May–June 2019 the morphological variations outside the crater terrace area
affected only the NEdt (Figure 4a; Figure 4c in Di Traglia et al. [53]).

4.2.2. Destructive Processes

During the considered period, the most relevant factors of erosion were represented
by (i) the dismantling of volcanic structures mainly due to paroxysmal eruptions, (ii) the
oversteepening of newly formed volcanic structures, (iii) the collapses inside single funnel-
shaped craters due to both gravitational processes and craterization during ordinary
Strombolian activity, (iv) gravel flows due to the accumulation of material, and (v) the
erosive gravitational processes on the SdF.

Crater terrace. The 3 July and, to a minor extent, the 28 August paroxysmal eruptions
left large and deep (up to 27 m; Figures 4b and 5) circular collapse crater zones in the CS
area, while, in the N crater area, a deep collapse of the crater bottom only occurred on
the 3 July. These areas are mainly characterized by loose material (Figure 3 in [32]) that is
usually removed also during ordinary Strombolian activity (e.g., blue areas in Figure 4e).
Similarly, the collapse along the western and northern crater terrace rim associated with
both paroxysmal eruptions produced evident scars that participated in generating the
pyroclastic density currents that occurred immediately after the two paroxysmal explosions
(Figure 1a). Another noticeable instability during the investigated period is the N sector of
the crater terrace where, after the first paroxysmal eruption of 3 July 2019, the vents shifted
>20 m toward the SdF, generating an oversteepening that probably represented the main
external factor in generating the pyroclastic density currents that occurred in March–April
2020 due to lava overflows [46].

At Stromboli, the position of individual vents migrates at a time scale of months to
years concomitant to changes in eruptive activity [25], while the position of the crater areas
within the crater terrace tends to be stable throughout time [25] and is mainly controlled
by volcanotectonic weaknesses [31,32]. In the last tens of years, major and paroxysmal
eruptions did not deeply affect crater areas limits; differently, the 3 July event partly
dismantled the crater terrace NE rim, generating a new area of weakness controlling the
opening position of new vents toward the SdF.

Sciara del Fuoco and slopes surrounding the crater terrace. Gravity-induced gravel
flows characterized the external SW and NE slopes of the crater terrace immediately after
the 3 July eruption (Figure S10), as a result of the accumulation of abundant juvenile
and reworked material deriving from the 3 July eruption on steep slopes. A similar
phenomenon occurred on the slope of the Rina Grande collapse depression where the
sudden accumulation in the Pizzo area generated a gravel flow that reached 600 m a.s.l.
(Figure S10; see also text and supplementary material in Andronico et al. [34]). Outside
of the studied area, a similar phenomenon occurred throughout the effusive phase on
the western sector of the SdF and up to the shoreline, in this case with a different origin:
the accumulation of material originating from rockfalls at the lava flow front (Figure S9).
NW of the crater terrace rim, in the central upper sector of the SdF, other less impulsive
erosive gravitational processes are evident in the period September 2019–January 2020
(light blue in Figure 4d). In that area, despite an average slope acclivity of 30–35◦, less
steep in comparison to the NEdt, the erosion of the material accumulated during the two
paroxysmal eruptions is facilitated by a smooth and compact ground surface.
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4.3. Comparison of 2019 and Previous Effusive Eruptions

In the last 35 years, the following four major effusive eruptions occurred at Stromboli
(lava volumes ranging 106–107 m3): December 1985–April 1986 [23], December 2002–July
2003 [59], February–April 2007 [60,61], and June–November 2014 [52,62]. The 2019 effusive
eruptions differ from the major effusive eruptions in (i) the location of the site where the
effusive vents opened, (ii) the elevation of the effusive vents on the SdF, (iii) the onset
dynamics of the eruption, (iv) the Strombolian activity at the summit vents, and (v) the
effusion rate.

Indeed, the 2019 effusive vent was localized in the CS crater area, while the previous
four major effusive events originated on the SdF from a lateral vent at the base of the N
crater area. It is worth noting that in all the aforementioned eruptions, the magma reached
the surface along the same NE-trending weakness zone governed by the local tectonic
field and crossing Stromboli’s crater terrace [57]. In 2019, the opening of the effusive vent
was facilitated by the destruction of the western rim of the CS crater area that occurred in
the first phase of the paroxysmal eruption of 3 July, favoring the emission of lava from a
weakened structure characterized by the presence of previous feeder dykes (e.g., middle
left C4 in Figure 3 and lower right in Figure S2), and then resulting in a continuous supply
during the 2019 eruption. The last effusive eruption along the SdF involving the CS crater
area occurred on 12 December 2010 [32,63], when a minor lava overflow emitted from an
overhanging hornito, in a position equivalent to the upper right C3 of Figure 3, flowed
down the SdF partly burying the “fratture Tibaldi” fissure swarm. Since 1950, only two
other effusive eruptions occurred from the CS area, in February 1958 and August 1959 [64].
Thus, the 2019 effusive eruption represents the effusive event emitted by the CS crater area
with the longest duration over the last 70 years.

Concerning the elevation, the 2019 effusive vents were localized between 750 and
770 m a.s.l., roughly at the elevation of the crater terrace floor, while the vents of the other
major eruptions were located between 400 and 680 m a.s.l. and represented the result of
the dyke propagation from the central conduits toward the Sciara del Fuoco [65,66].

In addition, contrary to the 2002–2003 and 2007 eruptions, when the paroxysmal
explosions (5 April 2003 and 15 March 2007, respectively) occurred weeks to months after
the onset of the effusive activity, the 2019 eruption started with the 3 July paroxysmal
eruption and ended with the 28 August one.

Finally, an intense Strombolian activity preceded all five major effusive eruptions in the
period 1985–2019. However, only in 2019 did the ordinary activity continue at the summit
vents during the effusive phase of the eruption, sustained by the higher level of magma
within the central conduits, while it stopped during the other four major effusive eruptions.
This was possibly due to the fact that the 2019 effusive eruption was not characterized by
the opening of effusive vents at lower elevations on the SdF, draining the shallower magma
present beneath the crater terrace and, thus, triggering the collapse of the crater terrace
floor, as in the previous eruptions.

Comparing the effusion rates and volumes characterizing the recent effusive eruptions,
while the average rate for the 2019 eruption, as well as its volume (1.26 m3/s, Plank
et al. [42]), is comparable with the ones between 1985 and 2014 (1985–1986—0.45 m3/s,
5.5 × 106 m3; 2002–2003—0.61 m3/s, 10.8 × 106 m3; 2007—3.16 m3/s, 9.5 × 106 m3; 2014—
0.60 m3/s, 5.5 × 106 m3; Ripepe et al. [62] and reference therein), a substantial difference
can be evidenced in its variation with time. In fact, during the previous eruptions, the
effusion rates decreased rapidly and almost exponentially within the first five days from the
effusive onset, while in 2019 it remained apparently more stable during the eruption [42].

A further comparison with the previous eruptive periods can be conducted concerning
the evolution of the crater terrace after the 2002–2003 and 2007 eruptions. Calvari et al. [61]
estimated a mean fill rate for the crater terrace of ca. 0.01 m3/s (approximately 864 m3/day)
for the inter-eruptive period between July 2003 and February 2007. This value is higher
than our calculated mean fill rate of ca. 0.009 m3/s (749 m3/day) for the inter-eruptive
periods of September 2018–May 2019 and September 2019–January 2020. The difference
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is probably due to the different crater terrace morphology characterizing the 2003–2007
and the 2007–2019 periods, when a 50–70-m deep and vast crater terrace morphology
was present (Figure 6 in Proietti et al. [67]; Figure 3 in Calvari et al. [32]), evolving into a
platform where the most part of the erupted tephra could be hosted, whereas after the two
paroxysmal eruptions of July and August 2019, the N and CS crater areas were affected by
a lower degree of deepening, maintaining a septum between the two crater areas (lower
D2 in Figure 3e), and leaving the other sectors of the crater terrace unaltered. In fact, the
crater terrace floor did not collapse in 2019 as it happened in 2002–2003 and 2007.

The differences mentioned above could be the results of structural changes that
occurred in the shallower portion of the central conduits after the 2007 eruption [32].
However, analyzing the magmatic and structural processes involved in the 2019 eruptions
and leading to further interpretations is beyond the scope of this paper and the reader is
referred to the recent literature for additional details [27,34,38,39,68,69].

4.4. Conclusive Remarks

Routinely used UAS monitoring flights can be very helpful to observe eruptive activ-
ity from safer locations, assess eruptive dynamics, and integrate datasets deriving from
various monitoring networks. Crater, vent, and lava field locations, morphologies and
their evolution are key parameters to understanding eruption style and assessing volcanic
hazards and the related impact. The data collected during our surveys and the subsequent
analysis permit us to locate and characterize the morphological changes of the vents in
detail, reducing the uncertainty in the explosion source and providing constraints to the
geophysical model inputs for seismic and acoustic arrays and camera-derived observa-
tions of explosive dynamics. In particular, morphological data and eruption parameters
can be used for 3D numerical models on the dispersion of ballistic bombs and blocks
with important implications for the hazard assessment posed by ballistic ejecta during
explosive eruptions.

Further studies should be performed to evaluate the potential hazard posed by the
overload on the unstable “fratture Tibaldi” area and the prompt identification of new
fractures, and related dynamics, appearing in the lava field. Moreover, future studies com-
bining the relation between morphology and volcanic activity changes could contribute
to further characterize the eruptive dynamics and the shift of activity from one vent to
another one, or the type of Strombolian explosion (see Gaudin et al. [70] for a comprehen-
sive description of explosion types for normal explosions at Stromboli). Finally, a regularly
updated topography quantifying the morphological changes of the upper SdF and crater
terrace could be of great value for the civil protection authorities and, more in general, for
the volcanological community.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13152870/s1. Table S1: processing parameters used in Agisoft Metashape. Table S2:
Model alignments and associated rms errors reported in Cloud Compare software. Table S3: Change
detection results for the period May 2019-September 2019 calculated over the Crater Terrace Area
of Interest (CT-AOI). Table S4: Change detection results for the period September 2018-June 2020
calculated over the Crater Terrace Area of Interest (CT-AOI). Table S5: Elevation values (in m)
extracted at 5 checkpoints placed in the unchanged regions of our DSMs. Figure S1: features located
in unchanged areas of the volcano used for the alignment of the models. Figure S2: DSMs and
orthomosaics of the lava field area. Figure S3: Alignment of hornitos in the N crater area and plume
rising from two vents located in the CS crater area (in the upper right background). Figure S4:
Block deposited on the SdF on 28 August 2019 and the crater terrace rim. Figure S5: Cross-sections
of the crater terrace through time (12 September 2018 to 20 June 2020) along profile 1 in Figure 5.
Figure S6: Cross-sections of the SW crater area and upper SdF through time (12 September 2018 to
20 June 2020) along profile 2 in Figure 5. Figure S7: Cross-sections of the lava field and CS crater area
through time (12 September 2018 to 20 June 2020) along profile 3 in Figure 5. Figure S8: Lava field
and active lava flows in the upper SdF on 4 August 2019. Figure S9: Characteristic morphology of
gravel flow deposits at the foot of the SdF slope and an active gravel flow descending it (5 August
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2019). Figure S10: Gravel flows descending from the Pizzo area within Rina Grande and towards the
NEdt sector.
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