
1. Introduction
The quantitative study of the earthquake magnitude distribution started with the publication of what is tra-
ditionally referred as “Gutenberg-Richter Law” (GRL; Gutenberg & Richter, 1942; Ishimoto & Iida, 1939), 
stating the log-linearity of the empirical complementary cumulative distribution of magnitudes. In mathe-
matical terms, the GRL may be described by the equation

      10log N M a b M (1)

where a (productivity) and b (slope) are constants and N(M) is the number of events with magnitude equal 
to or above M. The parameter b represents the ratio of small to large earthquakes: a low b-value describes a 
data set with a large proportion of larger magnitudes, and vice versa.

Following the publication of the GRL, a great amount of studies was carried out, showing a great attention 
of scientists, which continues to this day. Many of these studies concern some technical problems about the 
estimation of the b-value, given by the rounding and the uncertainties of magnitudes, the size and the in-
completeness of catalogs and the methodologies applied (Bender, 1983; Kamer & Hiemer, 2015; Marzocchi 
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& Sandri, 2003; Mignan, 2012, 2019; Mignan & Woessner, 2012; Shi & Bolt, 1982; Tinti & Mulargia, 1987). 
Other studies focused on more interpretative issues such as: the temporal and spatial variations of b-values; 
the use of b-value as stress meters, helping to image asperities; the changes of b with focal depth or tectonic 
frameworks; the measurement or real-time monitoring of b-values for hazard purposes; the b-value de-
crease in critical sub-regions prior to mainshocks (Gulia & Wiemer, 2019; Rundle et al., 2000; Schorlemmer 
et al., 2005; Wiemer & Wyss, 2000).

The technical and interpretative aspects of b-value estimations are both relevant and, of course, strictly 
linked. The use of b-values (and of its variations) to measure, describe, predict or interpret seismicity re-
quires a great attention on technical details that, if neglected, would lead to misinterpretation and ambiguity.

By a statistical point of view, Equation 1 leads to a well-defined hypothesis, marked by H0 in the following, 
that is that magnitudes follow an exponential distribution with completeness magnitude Mc (Aki, 1965; 
Utsu, 1965). Under the hypothesis H0, a correct estimate of Mc is a crucial part of b-value estimation (Hain-
zl, 2016), whereas a pseudo log-linearity of N(M) (Equation 1) might be find also on incomplete data.

Most of the scientific literature, following the publication of GRL, relies on ambiguous hypotheses. The 
b-value and its uncertainty, given a prefixed Mc, are commonly computed using a Maximum Likelihood 
assessment from an exponential distribution (marked by MLexp in the following; Aki, 1965; Utsu, 1965). In-
stead, Mc estimation is often done by catalog- or network-based methodologies (Mignan & Woessner, 2012), 
not assuming a specific probability distribution for magnitudes (Cao & Gao, 2002; Mignan et  al.,  2011; 
Schorlemmer & Woessner, 2008; Wiemer & Wyss, 2000).

A representative, although not exhaustive, list of catalog-based techniques to assess Mc includes the 
Maximum Curvature Method (MAXC; Wiemer & Wyss, 2000), the Goodness of Fit test (GF; Wiemer & 
Wyss, 2000), the Mc by b-value stability (MBS; Cao & Gao, 2002), the method proposed by Ogata and Kat-
sura  (1993; OK93) and its following revision, the Mc from the Entire Magnitude Range method (EMR; 
Woessner & Wiemer, 2005), the Median-based analysis of the segment slope (MBASS; Amorèse, 2007) and 
the Non Linear Index test (NLI; Tormann et al., 2014). Whereas GF, MBS, OK93, EMR and NLI are paramet-
ric methods, that is based on fitting the GRL on data, MAXC and MBASS are non-parametric techniques, 
based on the evaluation of changes in the slope of cumulative distribution of magnitudes (Mignan & Woess-
ner, 2012). Only OK93 and EMR, among the parametric techniques, formalize a probability density function 
(PDF) for magnitudes below Mc.

Recently, test-based methods were proposed to fit generic power law distributions (Clauset et al., 2009; Cor-
ral et al., 2011) and applied to earthquake magnitudes (Corral & González, 2019). These approaches com-
bine the maximum-likelihood fitting methods with goodness-of-fit tests, based on the Kolmogorov-Smirnov 
statistic (Gibbons & Chakraborty, 2003).

The present study seeks to clarify the scientific rationale to adopt for Mc and b-value estimation, based on 
statistical hypothesis test. The first part discusses and compares the most common published method, by 
their application to simulated magnitudes, to highlights their limits. The second part proposes a new meth-
od for the GRL estimation, fully placed in the outlined statistical framework.

2. The Mathematical Background for b-Value Estimation
By a strictly statistical point of view, the empirical GRL (Equation 1) leads to the well-defined hypothesis 
that magnitudes follow an exponential distribution, with probability density function

             10
exp 10 b ln M Mcf M b ln e (2)

where, Mc is the minimum magnitude of a complete data set.

The instrumental earthquake magnitudes are usually discretized, since they do not have higher precision 
than the first decimal place (Bender, 1983; Marzocchi & Sandri, 2003; Tinti & Mulargia, 1987). The most 
widely used estimator for b-value is MLexp, the Maximum Likelihood (ML) assessment for an exponential 
distribution (Aki, 1965; Utsu, 1965), which for rounded magnitudes is given by
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where, M is the average of magnitudes above Mc and δM is the magnitude bin size (Bender, 1983; Marzocchi 
& Sandri, 2003). The associated error,  b, is given by (Shi & Bolt, 1982)
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In any case, a full account of the discrete nature of rounded magnitude measurements is achieved only by 
replacing the continuous exponential with the discrete geometric distribution

   geo( | ) 1 0,1,...
i

if M p p p i (5)

where   0iM M i M ,  0 / 2M Mc M , and p = 1−exp[b ⋅ ln(10) ⋅δM] (Bender, 1983; Marzocchi & 
Sandri, 2003; Tinti & Mulargia, 1987). Without loss of generality, M0 = 0 and δM = 0.1, in the following.

The geometric ML estimator (MLgeo) of b, b̂, and the associated error,  b̂, on N rounded magnitudes, are 
given by
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  (Bender, 1983; Marzocchi & Sandri, 2003; Tinti & Mular-

gia, 1987). The percent variation of b̂, with respect to b,   /ˆ ·100b b b , is a function of N and represents the 
aleatory, irreducible, uncertainty on b-value estimation.

3. The Existing Approaches for Mc Estimation
The biggest challenge in fitting the GRL on a magnitude data set is to identify the range over which it holds, 
more than a b-value estimation. Not all earthquakes are detected from a seismic network, due to multifold 
reasons. Therefore, the completeness magnitude Mc may be defined as the lowest magnitude at which 100% 
of the earthquakes are detected (Rydelek & Sacks, 1989).

The most used procedures to define the GRL parameters require the estimation of b, by the MLexp method, 
as a function of ascending Mc, and the application of suitable criteria, for choosing Mc (and then b). As will 
be shown below, these criteria are, in large part, unjustified and not concordant with the hypothesis H0, that, 
if assumed, must be coherently integrated in the whole procedure.

In this section, an exhaustive list of previously published procedures is applied to several classes of simu-
lated data, under the hypothesis of equivalence between H0 and the empirical GRL (Equation 1). Simulated 
samples, marked by Dinc in the following, have different size N and mimic incomplete magnitude databases. 
They are given by the PDF

         geo ,/ , , /i i ig M p f M p F M (7)

where b = 1 and Fμ,σ is the truncated Gaussian cumulative function, with parameters μ = 0.4 and σ = 0.4 
and lower bound −0.05 (Ogata & Katsura, 1993; Ringdall, 1975). The incomplete portion of a real magni-
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tude database may have very different shapes (Mignan, 2012, 2019) and the model formalized by Equation 7 
is just one possible example. Dinc samples are simulated by randomly removing a subset of data from com-
plete datasets, hereinafter marked by Dc and simulated by a geometric distribution with b = 1. Specifically, a 
magnitude Mi is removed by the original data set if r > Fμ,σ(Mi), where r is a uniform random value. The size 
of Dc simulations is N' = N/[1−Fμ,σ(μ+2σ)], with N varying from 5⋅101 to 104, so that the expected number of 
events above μ+2σ is equal to N. The original complete data sets Dc are retained, as a reference for following 
stages of this research.

Most of published algorithms to estimate Mc belong to one of following classes of methodologies:

•  The catalog-based methods that check the validity of GRL on data (parametric catalog-based methods; 
Cao & Gao, 2002; Tormann et al., 2014; Wiemer & Wyss, 2000; Woessner & Wiemer, 2005) or evaluate 
changes in the empirical cumulative distribution (nonparametric catalog based methods; Amorèse, 2007; 
Wiemer & Wyss, 2000)

•  The network-based methods that use the seismic network distribution and its changes to measure the 
detection magnitude threshold (Gomberg, 1991; Schorlemmer & Woessner, 2008)

•  The test-based methods that fit a generic power law distributions in a more rigorous statistical testing 
framework (Clauset et al., 2009; Corral et al., 2011)

•  The rate-dependent methods that estimate Mc basing on the expected short-term variations of earth-
quake rate (Hainzl, 2016)

In this research, the network-based and the nonparametric catalog-based techniques are not taken into ac-
count, since they cannot be easily carried out and discussed in the statistical testing framework, considered 
here as the most correct way to formulate the problem. Moreover, the method proposed by Hainzl (2016) 
is not discussed here, since it is focused on variations of Mc during the seismic sequences and requires the 
spatio-temporal modeling of aftershock rates.

3.1. Catalog-Based Methods

An exhaustive list of catalog-based methods is applied on Dc and Dinc datasets, to check the efficiency of 
each algorithm. Specifically, the methods involved in this investigation are the Goodness of Fit test (GF; 
Wiemer & Wyss, 2000), the Mc by b-value stability (MBS; Cao & Gao, 2002; Woessner & Wiemer, 2005) 
and the Non Linear Index test (NLI; Tormann et al., 2014). The Entire Magnitude Range method (EMR; 
Woessner & Wiemer, 2005) and its early version proposed by Ogata and Katsura (1993), are not included, 
since they involve a specific distribution for magnitudes below Mc, contrary to statements that propose that 
incomplete magnitudes may have different shapes (Mignan, 2012, 2019) and a strict modeling of them may 
be problematic (Kagan, 2002).

The correctness of GF, MBS and NLI procedures is checked on Dc and Dinc databases. Specifically, b-values 
are estimated, as a function of ascending cutoff magnitude, by the MLexp method ( b, Equation 3), which is 
the estimator chosen by the authors of these methods (however, MLexp and MLgeo estimations are close, 
for binning of δM = 0.1; Bender, 1983; Marzocchi & Sandri, 2003; Tinti & Mulargia, 1987). Therefore, Mc 
(and then b) is selected by applying the criteria defined by each method, which are summarized in Appen-
dix A, for the sake of completeness and clarity.

Results for Dinc simulations are shown in Figures 1 and 2, whereas results for Dc simulations are shown in 
the Supporting Information, for a comparison (Figures S1 and S2). The main result for Dinc data sets is a 
joint underestimation of b (up to 60%–70% of the real value) and Mc, by GF and, even more, by NLI meth-
ods, also for large N values (Figures 1a–1d). The failure of the GF test is greater, the closer R value is to 90% 
(see Appendix A; Figure 1a), its lowest acceptable value (Wiemer & Wyss, 2000). Besides, values of R close 
to 100% are reachable only for large sample sizes N (Figure 1a). Both GF and NLI provide for Dc simula-
tions b-values that are fully in agreement with the expected variability, but values of Mc well above 0, also 
for samples with thousands of data, due to (wrong) rejection of the GRL for lower threshold magnitudes 
(Figures S1a–S1d).
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The MBS method provides correct b-values for both Dc and Dinc datasets, but strongly overestimates Mc, 
with a consequent strong reduction of sample size (Figures 1e and 1f and Figures S1e and S1f). This means 
that the b-value uncertainty is too big, with respect to Shi and Bolt's (1982) criteria, so that the b-value is 
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Figure 1. Results of the catalog-based tests for b = 1.0 and Dinc databases. (a) Plot of  Δ / * 100b b b  versus N for GF 
test. Solid black lines mark the 99% confidence bounds of aleatory uncertainty of Δb. (b) Plot of ΔMc versus Δb, for the 
GF test. (c) The same as (a) but for the NLI test. (d) The same as (b) but for the NLI test. (e) The same as (a) but for the 
MBS method. (f) The same as (b) but for the MBS method. GF, Goodness of Fit; MBS, Mc by b-value stability; NLI, Non 
Linear Index test.

Figure 2. Results of the test-based tests for b = 1.0 and Dinc databases. (a) Plot of Δb =  b
~
/b*100 versus N for KS-

Clauset&al test. Solid black lines mark the 99% confidence bounds of aleatory uncertainty of Δb. (b) Plot of ΔMc versus 
Δb, for KS-Clauset&al test. (c) The same as (a) but for the KS-Corral&al test. (d) The same as (b) but for the KS-
Corral&al test.
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considered unstable. In this regard, it has been recognized that the performance of the MBS method strong-
ly depends on the choice of some details (Mignan, 2012; Woessner & Wiemer, 2005; Zhou et al.,  2018). 
Specifically, the length of the magnitude window, ΔM, in which searching for the b-value stability (see Ap-
pendix A), has a strong influence on results, even if it is generally set to 0.5, for a magnitude binning of 0.1.

The GF and NLI tests are aimed to check the log-linearity of empirical complementary cumulative distri-
bution of magnitudes (Equation 1). The MBS is instead based on the stability of b-values above Mc. None 
of these methods is fully placed in a statistical hypothesis-testing framework. A more rigorous approach, in 
this sense, is provided by the test-based methods.

3.2. Test-Based Methods

Under the hypothesis that the GRL is equivalent to H0, the natural tools to check a distribution are the good-
ness of fit tests (Gibbons & Chakraborty, 2003). Among them, the Kolmogorov–Smirnov (KS) test quantifies 

the maximum absolute distance     KS max T Ex
D F x F x , between the empirical FE and the theoretical FT 

cumulative distribution functions (Gibbons & Chakraborty, 2003). The KS test was designed for continuous 
distributions, but it may be easily adapted to discrete distributions (Conover, 1999) and when parameters 
of theoretical distribution, under testing, are estimated from data, rather than being known a priori (Lil-
liefors, 1969; Marzocchi et al., 2020).

The KS distance underlies both methods proposed by Clauset et al. (2009) and Corral et al. (2011), to esti-
mate a generic power law function. A summary of these two methods is provided in Appendix B. Both of 
them are applied here supposing a geometric distribution for magnitudes, to formalize the problem in the 
most correct way.

The methods proposed by Clauset et al. (2009; hereinafter marked by KS-Clauset&al) and Corral and col-
leagues (Corral et al., 2011; Corral & González, 2019; marked by KS-Corral&al in the following) provided 
similar results. Both had a significantly better performance on Dinc datasets (Figure 2) with respect to the 
catalog-based methods, and, in particular, the b-value estimations b̂ (Equation 6) are in much better agree-
ment with the expected distribution. In any case, cases of underestimation of Mc (and, therefore, of b) for 
Dinc data are still more than expected (Figures 2a and 2c), especially for small N, due to weak points of both 
tests (see Appendix B for details).

4. The Normalized Distance (ND) Test
All methods applied in previous sections estimate b-values as a function of Mc and, then, apply a criterion 
(different among the methods) to select Mc. In any case, the magnitude range on which the GRL holds, and 
therefore the b-value, may be highly uncertain (Corral & González, 2019; Mignan, 2012). Moreover, the use 
of KS-distance could be a problem, due to its dependence on sample size (Gibbons & Chakraborty, 2003). In 
this section, a new test-based method is proposed to address both these questions.

The problem of the dependence of KS-distance on N is solved in the following way. First, 104 sets of syn-
thetic geometric variables are simulated, varying b and the sample size N; then for each of them the KS 
statistic D(N,b) is computed by refitting b. For each b-value, the statistic D(N,b) turns out to be proportional 
to N-0.5. Therefore, the statistic      ,W b N D N b  has the useful property to be independent on N and 
a theoretical cumulative distribution Fw(w|b) may be computed, as function of b, but independent of N, by 
simulated data (see Figure S3).

The problem of the uncertainty of Mc is, instead, solved by repeating the fitting procedure on bootstrap sam-
ples SB from the original data S (Corral & González, 2019; Woessner & Wiemer, 2005). Generally, the mean 
value and the standard deviation of the bootstrapped Mc determinations are adopted as suitable estimates 
of Mc and of its uncertainty (Woessner & Wiemer, 2005). Here the bootstrap resampling is used to assess the 
degree of completeness of S, as a function of ascending magnitude. In this view, the empirical cumulative 
distribution of bootstrapped Mc gives the probability that S is complete; therefore the most proper estima-
tor of Mc, at a significance level α, is the (1-α)th percentile of this distribution. Then, a rigorous method to 
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estimate the GRL on a magnitude sample S, called in the following ND test, at a significance level α, can be 
structured as following (Figure 3):

•  MLgeo estimators ˆ( )b M  are computed, as function of ascending M, on the sample S; then for each M the 
W-statistic (WM) and the probability     ˆ1 [ | ( )]W w Mp M F W b M  to exceed it are computed (Figure 3a)

•  The previous step is repeated for NB bootstrap resampling {SB
i, i  =  1,…,NB} of the sample S and the 

completeness magnitude B
cM  is computed, for each of them, by selecting the lower M with pW(M)>α 

(Figure 3b)
•  The empirical probability distribution of B

cM  values, computed in previous step, represents the probabil-
ity that S is complete above ascending M; therefore the (1−α)*100% percentile of this distribution gives 
the completeness magnitude of S, Mc, with a confidence level equal to α (Figure 3c)

The ND-test is applied to Dc and Dinc data sets, with results shown in Figure 4, for α = 0.05 and NB = 1000. 
The ND test significantly improves the GRL estimation: there is a full agreement between the values b̂and 
the predicted random variability, for both Dc and Dinc datasets (Figures 4a and 4b). Moreover, the joint un-
derestimation of Mc and b for Dinc data sets disappears (Figure 4d).

The ND test was applied and is shown in the Supporting Information, for data sets simulated assuming 
b = 0.5 (with μ = 1.3 and σ = 0.6) and b = 2.0 (with μ = 0.1 and σ = 0.25), without reaching different results 
(Figures S4 and S5).
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Figure 3. Overview of key steps of the ND test. (a) Estimation of b and computation of pW, as a function of M, for 
the database S. (b) Estimation of Mc

B for NB bootstrap resampling of S: for each of them, Mc
B is the lower M having 

pW(M) > α. (c) Estimation of Mc for the sample S: it is estimated as the (1−α)% percentile of the empirical distribution 
of bootstrapped Mc.
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5. Searching for b-Value Variations: The Central Italy Sequence (2016)
Over the last 2  decades, detailed studies have correlated b-value heterogeneity to depth (Gerstenberger 
et al., 2001), fault asperities (Wiemer & Wyss, 1997), focal mechanisms (Schorlemmer et al., 2005), high flu-
id flow and pore pressures in geothermal and volcanic regions (Lombardi et al., 2006; Wiemer et al., 1998). 
Moreover, the decrease of b-value before the occurrence of main-shocks or during aftershock activity is a 
common recognized feature of seismicity (De Gori et al., 2012; Gulia et al., 2016; Gulia & Wiemer, 2019; 
Nanjo et al., 2012; Schurr et al., 2014), even if it has been questioned (Hainzl, 2016; Kamer & Hiemer, 2015; 
Mignan, 2011). To delve deeper into this issue, an analysis of the most recent Italian sequence is presented 
in the following.

On October 30, 2016, the strongest Italian earthquake (Mw6.5) of last 35  years hit the town of Norcia, 
preceded by two months of strong seismicity, starting on August 24, 2016, with the Amatrice earthquake 
(Mw6.0) (Improta et al., 2019). To compute possible changes in b, before and after the main shocks, the 
shallow events (above 30 km of depth) were selected from the Italian Seismic Bulletin (BSI, Bollettino Sis-
mico Italiano; http://terremoti.ingv.it/en/bsi) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), 
occurring since 2006 and with ML ≥ 1.5, and in a 15 and 12 km radius areas, centered on the Norcia and 
Amatrice shocks, respectively.

The first step of this analysis consisted in estimating a reference b for the seismicity that occurred from Jan-
uary 1, 2006 until the last event preceding the Amatrice earthquake (971 and 1425 events in the Amatrice 
and Norcia regions, respectively), with each of the methods discussed in the previous sections. These last 
identify a Mc varying from 1.5 to 2.4 and a reference b from 1.2 to 1.5. Each reference b-value ( ˆ

Bb ) is com-
pared with a time series of b-values computed by the same approach. This is done by estimating Mc and b 
for windows of 500 events (Ti), moved forward by one event through the catalog. What is shown below does 
not critically depend on the choice of window size from 250 to 500. Figure 5 shows the percent variation 

of b-values time series ( ˆ
Tib ), with respect to the reference b-value ˆ

Bb  in the Amatrice and Norcia regions, 
respectively. The Mc time series are shown in the Supporting Information (Figure S6). All methods, except 
MBS and ND, identify a period of persistent low b-value, between the occurrence of Amatrice and Norcia 
main events, whereas b-values estimated by the MBS and ND tests remain mostly unchanged (Figure 5). In 
parallel, Mc is generally below 2.0 for the GFT, NLI, KS-Clauset&al, and KS-Corral&al methods, whereas 
the MBS and ND methods provide larger values (see Figure S6), confirming that MBS and ND give, on av-
erage, larger Mc/b values with respect to GF and NLI methods.
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Figure 4. Results of the ND test for b = 1.0 and α = 0.05, on Dc and Dinc databases. (a) Plot of Δb = b̂/b*100 versus N 
for Dc samples. Solid black lines mark the 99% confidence bounds of aleatory uncertainty of Δb. (b) The same as (a) but 
for Dinc databases. (c) Plot of ΔMc versus Δb, for Dc samples. (d) The same as (c) but for Dinc databases.

http://terremoti.ingv.it/en/bsi


Journal of Geophysical Research: Solid Earth

The results, overall, show that the decrease of b-values between the Amatrice and Norcia mainshocks de-
pends on the method used and, specifically, on Mc estimation.

In contrast with simulations, the KS-Clauset&al/KS-Corral&al methods are more in agreement with the GF 
and NLI methods than the ND test. This shows that the ND test is not a simple refinement of the KS-Clau-
set&al and KS-Corral&al methods but may provide a significant improvement to GRL estimation.

6. Discussion
The present study has been undertaken with the main objectives (1) to discuss, from a statistical point of 
view, an exhaustive list of previously published methods, that estimate the GRL, and (2) to propose a new 
method, fully placed in a statistical testing framework.

The first important result of present study is that most of algorithms, commonly used to infer the GRL, are 
misleading, since they are not formulated in terms of a rigorous statistical test, which gives quantitative 
statements both on the reliability of a reference hypothesis and on the probabilities of wrong judgments 
(Casella & Berger, 2001; Gibbons & Chakraborty, 2003). The GF (Wiemer & Wyss, 2000) and NLI (Tormann 
et al., 2014) methods provide a strong joint underestimation of Mc and b, no matter how large a sample is 
(Figures 1a–1d), whereas the MBS (Woessner & Wiemer, 2005) method may strongly overestimate Mc (Fig-
ures 1e and 1f). These inefficiencies of catalog and tested-based models examined here may be ascribed to 
several reasons.

•  First, the GF, NLI, and MBS methods do not clearly define the reference hypothesis to the test, which 
should be a precise statement about data, without doubts on its definition. The GF and NLI meth-
ods check the empirical GRL (Equation 1) but adopt the MLexp method to estimate b, implying the 
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Figure 5. Time analysis of b values, for the source region of the Amatrice and Norcia mainshocks, by using all 
methods discussed in the text. The red (gray) points indicate the b values significantly (not significantly) different 
from the reference (background) b-value. The vertical solid gray lines represent the times of the Amatrice and Norcia 
earthquakes. The gray shaded areas show the 99% confidence bound of the aleatory b-values uncertainty.
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equivalence between the empirical GRL and H0, in facts. The MBS method checks a general “stability” 
of b-values, without any further specification of a reference hypothesis to test

•  Second, any statistical test requires the definition of the acceptance/rejection regions. These are the com-
plementary intervals in which the test statistic, that is a representative summary of data, is consistent/
inconsistent with the null hypothesis. The acceptance regions of catalog-based tests are: (a) [90% 100%], 
for the statistic R of GF test; (b) [0 1], for the NLI statistic of NLI test, and (c) (0 ∞) for the EMBS statistic of 
MBS test (see Appendix A). However, no quantitative explanation for these choices is given and values of 
R, NLI, and EMBS are not indicative of the reliability of GRL/H0. Similarly, the choice of minimizing the 
KS distance, chosen by the KS-Clauset&al method, as well as the significance level equaling 0.2, chosen 
by the KS-Corral&al method, are somewhat arbitrary. Under the hypothesis H0, none of these definitions 
are justified, as shown in Figure 6. The statistic R of GF method is partially lower than 90%, for complete 
Dc datasets, above MT = 0 and N < 200, and systematically above 90%, for large incomplete Dinc catalogs, 
above MT = μ = 0.4 (Figure 6a; see also Woessner & Wiemer, 2005). Similarly, and even worse, NLI values 
may be well lower than one for incomplete large Dinc samples (Figure 6b), and EMBS is systematically neg-
ative for Dc data sets, with N > 500 (Figure 6c). The variable ΔDKS = DKS(MT)−   KSargminM M ii T D M  is 
positive for both Dc and Dinc samples (Figure 6d), showing that the criterion used by Clauset et al. (2009) 
to select Mc was unfounded. Finally, the p-values pDSK of observing DKS(MT) span the whole probability 
range from 0 to 1 (Figure 6e), also for Dc samples, showing that the threshold of 0.2, fixed by Corral and 
colleagues (Corral & González, 2019), is unjustified

•  Finally, none among GF, NLI, MBS, KS-Clauset&al, or KS-Corral&al tests allowed choosing and varying 
a significant level (i.e., the probability of make errors in judgments), as should be done in any statistical 
test (Casella & Berger, 2001; Gibbons & Chakraborty, 2003)
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Figure 6. Plot of the key parameters, used by previously published methods to select Mc, versus the sample size N, for 
simulated complete Dc (magnitudes above MT = 0) and incomplete Dinc (magnitudes above MT = μ = 0.4) databases. 
(a) Plot of R statistic (Equation A1) of GF test; (b) Plot of NLI statistic of NLI test (see Appendix A); (c) plot of EMBS 
variable (see Appendix A) for the MBS tests; (d) plot of the ΔDKS variable for the KS-Clauset&al test (see Appendix B 
and the main text for details); (e) plot of probabilities pDKS for the KS-Corral&al test (see Appendix B). MBS, Mc by 
b-value stability; NLI, Non Linear Index test.
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The importance of placing the GRL estimation question into a statistical testing framework is proven by the 
fact that the KS-Clauset&al and KS-Corral&al methods (Clauset et al., 2009; Corral et al., 2011) significantly 
improve the Mc and b estimation on simulations. The new method proposed here, the ND test, follows what 
done by Clauset et al. (2009) and Corral et al. (2011), but overcomes their limitations, placing the problem of 
Mc evaluation into a full statistical testing framework, without arbitrariness. Bootstrapping is not used here 
as a way of characterizing Mc uncertainty (Corral & González, 2019; Woessner & Wiemer, 2005), but as a 
measure of reliability in assessing Mc: in this view, the chosen value of Mc is requested to reach the (1−α)% 
confidence level of the empirical distribution of bootstrapped Mc, where α is the pre-fixed significance level 
of the test. This formulation of the problem seems to be successful on both simulated and real data. Among 
the methods compared here, only the ND test provides results for simulations fully in agreement with the 
aleatory uncertainties.

The example of Central Italy sequence shows that the ND test may provide results which are significantly 
different from both catalog and test-based methods, proving that the significance of b-value variations de-
pends on the suitability of adopted method. This result opens a new perspective on the debate about the 
significance of b-value variations and, most of all, on the potential of b-value variations as an earthquake 
precursor (Brodsky, 2019; Dascher-Cousineau et al., 2019; Gulia & Wiemer, 2019; Helmstetter et al, 2003; 
Hiemer & Kamer, 2015; Mignan, 2014; Wiemer & Wyss, 1997).

7. Conclusions
The following main conclusions can be drawn from the present study:

•  Statistical testing is the most widespread, natural and rigorous strategy for dealing with issue of b-value 
and Mc estimations and the assessment of their variations

•  The published methods discussed here were not fully placed in a statistical test context and, therefore, 
their technical and predictive skills remain controversial

•  The ND test was fully placed into a statistical testing framework and improve the performance of previ-
ously published methods on both simulated and real data

Appendix A: The Catalog-Based Methods
The Goodness of Fit (GF) test (Wiemer & Wyss, 2000) is evaluated by a parameter R, which is the absolute 
difference of observed (Oi) and expected (Ei) numbers of events above each magnitude bin
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The expected rates Ei are given by the empirical Gutenberg-Richter Law (Equation 1) and the MLexp b-value 
estimator b (Equation 3). The completeness magnitude Mc is estimated as the first magnitude cutoff above 
which the observed data have a log-linear behavior, that is, where R reaches a prefixed threshold of 90% or 
95%.

The Non Linear Index (NLI) test (Tormann et al., 2014) judges the linearity of a sample based on MLexp 
b-value estimates, b. It starts at a magnitude defined by the Maximum Curvature (MAXC) method (Wiemer 
& Wyss, 2000) and increases up to the highest magnitude above which at least 50 events are still observed. 
If five or more b-value estimates can be calculated by this definition, NLI is computed as the ratio of the 
standard deviation of these b-value estimates divided by the largest individual uncertainty in the single 
b-value estimates ( b, Equation 4; Shi & Bolt, 1982). Mc is the lower magnitude cutoff for which NLI ≤ 1.

The Mc by b-value stability (MBS) method (Cao & Gao, 2002; Woessner & Wiemer, 2005) is based on the 
assumption that b-value estimates ascend for cutoff magnitudes smaller than Mc and remain constant for 
larger magnitude thresholds. In the original version of the MBS method (Cao & Gao, 2002), Mc is defined 
as the magnitude for which the change in MLexp b-value estimates b (Equation 3), between two successive 
magnitude bins, is smaller than 0.03. Later, Woessner and Wiemer (2005) found this criterion to be unsta-
ble and proposed a new criterion, based on b-value uncertainty  b (Equation 4; Shi & Bolt; 1982). For a 
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magnitude binning δM = 0.1 and a window length ΔM = 0.5, Mc is, then, defined as the first magnitude at 

which EMBS =  b−|bave– b(Mc) | ≥ 0, where   


  

Δ

ave Δ

Mc M

M Mc
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M
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Appendix B: The Test-Based Methods
The Clauset et al. (2009) method consists of estimating the exponent of a power law as a function of cutoff, 
and then, in choosing the couple of parameters that minimize the KS distance, Dmin. Finally, a p-value, that 
is the probability that power-law data have a minimum KS distance larger than Dmin, is computed, to test 
the inferred distribution on data. This probability is computed by applying the same fitting procedure, as the 
one applied on empirical data, to Monte Carlo simulations (see Clauset et al., 2009 for details).

In the particular case of the GRL inference and a geometric distribution (Equation 5) for magnitudes above 
Mc, the KS distance is given by

     
    KS geoma | ˆxM Mc j E jjD Mc F M b F M (B1)

where Fgeo and FE are the geometric and empirical cumulative distribution functions for magnitudes.

The Clauset et al. (2009) method estimates Mc (and therefore b) as the magnitude value that minimizes DKS:
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A drawback of the Clauset et al. (2009) method is that the authors do not provide any explanation for why 
this should work, as recognized by Corral and colleagues (Corral et  al,  2011; Corral & González,  2019; 
Deluca & Corral, 2013). Moreover, this method does not take into account the sample size, on which the KS 
distance depends, to compute the p-value of the test (Deluca & Corral, 2013; Gibbons & Chakraborty, 2003). 
To overcome these limitations, Corral and his colleagues developed an alternative method to estimate pow-
er law functions, still based on the KS distance (Corral et  al,  2011; Corral & González,  2019; Deluca & 
Corral, 2013). Mc is estimated as the lower value for which the probability pDSK to observe the computed KS 
distance is almost equal to 0.2 (Corral & González, 2019). The theoretical distribution of the KS distance is 
obtained by applying all steps (fit of b and calculation of KS distance with the new value of b) on simulated 
samples, with the same size as the empirical sample.

Data Availability Statement
Italian earthquake data were made available by the Bollettino Sismico Italiano (INGV) at http://terremoti.
ingv.it/en/bsi
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