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ABSTRACT 18 

The spatial variability of the magnitude-frequency distribution is important to improve earthquake 19 

forecasting capabilities at different time scales. Here, we develop a novel approach, based on the 20 

weighted maximum likelihood estimation, to build a spatial model for the b-value parameter of the 21 

Gutenberg-Richter law and its uncertainty, also for earthquake catalogs with a time-varying 22 

completeness magnitude. Then, we also provide a guideline based on the Bayes factor to measure 23 

the importance of the b-value spatial variability with respect to a model having a spatially uniform 24 

b-value. Finally, we apply the procedure to a new Italian instrumental earthquake catalog from 1960 25 

to 2019 to investigate the b-value spatial variability over the Italian territory. 26 

 27 

INTRODUCTION 28 

The size distribution of the earthquakes is commonly described by the Gutenberg-Richter law 29 

(Gutenberg and Richter, 1944):  30 

                         (1) 31 

where      is the cumulative number of earthquakes with magnitude   , a is the “productivity” 32 

parameter (10
a
 represents the total number of events with magnitude   ) and b is the so-called b-33 

value. The b-value rules the relative size distribution of the earthquakes, i.e. the percentage of larger 34 

events with respect to the smaller ones. Although different methods are available (Bender, 1983; 35 

Castellaro et al., 2006), the most common approach is the maximum likelihood method (Aki, 1965), 36 

with some additional correction for potential biases (Marzocchi et al., 2020). 37 

Estimation of the b-value in many earthquake catalogs shows a b-value=1 (Kagan and Jackson, 38 

2000); however, selecting the earthquakes according to some peculiar property (e.g. the focal 39 

mechanism) or in some particular zones (such as in volcanic areas), is possible to observe 40 
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departures from the universal value 1. Many studies suggest that the b-value is correlated with the 41 

differential stress in the earth’s crust: the smaller the b-value, the larger the differential stress 42 

(Scholz, 1968; Schorlemmer et al., 2005). This correlation implicitly implies that the b-value varies 43 

across different styles of faulting, leading to larger b-values for normal faulting and smaller b-44 

values for inverse faulting (Schorlemmer et al., 2005; Gulia and Wiemer, 2010). 45 

A common method to identify the spatial heterogeneity of the b-value is the mapping of this 46 

parameter; such maps are obtained by dividing earthquake catalogs in convenient ways. For 47 

example, using geological and/or seismotectonic considerations to define spatially homogeneous 48 

regions with earthquakes having similar properties, such as similar focal mechanisms (Gulia and 49 

Wiemer, 2010) or style of faulting (Meletti et al., 2008). Another approach is to define a uniform 50 

spatial grid, and then for each point of this grid compute the b-value using only earthquakes within 51 

a predefined distance; this approach can be useful both for mapping the b-value along a fault 52 

(Schorlemmer et al., 2004) and for the mapping of a wider area (Tormann et al., 2014; Tormann et 53 

al., 2015). To our knowledge, the first attempt to introduce a weighting scheme in the estimation of 54 

the b-value was made by Tormann et al. (2014), assigning a distance-dependent weight to each 55 

earthquake. This paper is pioneering regarding the weighting spatial b-value mapping, however, it 56 

does not offer a technical statistical framework for the estimation method, and in particular for the 57 

uncertainty computation.       58 

Once estimated the spatial distribution of the b-value, the most challenging aspect is to quantify 59 

how much the apparent b-value spatial variability improves the forecast of a model based on a 60 

single b-value (Hiemer and Kamer, 2016). Eventually, this information has to be carefully evaluated 61 

to figure out the motivations of possible variations. In fact, it is well known that many of the b-62 

value variations are caused by non-physical factors (Kamer and Hiemer, 2015; Marzocchi et al., 63 

2020; Herrmann and Marzocchi, 2021).  64 
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The goal of this paper is to create a statistical framework where it is possible to estimate, using 65 

some weighting scheme, both the b-value and its uncertainty. The weighted likelihood approach 66 

(Hu and Zidek, 2002), which has been already applied in other seismic spatial estimation 67 

distribution problems (Zhuang, 2015), is probably the best way to introduce a weighting scheme 68 

maintaining a formally correct statistical approach. To illustrate the application of the method, and 69 

how to estimate the statistical significance of the b-value spatial variability,  we apply the procedure 70 

to the Italian instrumental catalog (Lolli et al., 2020) from 1960 to 2019, with a completeness 71 

magnitude that varies with time.  72 

  73 

METHODS 74 

Weighted maximum likelihood estimation for the b-value and its uncertainty 75 

The classical maximum likelihood estimation (MLE) for the b-value of the Gutenberg-Richter law 76 

(Aki, 1965), considering the correction for the binning of the magnitudes (Utsu, 1966), leads to the 77 

equation: 78 

   
 

                    
  

 
  
                        79 

where     is the mean of the magnitudes in the catalog,      is the completeness magnitude of the 80 

catalog and    is the binning of the magnitude (usually 0.01 for Mw and 0.1 for Ml). Here we 81 

use    , whose value depends on the observations, to denote our estimate of the true b-value, whose 82 

exact value is unknown value. In the case of catalogs with a completeness magnitude that varies 83 

with time, i.e. the minimum magnitude depends on the k-th time window considered     
   

, Taroni 84 

(2021) shows that eq. (2) became: 85 
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                    86 

where   is the total number of events in the catalog, and     
   

 is the k-th threshold of completeness 87 

relative to the i-th earthquake with magnitude   (see Fig. 1 in Taroni 2021). Using the weighted 88 

MLE (Hu and Zidek, 2002), if we assign to each event a positive weight     , where the sum of all 89 

the    is 1, equation (3) can be generalized as: 90 

   
 

            
   
  

    
  
    

    
                    

see Appendix A for more details on this equation. The MLE of the sample standard deviation    , 91 

that represents the uncertainty on   , described by Aki (1965), can also be generalized in the 92 

weighted MLE context with: 93 

            
 

 

   
                    

by applying the delta method (Dorfman, 1938; see Appendix B for details). 94 

Once defined the equations useful to estimate the b-value and its uncertainty, we can describe the 95 

kernel used for the spatial estimation. In this work, we adopt a Gaussian kernel, widely used in 96 

seismic parameters estimation (Frankel, 1995), depending on the distance   of the i-th earthquake 97 

from the considered spatial point; then           
  

   
 , where   is the smoothing distance 98 

(Helmstetter et al., 2007). Obviously, if we put all weights equal to    , the equations of weighted 99 

MLE became equivalent to the classical MLE. 100 

This approach has a clear advantage with respect to the classical approach based on one fixed radius 101 

search. The former does not have a hard boundary like the latter, where all the events within the 102 
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selected radius have weight 1 and all the others 0; using a smoothing kernel we can gradually 103 

decrease the importance of the observation with the distance. The final result is a b-value estimation 104 

coherent with the hypothesis that this parameter can continuously change along different zones 105 

(Tormann et al., 2014). 106 

 107 

 108 

 109 

Quantifying the importance of the b-value variations  110 

To test the statistical significance of the b-value variations observed, we compare the log-likelihood 111 

of a model that considers the spatial variability of the b-value (model A), and a model based on one 112 

single common b-value over the whole region (model B). The log-likelihoods are calculated using 113 

independent observations contained in a testing catalog, which have not been used to calibrate the 114 

model (pseudo-prospective test). The log-likelihood of model A given a set of observations 115 

              is defined by: 116 

             

  

   

                    

where    is the total number of events in the testing catalog,    is the probability density function 117 

of model A and           , with    the magnitude of the i-th event and      the 118 

completeness magnitude of the testing catalog (Kamer and Hiemer, 2015). The function    can vary 119 

in each spatial cell, depending on model A. The model B is built in the same way as equation (6), 120 

but    has the same b-value for the whole region.  Since we use a testing catalog composed of 121 

observations independent from the one used to estimate the parameters of the models, the difference 122 

between the log-likelihoods resembles numerically the log Bayes factor (Eq. 4 in Marzocchi et al., 123 
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2012). Hence, though the Bayes factor was implemented in a different context (Kass and Raftery, 124 

1995), we can adopt the Bayes factor terminology (see Table 2 in Kass and Raftery, 1995) to 125 

describe to what extent the model with the spatial varying b-value is better than the model with a 126 

uniform b-value.  127 

 128 

DATA FROM THE ITALIAN INSTRUMENTAL SEISMICITY 129 

In this work, we apply our methodology to the Italian instrumental seismic catalog of Lolli et al. 130 

(2020) from 1960 to 2019 (see Data and Resources), taking from granted the information of the 131 

completeness magnitude given for this catalog (see Table 1).  132 

 133 

We select the events with a depth ≤ 30 Km, with magnitudes above the completeness magnitude, 134 

and inside a polygon that excludes the zones far on the sea (see Fig. 1), where the completeness 135 

magnitudes can be different from the inland zones (Lolli et al., 2020). To avoid the short-term 136 

incompleteness induced by strong events (Kagan, 2004; Lolli and Gasperini, 2006), after an Mw 5.5 137 

or greater earthquake we remove all the events within 3 days and 30 Km from the epicenter of the 138 

shock. This final catalog contains 56,309 events. 139 

 140 

b-VALUE MAPPING AND MODEL COMPARISON FOR ITALY 141 

b-value mapping 142 

We estimate the b-value using the weighted MLE over the 0.1°x0.1° spatial grid inside the study 143 

region, using a Gaussian kernel with a smoothing distance of 30 Km; this distance was already used 144 

in the Italian region (Murru et al., 2016), and it is a distance suitable to identify possible departures 145 
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from the uniform b-value due to local crustal properties (e.g. characteristic fault mechanism). In the 146 

Supplemental Material, we also perform the same computation for 20, 25, 35, and 40 Km, and for a 147 

conservative completeness magnitude (adding 0.2 to all the completeness magnitudes in Table 1) 148 

obtaining very similar results. To avoid confusion, we use b-   for the spatial varying b-value as a 149 

function of locations, and B-   for the constant B-value of the whole catalog. Together with the b-150 

value, we also estimate the sample standard deviation    . Approximating the confidence interval 151 

(CI) of the estimated b-value with the Gaussian distribution (Aki, 1965), we also compute the 95% 152 

CI as [                           in each spatial cell. Then we map the b-values only in the spatial 153 

cells where the B-value computed for the whole catalog (       ) fall outside the 95% CI of the 154 

b-value computed for the spatial cell. This very simple but innovative representation is quite useful 155 

because allows showing only the b-values that are significantly different from one of the whole 156 

catalog (here the word “significantly” is related to the computed 95% CI, and is not used as the 157 

result of a statistical test).  158 

In Fig. 2 we show three different types of maps: in panel (a) we show the b-value map, in panel (b) 159 

the standard deviation, and in panel (c) the b-values significantly different from the one of the 160 

whole catalog.   161 

 162 

The first map (Fig. 2a) shows a lot of zones with low/high b-values, but some of these zones are the 163 

same with high values of standard deviation. In fact, it’s easy to have a large deviation from the B-164 

value of the whole catalog where we have few events: for this reason, the most important map is the 165 

third one (Fig. 2c), which combines both b-value and his standard deviation to show only the zones 166 

with a b-value significantly different from 1.04. 167 

This third map (Fig. 2c) shows some zones with a high b-value and some other zones with a low b-168 

value. Remarkably, Marzocchi et al. (2020) show that the completeness magnitude for the whole 169 
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catalog may not hold locally, and this can induce severe biases in the b-value. In particular, this 170 

work shows that if a portion of the catalog is affected by local incompleteness, the corresponding b-171 

value is usually lower than the overall value. Specifically, Schorlemmer et al. (2010) show that the 172 

existing seismic network in the Italian region has a strong inhomogeneity leading to spatial 173 

variability of the network detection capability. That study shows a low detection capability (higher 174 

completeness magnitude) in the Southern part of Apulia, the Western part of Sicily, and the North-175 

East near the border with Austria; then, the low b-value evidenced in these zones can be explained 176 

by the use of the same common completeness magnitude in the whole Italian region. The high b-177 

values in the central Apennines, Northern part of Apulia, and Western part of Tuscany are more 178 

interesting, and can be due either to the prevalent normal faulting of these zones (in particular for 179 

the central Apennines, Gulia and Wiemer, 2010), or,  higher heat flux (in particular for Tuscany, 180 

Della Vedova et al., 2001) which may lead to high b-values (Warren and Latham, 1970). 181 

 182 

Quantifying the importance of the spatial b-value variations for Italy  183 

To compare the performance of the model with a uniform B-value and the model with a spatial-184 

varying b-value, we implement a pseudo-prospective test. We use the data from 1960 to 2009 to 185 

build the two models and then a testing dataset from 2010 to 2019 to compute the Bayes factor (BF) 186 

from the log-likelihoods of the model (according to eq. (6)). In Fig. 3 we show the cumulative 187 

Bayes factor (in a log scale) for three different completeness magnitudes 1.8, 2.1, and 2.4. Along 188 

with the Bayes factor curves, we also show the “very strong evidence” line (Table 2 in Kass and 189 

Raftery, 1995): if the Bayes factor curve is above this line, it brings very strong evidence in favor of 190 

the model with a spatial-varying b-value against the model with a uniform B-value. Since the figure 191 

shows the cumulative Bayes factor, the final results of the comparison correspond to the last day of 192 

the test (i.e. in the right part of the figure, around day 3650). 193 
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 194 

Fig. 3 shows a generally better performance of the model with a spatial-varying b-value, 195 

independently from the completeness magnitude chosen for the testing catalog. Increasing the 196 

overall completeness magnitude, the evidence in favor of the model based on the b-value spatial 197 

variability tends to decrease; this may be due to the fact a higher overall completeness magnitude 198 

reduces the advantage of the model in regions that have a local completeness magnitude lower than 199 

the overall one (because we reduce the number of events in the testing catalog).  During the 2016 200 

Amatrice-Norcia sequence, around the 2500th day, we observe the strongest increase of the Bayes 201 

factor. The great performance of the spatial-varying model during this sequence is probably due to 202 

the high b-value forecasted by such a model (with respect to the uniform model) in the central 203 

Apennines zone, where this sequence took place. This great performance can also be influenced by 204 

a possible temporary high b-value induced by strong events of the sequence (Gulia et al., 2018).  205 

A deeper interpretation of these results is beyond the scope of this paper which aims at showing the 206 

benefits of the approach to detect b-value spatial variations and to quantify the importance of such 207 

variations.  208 

 209 

LIMITATIONS AND FURTHER IMPROVEMENTS 210 

For our computations, we have assumed an exponential distribution of the magnitudes (i.e. a 211 

Gutenberg-Richter law): if this assumption is not satisfied by the data, our method (as well as any 212 

other method to calculate the b-value) can lead to biased results. 213 

Our methodology can be greatly improved by using a detailed computation of the magnitude of 214 

completeness, that can vary both with space and time (Tormann et al., 2014). In particular, during 215 

seismic sequences, the computation of the magnitude of completeness is crucial to obtain an 216 
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unbiased b-value estimation and to avoid non-physical fluctuation of this parameter (Lombardi, 217 

2021). 218 

Another future improvement of our methodology can be the application of the weighted likelihood 219 

estimation to the parameters of the tapered version of Gutenberg-Richter law (Kagan, 2002). 220 

 221 

CONCLUSIONS 222 

The results of this work can be summarized in three main points: 223 

1) we developed a method to estimate the spatial variation of the Gutenberg-Richter b-value and its 224 

uncertainty for catalogs with a time-varying magnitude of completeness, using the maximum 225 

weighted likelihood approach; 226 

2) we presented a simple approach to show on a map the candidate b-values which may be different 227 

from the overall value; 228 

3) we suggested a method to compare the performances of two different models for spatial b-value 229 

estimation (in our case the model based on the weighted likelihood estimation and the uniform 230 

model) using the Bayes factor. 231 

 We finally applied our method to the new Italian instrumental seismic catalog, showing that the 232 

model with a spatial-varying b-value is significantly better than the model with a uniform b-value; 233 

this result is similar to the one obtained by Hiemer and Kamer (2016) for California. 234 

Thanks to the flexibility of the weighted likelihood approach, our method can be easily adapted to 235 

different spatial kernels, or different types of smoothing distances (e.g. the adaptive smoothing 236 

distance, Helmstetter et al., 2007).   237 

 238 
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DATA AND RESOURCES 239 

The catalog used in this work is described in Lolli et al. (2020), and available at: 240 

http://horus.bo.ingv.it/ (last access September 2020). 241 

In the Supplemental Material are presented other b-value spatial maps for different smoothing 242 

distances and for a conservative magnitude of completeness. 243 

The code for the spatial b-value mapping is freely available at: 244 

https://github.com/MatteoTaroniINGV 245 
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Tables: 342 

Table 1: Completeness magnitude of the catalog, with the starting date for each level of 343 

completeness. 344 

Starting date Completeness 

magnitude (Mw) 

1960-1-1 4.0 
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1981-1-1 3.0 

1990-1-1 2.5 

2003-1-1 2.1 

2005-4-16 1.8 

 345 

 346 

List of figure captions: 347 

Figure 1: the black dots represent the epicenters of the events used in this study, the grey polygon 348 

borders the zone of investigation for the b-value mapping. 349 

Figure 2: Panel (a): b-value map; panel (b): standard deviation map; panel (c): a map for the b-350 

values that are significantly differents from the one of the whole catalog. These maps refer to a 351 

smoothing distance of 30 km. This figure will appear in color only in the online version, not in the 352 

printed version. 353 

Figure 3: Panel (a): Bayes factor (in a log scale) of the model with a spatial-varying b-value against 354 

the model with a uniform b-value as a function of time, for the testing dataset (2010-1-1 – 2019-12-355 

31). The black curve is the computation for a testing dataset from Mw 1.8+, the grey curve for Mw 356 

2.1+, and the light grey for Mw 2.4+; the black dashed line represents the very strong evidence line 357 

of the Bayes factor; panel (b): the daily number of events with Mw 1.8+.  358 

 359 
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 361 

Figure 1: the black dots represent the epicenters of the events used in this study, the grey polygon 362 

borders the zone of investigation for the b-value mapping. 363 

 364 

 365 

 366 
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Figure 2: Panel (a): b-value map; panel (b): standard deviation map; panel (c): a map for the b-367 

values that are significantly different from the one of the whole catalog. These maps refer to a 368 

smoothing distance of 30 km. This figure will appear in color only in the online version, not in the 369 

printed version. 370 

 371 

 372 

Figure 3: Panel (a): Bayes factor (in a log scale) of the model with a spatial-varying b-value against 373 

the model with a uniform b-value as a function of time, for the testing dataset (2010-1-1 – 2019-12-374 

31). The black curve is the computation for a testing dataset from Mw 1.8+, the grey curve for Mw 375 

2.1+, and the light grey for Mw 2.4+; the black dashed line represents the very strong evidence line 376 

of the Bayes factor; panel (b): the daily number of events with Mw 1.8+. 377 
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APPENDICES 379 

A) Derivation of the weighted maximum likelihood estimator for the b-value  380 
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If we set           and           
   

, the Gutenberg-Richter law reads as the exponential 381 

distribution with rate parameter   (Aki, 1965; Taroni, 2021). The log-likelihoods for MLE (LL) and 382 

weighted MLE (WLL) (Hu and Zidek, 2002; Ahmed et al., 2005) are: 383 

           

 

   

                     

              

 

   

                

where            is the probability density function of the exponential distribution. 384 

From the conditions  
   

  
   and  

    

  
   , and considering that the sum of all the    is 1, we 385 

obtain:  386 

     
 

 
             

 

   

 

       
 

 
             

 

   

 

From these equations we obtain the final MLE and weighted MLE for  : 387 
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B) Derivation of the weighted maximum likelihood estimator for standard error of the b-value 389 
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The Delta method (Dorfman, 1938) is in fact the law of error propagation. It asserts that if    390 

           asymptotically, then                              asymptotically, where      391 

is the Gaussian normal distribution. 392 

The expected value and the variance of    (that follows an exponential distribution) can be 393 

computed with the equations: 394 
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Then, the expected value and the variance of        
 
    will be: 396 

     
 

 
                                     

       
   

  
   

  
                  

If   is large enough (we verify through simulations that N must be at least 10
3
 )), then  397 
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Since    
 

     
 
   

 
 

 
 (eq. A6), if we apply the Delta method with      

 

 
 , we obtain: 399 

   
 

 
             

 

 

   

                     

And finally: 400 

         
 

 

   

                        


