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Abstract

Effective early-warning, response and information dissemination for earthquakes 
and tsunamis require rapid characterization of an earthquake's location, size and 
other parameters.  This characterization is mainly provided by real-time 
seismogram analysis using established, rule-based, seismological procedures.  With 
the advent of powerful machine learning (ML) tools to make predictions from large 
data sets with little or no rule-based knowledge, a basic question for earthquake 
monitoring is how ML performs to detect and characterize general earthquakes 
using short, single-station seismogram waveforms?  

To investigate this question, we adapt a ML, deep convolutional neural network 
(CNN) for local earthquake detection and epicentral classification using single 
station waveforms (Perol et al., 2018) to form ConvNetQuake_INGV, a CNN to 
characterize earthquakes at any distance (local to far teleseismic). 
ConvNetQuake_INGV operates on 50sec, 3-component, broadband, single-station 
waveforms to detect seismic events and obtain binned, probabilistic estimates of 
the distance, azimuth, depth and magnitude of the event.  The best performance of 
ConvNetQuake_INGV is obtained using a last convolutional layer with fewer nodes 
than the number of output classifications, a form of “information bottleneck”. 

ConvNetQuake_INGV can detect and characterize earthquakes over a broad range 
of distances and magnitudes, but errors can be large and there are indications of 
overfitting of the CNN training data.  We find weak evidence that the CNN is 
performing more than high-dimensional regression and pattern recognition, and is 
generalizing information or “learning”, to provide useful predictions for new events 
represented by little or no training data.

ConvNetQuake_INGV, though not yet a practical monitoring tool, allows 
investigation of the performance of CNN and ML in general for rapid, automated, 
earthquake detection and characterization using short, single-station waveforms. 
We expect that real-time ML procedures like ConvNetQuake_INGV, perhaps 
incorporating rule-based knowledge, will ultimately prove valuable for rapid source 
characterization of earthquakes for earthquake response and tsunami early 
warning.
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1 Introduction

There is increasing demand for earthquake and tsunami early warning and for rapid 
earthquake characterization to allow immediate mitigation actions, to aid in 
emergency response, and to provide public information (Allen and Kanamori, 2003; 
Weber, E., et al., 2007; Tsushima et al., 2011; Newman et al., 2011; Bernardi et 
al., 2015).  Currently, this characterization is mainly provided by real-time analysis 
of seismogram waveforms using empirical and physics rule-based procedures based 
on over a century of seismological study (Melgar et al., 2016; Lomax and Michelini, 
2012; Allen et al., 2009).  The increasing availability of machine learning (ML) tools 
to make predictions from large and complex data sets with little or no rule-based 
knowledge (e.g Mehta et al., 2018) has lead to application of ML to a wide variety 
of waveform based earthquake monitoring problems (e.g., Wang and Teng, 1995; 
Gentili and Michelini, 2006; Russell et al., 2010; Ruano et al., 2014; Michelini and 
Lomax, 2017; Rouet-Leduc et al., 2017; Perol et al., 2018; Ross et al., 2018).  One 
of the most general ML approaches is the deep learning, convolutional neural 
network (CNN; LeCun et al., 2015; Goodfellow et al., 2016; Mehta et al., 2018; 
Perol et al., 2018) which represents relations between input, intermediate and 
output quantities as a large network of simple multiply and add operations.  A basic 
question for earthquake monitoring is how might a CNN performs to detect and 
characterize earthquake location and magnitude when operating directly on short 
time windows of single-station seismogram waveforms that have only minimal, 
basic pre-processing?

Advantages of the CNN for seismogram waveform analysis are 1) the CNN can 
operate directly on the waveforms, with little pre-processing and without feature 
extraction such as energy detection, time-series transformation, or frequency-
domain analysis, 2) the CNN architecture is shift invariant and so not sensitive to or 
dependent on the time position of features such as P and S wave arrivals in the 
waveform, and 3) unlike standard regression, the CNN is not limited by assumed 
and simplified mathematical relations between quantities.  These characteristics of 
the CNN help simplify and generalize the CNN algorithm, reduce the number of 
algorithm parameters and, in principle, increase the range of event distances and 
sizes for which the algorithm is valid.    However, the CNN does not make explicit 
use of existing, physics-based or empirical seismological knowledge of relations 
between earthquake sources and seismic waveforms, such as attenuation, S-P time 
difference, seismic travel-times, wave polarization angles, or synthetic waveform 
modeling.  This raises questions on the efficiency and accuracy of the CNN 
approach, and also if the CNN can “learn”, in some sense, any of this knowledge or 
remains effectively a high-dimensional regression and pattern recognition 
procedure.

Perol et al. (2018) intorduce ConvNetQuake, a CNN for local, microseismic 
earthquake detection and location using single station waveforms.  They show that 
a CNN operating on 10sec, 3 component, 100Hz, normalized broadband waveform 
segments from individual stations can detect and classify the epicentral location of 
nearby earthquakes, outperforming other methods for waveform-based event 
detection, including waveform matching techniques (Gibbons and Ringdal, 2006; 
references in Perol et al., 2018).  They also show that ConvNetQuake performs well 
in detecting events whose waveforms are dissimilar to any in the CNN training data 
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set; this “generalization” of detection ability suggests a possible “learning” of 
general features of seismogram waveforms for events in the study area.

Here we adapt the procedures and code of Perol et al. (2018) to form 
ConvNetQuake_INGV, a CNN to detect and determine the location and magnitude 
of global earthquakes at any distance (local to far teleseismic) over a large range of 
magnitudes using single station waveforms.  ConvNetQuake_INGV is trained with 
50sec, 3 component, 20Hz, broadband waveforms from all stations within the 
regional, MedNet network (Mazza et al., 2008) to: 1) detect seismic events, and 2) 
obtain binned, probabilistic estimates of the distance, azimuth, depth and 
magnitude of an event.  We examine 1) how well the trained ConvNetQuake_INGV 
can detect and characterize earthquakes over a large range of distances and 
magnitudes, and 2) if the CNN is performing more than a high-dimensional 
regression and is generalizing information or “learning”, so that useful predictions 
are obtained for events in regions with little or no training data.  

This implementation ConvNetQuake_INGV is not proposed as a practical tool for 
earthquake monitoring, but instead to enable an initial investigation of the 
performance of CNN and ML in general for rapid, automated, earthquake detection 
and characterization.

2 The ConvNetQuake_INGV algorithm

ConvNetQuake_INGV, derived from ConvNetQuake (Perol et al., 2018), 
implements a CNN to detect earthquake events and determine their location and 
magnitude.  ConvNetQuake_INGV is trained through supervised learning using 
waveform windows containing a diverse set of known event and noise waveforms.

For ConvNetQuake_INGV, we modify the procedures and codes of Perol et al. 
(2018) and develop new tools to retrieve events, and noise and event waveforms 
from FDSN web-services [www.fdsn.org/webservices].  For details see (E) sections 
S1, S2 and S3 available in the electronic supplement to this article.

Event and waveform data

3-component (BHZ/N/E) waveforms which span the distance, azimuth, depth and 
magni tude range o f target events for app l icat ion o f the t ra ined 
ConvNetQuake_INGV are obtained using random events and stations for training 
and validate data sets, and for all available stations and random events for a test 
data set.  Noise waveforms are extracted in time windows between random, 
consecutive events.  Each waveform is labelled with binned classifications for: event 
or noise, station-event distance (0-180°), station-event azimuth (0-360°, 10° 
step), event magnitude (0-10, 0.5mu step) and event depth (0-700km).  The bin 
steps for distance and depth increase geometrically to give higher weight and 
precision to nearer and shallower events.  (E) Table S1 listing the binned, target 
labels is available in the electronic supplement to this article.

Waveform quality control and pre-processing includes: 

1. checking that event waveforms have signal-to-noise ratio (SNR) greater than 
a specified threshold, and that noise waveforms have SNR less than a 
specified threshold,
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2. trimming event waveforms to start 5 sec before the predicted P arrival time 
(using the ak135 model) and event and noise waveforms to a 50 sec total 
window length,

3. normalizing to the global maximum of all 3 traces, store the normalization 
value,  stream_max, to aid in CNN magnitude estimation.

Figures 1 shows examples of noise and event waveforms.

(a)
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(b)

Figure 1. Examples of (a) noise waveforms and (b) event waveforms before  
normalization

The use in ConvNetQuake_INGV of a window length of 45 sec after the predicted P 
arrival entails that only waveforms for stations within about 3.5° (about 400km) of 
an event will contain S waves.  The vast majority of regional waveforms will contain 
only the P wave and following P coda phases, while the teleseismic waveform signal 
will typically be dominated by the direct arriving P pulses and possibly following 
phases such as pP, sP, PcP and PP.  Presumably, using longer records of many 
minutes which contain the S wave would greatly improve the ConvNetQuake_INGV 
distance estimation, but there is little practical use for single-station earthquake 
characterization after more than a few minutes.

Neural Network Architecture

The CNN architecture for ConvNetQuake_INGV (Figure 2) is similar to that of 
ConvNetQuake (Perol et al., 2018): an input layer with 3 components of normalized 
noise or event waveforms of 1000 samples (features), a feed-forward stack of 9 
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convolutional layers each with 32 CNN channels and half the number of features as 
the preceding layer giving a last set of 64 nodes (32 channels * 2 features), and 1 
fully connected layer derived from a flattened copy of the last convolutional layer. 
Additionally, in ConvNetQuake_INGV, the normalization factor for the traces, 
stream_max, is appended to the fully connected layer to provide amplitude 
information for magnitude classification.  The final layer contains 1 “no event” 
node, 50 distance nodes, 20 magnitude nodes, 20 depth nodes, and 36 azimuth 
nodes, for a total of 127 nodes.

Note that the last convolutional layer has fewer nodes than the final classification 
layer, which produced smoother results and much less overfitting than did networks 
with fewer convolutional layers and 128 or more nodes in the last convolutional 
layer ((E) section S2).

Each channel of the 9 convolutional layers is obtained by convolving the channels of 
the previous layer with a bank of linear 1D filters, summing, adding a bias term, 
and applying a point-wise nonlinearity through a rectified linear (ReLU) activation 
function (Mehta et al., 2018).  The softmax function  (Mehta et al., 2018) is applied 
to the output fully connected layer class scores to obtain a properly normalized 
probability distribution over classification bins.  See Perol et al. (2018) for more 
details and mathematical definitions of these operations.

According to Perol et al. (2018), the use of small filters (with kernel size 3) between 
convolutional layers means that the first layers respond to localized, higher 
frequency features in the waveforms, while the deeper layers gain an exponentially 
increasing receptive field over the input signal and respond to broader, longer 
period features.  The fully connected layer allow the network to combine multiple 
parts of the signal such as P and S waves to generate a class score and allows 
detection of events independently of their position within the waveform window. 
Thus the convolutional layers effectively perform a frequency analysis of the 
waveform, while the fully-connected layer applies a temporal analysis.
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Figure 2. Network Architecture. The final architecture for ConvNetQuake_INGV 
differs from ConvNetQuake in that it has a flattened layer with 65 features  
(including stream-max value) and a final fully connected layer containing 127 “no  
event”, distance, magnitude, depth and azimuth classifications.

For training, ConvNetQuake_INGV uses an L2-regularized cross-entropy loss 
(misfit) function and the Adam Optimizer algorithm, as in ConvNetQuake (Perol et 
al., 2018; Mehta et al., 2018; Kingma and Ba, 2017).

Overfitting is a major problem for regression and learning algorithms, such as CNN, 
with a large number of coefficients, since any data set is necessarily finite and 
usually small relative to ideal data sets spanning the full, true data space (Mehta et 
al., 2018).  During training, an efficient ML algorithm may first under-fit (estimate 
similar class values for many waveform samples) with relatively large error, then, 
as training proceeds, provide better and better fit with smaller error.  Ultimately, 
this process can lead to overfitting (fitting of details and noise in the training 
samples), and not to fitting general features of the data that would give good 
performance for new data.  Overfitting can be identified by applying a trained CNN 
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to a test data set that has not been used for training or for validation (iteratively 
assessing the training results and modifying the CNN parameters).  In the case of 
ConvNetQuake_INGV, overfitting may be indicated by high-probability, outlier 
classification of distance, azimuth, depth or magnitude bins far from the true test 
event values and often towards classifications corresponding to high training event 
density.

3 Application to local, regional and global events

Training

We train ConvNetQuake_INGV using 15200 event (Figure 3) and 10724 noise 
waveforms from MedNet stations (BHZ/N/E components) for events from 2010-
2018 from 0-180° with the following lower magnitude limits as a function of event 
epicentral distance:

M≥3.0 Δ≤2°

M≥4.0 2°<Δ≤20°

M≥5.0 20°<Δ≤70°

M≥6.0 70°<Δ≤180°
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(a)

(b)   (c)

Figure 3. Training event data set (2010-2018): (a) Event epicenter map showing  
events (red dots), event heat (density) map and MedNet stations (black dots). (b)  
Magnitude distribution. (c) Depth distribution.

The training ran for over 1M steps, and required around 1.5 days using a CPU (4-
core, 3.5 GHz Intel Core i7).

Figure 4 shows the evolution of detection, distance, azimuth, depth and magnitude 
accuracy and overall loss during training.  The detection accuracy (correct 
detections / total number of events and noise waveforms; Goodfellow et al., 2016) 
rises quickly in training and reaches close to 1.0 after around 100-200K training 
steps.  The accuracy for distance, azimuth, depth and magnitude, which only 
quantify if predicted classifications are exactly the same as the true class, rise at 
lower rates and towards lower asymptotes than detection accuracy.  

2018.10.01   Earthquake characterization using a single station and a CNN 9/25



  

Figure 4. Evolution of accuracy and L2-regularized, cross-entropy loss during 
training plotted as a function of training step up to around 1M steps.  Accuracy is  
the ratio of number of correct classifications to the total number of input data (all  
waveforms for detection, event waveforms otherwise).

The training loss (Figure 4) is the sum of L2-regularized cross-entropy losses for 
distance (including correct or incorrect detections), and for azimuth, depth and 
magnitude (ignoring noise events).  The training loss decreases asymptotically 
during training.

The validation data set consists of 1773 event waveforms and 1198 noise 
waveforms, selected as for training but not used in training.  Figure 5 shows scatter 
diagrams for the validation data set of predicted versus true classification values for 
distance, depth, magnitude and azimuth.  Overall the predictions match well the 
true values, though there are erroneous results for distance at greater than about 
5°, and for many values of azimuth and depth.  Similar diagrams for the training 
data set ((E) Figure S1) shows very good agreement between predictions and true 
classification values, indicating that the ConvNetQuake_INGV training is able to fit 
the training data nearly perfectly but also may be indicating overfitting.
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Figure 5. Predicted vs true validation data set (2010-2018) classification results for  
distance, depth, magnitude and azimuth, after training for 500k steps. Predicted 
and true (target) values are perturbed randomly within their respective bins to 
avoid overlapping data points and aid in visualization of spatial density of points.  
For distance, few scattered points along the predicted (false positive) and target  
(missed events) axes show the high accuracy of detection (scatter points near the  
origin).

Results on independent test event data

The following presents results for test events from 2009, which were not used for 
training or validation.  The test data set consists of 1003 event waveforms and 621 
noise waveforms from MedNet stations (BHZ/N/E components) from 2009 at 0-
180° distance with the following lower magnitude limits as a function of event 
epicentral distance:

M≥4.0 Δ≤2°

M≥5.0 2°<Δ≤20°

M≥6.0 20°<Δ≤50°

M≥6.5 50°<Δ≤180°
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Figure 6 shows the geographic and magnitude distributions of the 2009 test event 
set.  For each event, all available MedNet station traces which satisfy the waveform 
quality control were used as test data.

(a)

(b)  (c)

Figure 6. Test event data set (2009): (a) Event epicenter map showing events (red 
dots), event heat (density) map and MedNet stations (black dots). (b) Magnitude 
distribution. (c) Depth distribution.

ConvNetQuake_INGV trained with 500k steps is applied to the test events from 
2009.  Figure 7 shows the predicted vs. true classification results for the 2009 test 
data set.  These results are similar to, but notably more scattered than the 
validation results (Figure 5).  It is likely that the test events, drawn from a time 
window not in the training data, contain few waveforms similar to those in the 
training data, while the validation events, drawn from the same time window as the 
training data, include many aftershock, swarm and other events with waveforms 
similar to those in the training data.  Thus ConvNetQuake_INGV may not generalize 
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well to event waveforms that are not well represented in the training data set, and 
is not likely to perform better on future event waveforms than on the test data set.

Figure 7. Predicted vs true classification results for the test data set (year 2009;  
999 event waveforms and 623 noise waveforms) for distance, depth, magnitude  
and azimuth, after training for 500k steps.  Predicted and true (target) values are  
perturbed randomly within their respective bins to avoid overlapping data points  
and aid in visualization of spatial density of points.  For distance, few scattered  
points along the predicted (false positive) and target (missed events) axes show  
the high accuracy of detection (scatter points near the origin).

We consider performance measures (Goodfellow et al., 2016) for the 2009 test data 
set after 500k training steps.  The detection accuracy (correct  detections / total 
number of events and noise waveforms) is 0.87, the detection precision (number of 
correct event detections / total number of predicted event detections) is 0.97, the 
recall (number of correct event detections / total number of events) is 0.81, and 
the F1 statistic (2 * precision * recall / (precision * recall)) is 0.88.  These statistics 
suggest a good to very good event detection performance for ConvNetQuake_INGV. 
We do not analyze results for the test data set after 1M training steps because they 
showed slightly worse accuracy and precision, and more high-probability outlier 
classifications (evidence of overfitting) than after 500k steps.
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Figures 8 show plots of distance-azimuth bin (epicenter) softmax probabilities, and 
magnitude and depth histograms with comments for selected test events.  The
complete set of results for the 2009 test event results are available (E) as plot files 
and as interactive html source files in the electronic supplement to this article.

[NOTE: for publication, all Figure 8 captions will be grouped together  
separate from the figure panels.]

Figure 8. Epicenter, magnitude and depth results after 500k training steps with  
qualitative assessment of event constraint. Shown for each event: Epicenter  
probability map (left) with true epicenter (red circle), stations with available  
waveforms (green circles), predicted epicenter probability for station distance-
azimuth bins (blue patches; patch intensity shows relative probability; grey line  
connects to corresponding station). Histograms over all stations of predicted,  
relative probabilities for magnitude (middle) and depth (right) from all stations; red  
bar on the left of each histogram shows true magnitude (middle) and depth (right).

(a)

(a) Moderately well constrained local/regional event: epicenter, magnitude and  
depth are moderately well constrained around the true values.

(b)

(b) Well constrained local/regional event: epicenter, and depth are well constrained  
around the true values for most stations, with outlier results for a few stations.  
Magnitude is moderately well constrained.
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(c)

(c) Poorly constrained, local/regional event: epicentral distance, azimuth and depth  
are poorly constrained around the true values, while magnitude is moderately  
constrained.  High relative probability distance-azimuth outlier bins far from the  
epicenter and with large azimuth error, the high relative probability for epicenters  
around Iran/Afghanistan (likely a result of the high training event density in this  
area, see Figure 3a), and high probabilities for shallow depth while the true depth  
is intermediate at 100km, are indications of overfitting.

(d)

(d) Poorly constrained, far regional event: epicentral distance and magnitude are  
poorly constrained around the true values, while azimuth is moderately well  
constrained, and event depth is well constrained.  Moderate relative probability  
distance-azimuth outlier bins far from the epicenter in areas of high training event  
density (see Figure 3a) are indications of overfitting.

(e)
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(e) Moderately constrained, intermediate depth, far-regional event: azimuth is well  
constrained, depth and magnitude are moderately well constrained around the true  
values, distance has poor constraint)  The high relative probability for epicenters  
towards and around Indonesia, partly due to the high training event density in this  
area (Figure 4a), is an indication of overfitting.

(f)
(f) Moderately constrained teleseismic event: distance, magnitude and depth are 
well constrained near the true values, azimuth is poorly constrained.  The high 
relative probability for epicenters biased towards Japan, likely a result of the high 
training event density around Japan (Figure 4a) and of weak azimuth constraint, is 
an indication of overfitting.  Higher probability epicenter bins with too-large 
distance, but correct azimuth in the southwest Pacific may be due to a combination 
of overfitting and a real similarity in P waveform for this event and events at far 
teleseismic distances.

(f)

(f) Well constrained teleseismic event: distance, azimuth, magnitude and depth are  
well constrained around the true values but there are some outliers.

Analysis of epicentral errors

An analysis of the error in epicenter estimates for the test event data set provides a 
more quantitative assessment of ConvQuakeNet_INGV and helps understand if it is 
performing more than a high-dimensional regression and may be extrapolating 
information and “learning” from the training data set.  We use an extended set of 
4074 test events from 2007-2009, selected otherwise with the same criteria as for 
the 2009 test data.

2018.10.01   Earthquake characterization using a single station and a CNN 16/25



Figure 9 shows distance and azimuth mis-location errors for individual station 
distance-azimuth estimate for the 2007-2009 test events after 500k training steps. 
A plot of distance error vs. event distance (Figure 9a) shows an overall increase in 
distance error with distance up to around 30° true epicentral distance, and similarly 
distributed distance errors at greater distances.  The variation in error at all 
distances is large, over an order of magnitude, but the majority of distance errors 
are the same or smaller than the true event distance except at very small distances 
and around 3.5-40°. A sharp and strong increase in maximum error beyond about 
3.5° indicates reduced distance accuracy when there is no S arrival in the waveform 
window (beyond about 3.5° or 400km, where the S onset is about 40 sec after the 
P arrival).  The larger errors around 3.5-40° may also be related to the complexity 
of the first 45 sec of regional waveforms consisting of P and P coda waves strongly 
affected by the Mohorovicic discontinuity and upper mantle phase triplications (Bai 
and Kennett, 2001).

(a)  ( b )

(c)

Figure 9. Errors analysis for 2007-2009 test events for individual station  
waveforms.  Point size shows relative probability for the corresponding station  
distance-azimuth bin. (a) (b) Green, red and blue points show stations at less than  
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3.5°, 3.5-30°, or greater than 30°, respectively from the true epicenter. (a)  
Distance error (difference between predicted and true station epicentral distance)  
for individual stations as a function of true epicentral distance. (b) Relative distance  
error (distance between predicted and true epicenters for individual stations / true  
epicentral distance) as a function of station training event density around true  
epicenter (Equation 1).  (c) Station to event azimuth error (difference between  
predicted and true azimuth) as a function of epicentral distance; green, red and  
blue points show stations at less than 3.5°, 3.5-80°, or greater than 80°,  
respectively from the true epicenter.

Another way to examine the epicentral errors is with regards to the density, ρ, of 
training events near each test event, here defined as a Gaussian-blur, distance-
weighted sum over all training events, i,

ρ=∑i
e−Δi

2/ 2σ2 , (1)

where Δ is the distance between the training event, i, epicenter and the test event 
epicenter, and σ is 1/20 the mean over the epicentral distances for all stations 
providing waveforms for the event.

A plot of relative distance error as a function of training event density ρ (Figure 9b) 
shows a mild, overall reduction of distance error with increasing ρ, showing that 
more training data provides more constraint in fitting nearby test events.  However, 
there is an indication of increased relative distance error for epicentral distances < 
30° at low training event density (ρ < ~6), possibly related to the complexity and 
variability of  local and regional waveforms.

A plot of azimuth error vs. event distance (Figure 9c) shows reduced error for true 
epicentral distances between about 5-80°.  At the lower end of this range, the lack 
of S arrivals in the waveform window may aid in azimuth determination on the first 
P pulse, while beyond 10-20° the initial teleseismic P waveform can have a 
relatively simple form (Bai and Kennett, 2001) with well defined P polarization 
azimuth.  There is decreasing constraint on azimuth with increasing distance since 
the P wave incidence angle at the station steepens and signal amplitude on the 
horizontal components decreases.  This decreasing constraint would explain the 
apparent increasing azimuth error from about 20-80deg, while the lack of direct P 
after 90-100° and very steep incidence for PKP beyond about 140° would explain 
the jump to large azimuth errors beyond ~80°.

Large azimuth error at the smallest distances (< ~2°) may be the result of local 
event waveform variability, where the signal is dominated by S waves whose 
polarization is mainly dependent on source mechanism and crustal structure, and 
not station to epicenter azimuth.
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4 Discussion

We have introduced and analyzed a CNN (ConvNetQuake_INGV) in order to explore 
the potential of ML to use single station seismograms for event detection and for 
predicting event distance, azimuth, depth and magnitude for earthquakes at local, 
regional and telesiesmic distances.

After training, ConvNetQuake_INGV performs very well for the training data set, as 
is to be expected, and performs well for the validation data set, but this data spans 
the same time range as the training data and may include similar waveforms.  The 
performance with the more independent test data set is most important, as it 
indicates the likely performance of ConvNetQuake_INGV on waveforms for future 
events.

For the 2009 test data set ConvNetQuake_INGV performs very well for event 
detection, and shows moderately good overall performance for predicting event 
distance, azimuth, depth and magnitude for the test data set.  But single station 
results often show large error in predictions, so the current configuration and 
training of ConvNetQuake_INGV is not yet a practical tool for application to future 
event waveforms.

Evidence of possible overfitting the training data is shown by:

1. Larger number of incorrect predicted vs true classification values for the 
validation dataset relative to the training dataset, and for the test dataset 
relative to the validation dataset.

2. Results for individual events for the test datasets often show relatively high 
probability for outlier classification bins far from the true values; outliers 
often occur in areas with a high density of training events.

3. The test data results after 1M training steps show more high-probability 
outlier classifications than after 500k steps.

If ConvNetQuake_INGV is generalizing beyond the information in the training data 
set through interpolation and “learning” of waveform characteristics that determine 
event distance, azimuth, magnitude and depth, then application of 
ConvNetQuake_INGV to waveforms from new and future events can provide useful 
characterisation of the events.

We look for evidence of generalization by examining test events (Figure 7a) for 
which the training event density (Figure 4a) is very low.  For such test events it is 
unlikely that a good determination of distance, azimuth, magnitude or depth by 
ConvNetQuake_INGV is due to effective direct matching of the test waveforms to 
training event waveforms.  The evidence (Figure 10) is mixed, as it shows good 
constraint on depth for shallow events (but most training events are shallow), 
moderate to poor constraint on magnitude, and mixed constraint on distance and 
azimuth, with clear outliers related to high training event density and CNN 
overfitting.  There is clearly some generalization of the determination of event 
parameters, but overall the results for test events in regions with few training 
events are not as well constrained as many other test events.

[NOTE: for publication, all Figure 10 captions will be grouped together  
separate from the figure panels.]

2018.10.01   Earthquake characterization using a single station and a CNN 19/25



Figure 10. Epicenter, magnitude and depth results for test events in areas of low  
training event density.  Results after 500k training steps; see Figure 8a for caption  
details.

(a)

(a) Results for this event show poor distance constraint around the true value,  
moderate definition of the correct event azimuth, and outlier epicenter bins with  
high relative probability are in areas of high training event density (Figure 4a) such  
as Alaska, Kamchatka and SW Pacific.  Magnitude and depth are well constrained  
around the true values.

(b)

(b) Distance is poorly constrained with low probability around the true values and  
high-probability outliers, azimuth and magnitude are poorly constrained and depth  
is well constrained.
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(c)

(c) Azimuth is moderately constrained around the true value, distance and  
magnitude are poorly constrained, though several moderate probability distance-
azimuth bins group around the true epicenter.

(d)

(d) Very deep event. Azimuth is moderately constrained around the true values,  
distance, magnitude and depth are very poorly constrained.

The issues of overfitting, generalization and learning are important.  The incorrect 
classification results and weak evidence of generalization may be due to the well 
known instability of CNN's with respect to small variations in input data (Szegedy et 
al. 2013; Rosenfeld et al. 2018).  This instability may be a limitation or challenge in 
the application of CNN to highly variable and noisy data such as short waveforms 
for general earthquakes.

ConvNetQuake_INGV has a last convolutional layer with fewer nodes (64) than the 
final classification layer (127); this architecture produced smoother results and 
much less overfitting than did networks with fewer convolutional layers.  This result 
corresponds to the concepts of “information bottleneck” (Tishby and Zaslavsky, 
2015) and “minimal representation” of data (Iten et al. 2018) in neural-networks, 
where the optimal architecture includes layers with as simple as possible a 
structure to carry compactly all relevant information in the input data needed to 
constrain the output quantities.

Further development and study of ConvNetQuake_INGV or other related ML 
methods might involve specially selected training and test data sets.  For example, 
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training data sets excluding events with specific parameters intervals, such as a 
distance range, would allow evaluation if the ML method can correctly recover the 
true parameter values for test events with parameters within these intervals. 
Detailed examination of local event data sets where the S arrival is always present 
in the waveform window (stations within about 3.5° or 400km for maximum S 
onset within 40 sec after the P arrival) would show if ML methods can accurately 
recover the relation between S-P time and epicentral distance, as is suggested by 
the analysis of epicentral errors in Figure 9.

5 Conclusions

Though ConvNetQuake_INGV is not yet a practical monitoring tool, it allows 
investigation of the performance of CNN and ML in general for rapid, automated, 
earthquake detection and characterization using short, single-station waveforms.  

ConvNetQuake_INGV can detect and characterize earthquakes over a broad range 
of distances and magnitudes, but characterization errors can be large and there are 
indications of overfitting of the CNN training data.  There is weak evidence that the 
CNN is performing more than high-dimensional regression and pattern recognition, 
and is generalizing information or “learning”, so that useful predictions are obtained 
for new events in regions with little or no training data.

The performance of ConvNetQuake_INGV was improved by using a last 
convolutional layer with fewer nodes than the number of output classifications. 
This architecture may efficiently compresses and transmits relevant information in 
the input data that best constrains the output quantities.

We expect that real-time ML procedures like ConvNetQuake_INGV, perhaps in a 
hybrid form incorporating empirical and physics rule-based knowledge, will  
ultimately prove valuable for rapid source characterization of earthquakes for 
earthquake response and tsunami early warning.

6 Data and resources

The ConvNetQuake_INGV software is open-source and avai lable at 
https://github.com/alomax/ConvNetQuake_INGV. 

Seismograms were obtained using the Federation of Digital Seismograph Networks 
(FDSN) Web Services of INGV at http://cnt.rm.ingv.it/webservices_and_software 
(last accessed August 2018)

Event meta-data used in this study were obtained using the FDSN Web Services of 
the IRIS Data Management Center at www.iris.edu (last accessed August 2018)

The ConvNetQuake software was obtained from 
https://github.com/tperol/ConvNetQuake (last accessed August 2018).   
ConvNetQuake_INGV uses ObsPy (Beyreuther et al., 2010; Lion et al., 2015; 
http://obspy.org) for waveform retrieval and processing, and TensorFlow (Abadi et 
al. 2015; https://www.tensorflow.org last accessed September 2018) for CNN 
implementation, running and analysis.
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