
Geophys. J. Int. (2020) 222, 1090–1092 doi: 10.1093/gji/ggaa225

Erratum

Erratum: On seismic ambient noise cross-correlation and
surface-wave attenuation

by Lapo Boschi ,1,2,3 Fabrizio Magrini ,4 Fabio Cammarano4 and Mark van der
Meijde 5
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Upon numerical testing of our earlier theoretical results, we found a trivial algebraic error in Boschi et al. (2019), that had an impact on
the numerical results published in that article. In the following, we describe the error and summarize the corrections that should be applied
to the results.

Eq. (A20) in Boschi et al. (2019) is obtained by inverse Fourier transforming iω (with i denoting the imaginary unit, and ω frequency)
to the time domain; it is implied that the inverse Fourier transform of iω is δ

′
(t), where δ

′
is the derivative of the Dirac delta function, and t

is time. However, based on the definition of Fourier transform given by Boschi & Weemstra (2015) and employed throughout Boschi et al.
(2019), the inverse Fourier transform of iω is

√
2πδ′(t). (This can be proved, for example, by replacing f(t) with δ

′
(t) in the definition of

Fourier transform, eq. (B1) of Boschi & Weemstra (2015), and applying the properties of δ
′
(t).) In other words, Boschi et al. (2019) have

neglected a factor
√

2π that should appear at the right-hand sides of eqs (A20), (A21) and (A22).
In section 2.2, eq. (A22) was used in the derivation of eq. (16), which, as a result, also lacks a factor

√
2π at the left-hand side, i.e. it

should be replaced by

2
√

2παωc

P

∫
R2

d2x Gd
2D(x, xA, ω)Gd∗

2D(x, xB, ω) = −�[Gd
2D(xA, xB, ω)], (1)

where Gd
2D is the “damped” Green’s function of Boschi et al. (2019), α the attenuation parameter as defined by Boschi et al. (2019), P a

constant factor accounting for the physical dimensions of Gd
2D , c denotes phase velocity, and x, xA, xB are positions in space.

The error propagated to eq. (22) and, through the subsequent derivation, to eq. (30); the latter should be replaced by

s(xA, ω)s∗(xB, ω)

< |s(x, ω)|2 >x
≈ c

πω I (α, ω, c)
J0

(
ω|xA − xB |

c

)
e−α|xA−xB |

α
, (2)

where s(x, ω) is the Fourier transform of the signal recorded at a location x; the average of its power-spectral density, <|s(x, ω)|2 > x, is
computed over all available receivers. J0 denotes the zeroth-order Bessel function of the first kind (e.g. Boschi & Weemstra 2015). The
cost functions C1, C2 and C3 derived on the basis of eq. (30) also need to be corrected accordingly. (It is worth mentioning, on the other
hand, that the derivation of eq. (28) in Boschi et al. (2019) does not rest on eq. (A22), and is therefore, to the best of our knowledge,
error-free.)

As a result, the multiplicative factor relating normalized cross correlation to damped Bessel function, shown in Fig. 17 of Boschi
et al. (2019), must be divided by

√
2π ; it is then found to have values ranging between about 1.2–1, and very close to 1 at most

frequencies.
Models α(ω) derived by Boschi et al. (2019) also need to be corrected. Because we consider the cost function C3 to be more

effective than C1 and C2 at constraining α, we recomputed C3 from the data of Boschi et al. (2019), after correcting its formula as
follows,

C3(α,ω) =
∑
i, j

w(|xi − x j |)
∣∣∣∣∣env

[
s(xi , ω)s∗(x j , ω)

< |s(x, ω)|2 >x

]
− env

[
ci j (ω)

πωI [α(ω), ω, ci j (ω)]
J0

(
ω|xi − x j |

ci j (ω)

)
e−α|xi −x j |

α

]∣∣∣∣∣
2

, (3)

where the indexes i, j refer to different stations in the array, env[. . .] denotes the envelope function, the interstation-distance-dependent weight
w(|xi − xj|) = |xi − xj|e and e is the Euler number.The results of this exercise are shown in Figs 1 and 2; we find the most probable values of
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Figure 1. Cost function C3(α, ω) shown (after normalization) as a function of attenuation parameter and frequency. We normalize C3 according to the formula
C3(α,ω)−min[C3(α,ω)]

max[C3(α,ω)]−min[C3(α,ω)] , where min [C3] and max [C3] denote the minimum and maximum values of C3 for all sampled values of α and ω. A red curve marks
the values of α for which C3 is minimized at each frequency. The stepwise trend of the minima of C3 is correlated with the stepwise growth (also as a function
of ω) of the number of station pairs for which cross-correlation data are available. This figure replaces Fig. 14 of Boschi et al. (2019).

Figure 2. Comparison of normalized data (red lines) and model (blue), i.e. left- and right-hand side of eq. (2), after substituting the values of α(ω) that
minimize C3 (Fig. 1). Panels a, b, c and d correspond to station pairs UT.006-UT.009, UT.002 - UT.004, IV.AGLI-IV.DGI and UT.002-UT.003 (Boschi et al.
2019), respectively, with interstation distances decreasing from 231 to 57 km. This figure replaces Fig. 16 of Boschi et al. (2019).

α to be on the order of 10−6-10−5, and rarely larger than 10−5, in the period range 2-10 s. this is almost an order of magnitude smaller than
the values found by Boschi et al. (2019), but close to the majority of independent estimates made in different areas of the globe (e.g. Mitchell
1995; Harmon et al. 2010; Lawrence & Prieto 2011; Lin et al. 2011; Romanowicz & Mitchell 2015).

In a new study by our team that is currently in preparation, eq. (28) of Boschi et al. (2019) and eq. (2) from this study are both validated
numerically; synthetic tests show that, after correcting the errors, attenuation models α(ω) can be retrieved successfully through the inversion
procedure described by Boschi et al. (2019).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/222/2/1090/5849501 by guest on 08 February 2021



1092 Erratum

R E F E R E N C E S
Boschi, L. & Weemstra, C., 2015. Stationary-phase integrals

in the cross-correlation of ambient noise, Rev. Geophys., 53,
doi:10.1002/2014RG000455, 411-451.

Boschi, L., Magrini, F., Cammarano, F. & van der Meijde, M., 2019. On
seismic ambient noise cross-correlation and surface-wave attenuation,
Geophys. J. Int., 219, 1568–1589.

Harmon, N., Rychert, C. & Gerstoft, P., 2010. Distribution of
noise sources for seismic interferometry, Geophys. J. Int., 183,
1470–1484.

Lawrence, J.F. & Prieto, G.A., 2011. Attenuation tomography of the western
United States from ambient seismic noise, J. Geophys. Res., 116, B06302.

Lin, F.-C., Ritzwoller, M.H. & Shen, W., 2011. On the reliability of attenua-
tion measurements from ambient noise cross-correlations, Geophys. Res.
Lett., 38, L11303.

Mitchell, B.J., 1995. Anelastic structure and evolution of the continental
crust and upper mantle from seismic surface wave attenuation, Rev. Geo-
phys., 33, 441–462.

Romanowicz, B.A. & Mitchell, B.J., 2015. Deep earth structure: Q of the
earth from crust to core, in Treatise of Geophysics, Second Edition, pp.
789–827, Elsevier, Amsterdam.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/222/2/1090/5849501 by guest on 08 February 2021

http://dx.doi.org/10.1002/2014RG000,455
http://dx.doi.org/10.1093/gji/ggz379, 2019
http://dx.doi.org/10.1111/j.1365--246X.2010.04,802.x

