
Geophys. J. Int. (2020) 222, 1379–1389 doi: 10.1093/gji/ggaa233
Advance Access publication 2020 May 31
GJI Seismology

Rapid prediction of earthquake ground shaking intensity using raw
waveform data and a convolutional neural network
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S U M M A R Y
This study describes a deep convolutional neural network (CNN) based technique to predict
intensity measurements (IMs) of earthquake ground shaking. The input data to the CNN model
consists of multistation, 3C acceleration waveforms recorded during the 2016 Central Italy
earthquake sequence for M ≥ 3.0 events. Using a 10 s window starting at the earthquake
origin time, we find that the CNN is capable of accurately predicting IMs at stations far
from the epicentre which have not yet recorded the maximum ground shaking. The CNN
IM predictions do not require previous knowledge of the earthquake source (location and
magnitude). Comparison between the CNN model predictions and those obtained with the
Bindi et al. GMPE (which requires location and magnitude) shows that the CNN model
features similar error variance but smaller bias. Although the technique is not strictly designed
for earthquake early warning, we find that it can provide useful estimates of ground motions
within 15–20 s after earthquake origin time depending on various setup elements (e.g. times
for data transmission, computation, latencies). The technique has been tested on raw data
without any initial data pre-selection in order to closely replicate real-time data streaming.
When noise examples were included with the earthquake data the CNN was found to be stable,
accurately predicting the ground shaking intensity corresponding to the noise amplitude.

Key words: Europe; Neural networks fuzzy logic; Time-series analysis; Waveform inversion;
Earthquake early warning; Earthquake ground motions.

1 I N T RO D U C T I O N

Rapid assessment of earthquake generated ground motions is a
fundamental task of earthquake monitoring to provide information
crucial to disaster response and public information. In recent years,
rapid analysis has become of primary importance since advances
in communication technology and the advent of social media have
enabled public dissemination of (near) real-time information on
events and their associated impact. To meet this challenge and to
mitigate the impact of earthquakes, the seismological community
has developed a number of earthquake early warning (EEW) sys-
tems (e.g. see Allen et al. 2009; Satriano et al. 2011 for reviews;
Minson et al. 2018). These EEW systems are designed to detect
earthquakes very rapidly (in a few seconds) and to provide early
warning on the impending ground motion at selected target points.
EEW systems are developed as regional EEW systems (e.g. Kohler
et al. 2017) or on-site EEW systems (e.g. Spallarossa et al. 2019).

On a longer timeline than conventional EEW, the ShakeMap soft-
ware (Wald et al. 1999) was developed with the primary purpose

of providing accurate maps of strong ground motion. These maps,
typically available within 5–10 min after an earthquake, allow dis-
aster risk managers (DRMs) to make preliminary assessments of
the shaking impact. ShakeMap generates maps of ground shak-
ing using earthquake source parameters (location, magnitude and
the finite fault if available), intensity measurements (PGA, PGV,
etc.), ground motion models (GMMs) and Vs30 maps as a proxy
to account for site amplifications. Ground motion interpolation is
performed at points of the map which do not have ground motions
recorded (e.g. Worden et al. 2018). The ShakeMap software has not
been designed for EEW—typically shakemaps become available
only when the first location and magnitude estimation are avail-
able. However, the ShakeAlert system for EEW in the western U.S.
has been recently upgraded to include the determination of ground
motion using the same region-specific ground-motion prediction
equations that are used by ShakeMap implementations in Califor-
nia, Oregon, and Washington (Given et al. 2018). In general, the
time required to produce the first shakemaps depends on several
factors such as data availability, and transmission and processing
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latencies, and the map accuracy depends on the density of the sta-
tions and on the quality of the data available (e.g. for the 2016
Central Italy M = 6 August 24 main shock, the first ShakeMaps
were provided 6 min after origin time; Faenza et al. 2016).

In this study, in an effort to quantify as quickly as possible the
level of ground shaking in a given area, we aim at predicting very
rapidly the ground shaking intensity at a predefined set of seismic
stations within a given seismic area by using a machine learning
(ML) approach. The idea is to use waveforms up until only a few
seconds after origin time when only a few nearby stations have
recorded the first P waves to predict the ground shaking intensity
at more distant stations. The proposed technique does not require
knowledge of the source parameters and it utilizes only a training
set of earthquake waveforms recorded at a pre-configured network
of recording stations. Implementation of the technique could be
valuable when seeking a few seconds of warning to issue alerts for
critical infrastructure points for potential failure such as highway
or high velocity railways bridges, gas-pipelines, industrial plants
handling high risk and polluting chemicals, hospitals or schools.

We use the information contained in the recorded waveforms
by adopting a convolutional neural network (CNN) model to pre-
dict intensity measurements (IMs) at distant stations using only the
initial N seconds after the origin time of the recordings at nearby
stations. This implies that, depending on the value of N, the source
receiver-geometry, and the duration of strong motion, waveforms
for stations near the epicenter may contain the signal correspond-
ing to their maximum (labelled) IM, whereas the waveforms for
more distant stations may end before the seismogram peak value is
reached. The assumption is that the CNN model will be able to learn
from the patterns of signal and noise across the input vector (i.e.
relative amplitudes of the waveform signal in the window), and be
able to make predictions on the maximum level of ground motion
at the farther stations that have not yet recorded the peak ampli-
tude values. The characteristics of the seismic wave arrivals across
the input vector (i.e. the network waveform pattern) are informing
the CNN model about the earthquake characteristics (e.g. location,
magnitude, etc.), which the model then can use to learn a kind of
locally calibrated GMPE, directly from the observed data. Though
this approach may not compete with the rapidity of an EEW system,
it is expected to provide predictions of the ground motions similar
or better to those obtained using EEW techniques and possibly the
very first shakemaps, but at an earlier time.

While ML techniques have been used in seismology for almost
three decades (e.g. Chiaruttini et al. 1989; Dysart & Pulli 1990),
they have become more intensively used only in recent years (for
more details see the reviews by Kong et al. 2018 and Bergen et al.
2019). ML has been applied to numerous problems: fast magnitude
determination (e.g. Ochoa et al. 2018), ground motion prediction
from source parameters (e.g. Alavi & Gandomi 2011; Derras et al.
2014), earthquake detection (e.g. Reynen & Audet 2017; Mousavi
et al. 2019, Rojas et al. 2019), insight into physics of labquakes
(Hulbert et al. 2019) and many other seismological applications. A
specific type of ML modelling technique, the CNN, has been used
widely for waveform analysis. A CNN is a type of artificial neural
network which uses convolutions as the fundamental building block
for learning proper feature extraction, coupled with the potential for
modelling highly non-linear classification/regression interactions
between the variables. Perol et al. (2018) used a CNN to detect and
locate earthquakes, by working directly on the seismic waveforms,
without feature extraction. Similarly, Lomax et al. (2019) used a
CNN for single-station, earthquake location, magnitude and depth
determination from local to teleseismic scale lengths. Zhu & Beroza

(2018) used a CNN to determine P- and S-wave arrival picks, also
by analysing single-station seismic waveforms. Mousavi & Beroza
(2020) designed a network that consists of convolutional and re-
current layers for magnitude estimation. Kriegerowski et al. (2018)
created an earthquake location algorithm, by applying a CNN for
analysing multistation (10 stations) waveforms of clustered earth-
quakes. The successful applications of CNNs cited here, and the
problem analysed in Kriegerowski et al. (2018), which is similar to
the problem we address (analysis of multistation waveforms), shows
that CNN modelling is a viable approach for analysing multistation
waveforms towards rapid and accurate IM predictions.

2 DATA

The input data used in this study consist of three-component earth-
quake waveforms data from the 2016 Central Italy sequence (Chiar-
aluce et al. 2017) recorded by 39 stations in the epicentral area and
its surroundings. The data set has been selected because of the dense
network of stations in the area, the large number of earthquakes and
the importance of the sequence from the seismological perspective.
We use earthquakes in the study area bounded by latitude [42◦,
43.75◦] and longitude [12.3◦, 14◦] which occurred from 1 January
2016 to 29 November 2016. All the events occur within crustal
depths in the range 1.6 km < D < 28.9 km. Using these criteria,
915 earthquakes with magnitude M ≥ 3 have been used (Figs 1
and 2). In the same study area there are 86 recording stations from
the networks IV and XO available. In this study, we have selected a
subset of 39 stations, which had at least 700 earthquakes recorded on
the station (Fig. 3). The selected stations were all belonging to the IV
network. Together with the event data, we have also selected 1037
examples of noise data, recorded from 30th August to 30th Septem-
ber 2016 recorded at all the selected stations. The criterion adopted
for selecting the noise data consisted of windowing the continuous
waveforms with a start time at least 180 s after and 20 s before
the origin time of any earthquake in the area, available in INGV
earthquake catalogue. The waveform data were downloaded using
the INGV FDSN web services for HN∗ (acceleration) and HH∗
and EH∗ (velocity) channels, where ∗ ∈ [E,N,Z]. The data were
processed to remove the instrument response. Velocity data were
differentiated to acceleration. When necessary, the data have been
resampled to 100 Hz. For M < 4 earthquakes, the HH and EH chan-
nels were used after differentiation and for earthquakes with M ≥ 4.0
the HN channels were used. This criterion avoided possible signal
saturation and the use of true acceleration recordings for the larger
magnitude earthquakes. If the velocimeter data were not available at
one station with a colocated accelerometer, the latter recording was
used. For certain stations and for some earthquakes, the waveform
data were completely missing and it was chosen to fill them with
zeros. To this regard, there are different ways of filling missing data
in ML (Garca-Laencina et al. 2010) and we chose to adopt zeroes
as a natural way of applying the station dropout technique with the
expectation of improving the generalization properties of the model
(similar to Kriegerowski et al. 2018). The earthquake recordings
are missing randomly only for the earthquakes which occurred after
the Amatrice August 24th M 6.0 main shock. The 125 earthquakes
that occurred before the Amatrice earthquake were not recorded by
the temporary stations which were installed immediately after this
event, so for those stations the data are not missing randomly.

All data have been extracted using a 50 s window starting at
origin time. We use origin time as a convenience for aligning the
waveforms. In practice, however, any reference time before the
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Figure 1. Blue points represent earthquake epicenter locations, stars represent the three largest events of the 2016 Central Italy sequence and the light grey
triangles represent stations.

first recorded P wave at the first recording station could be used
instead. Data that started more than 0.1 s (178 cases) after origin
time have been manually inspected, and the faulty ones (instrument
malfunctioning; 24 cases) were removed. Those that were retained
(154 cases) were prepended with zeros between origin time and the
start of data.

The target data consisted of the IMs associated with each record-
ing: peak ground acceleration (PGA), peak ground velocity (PGV),
spectral acceleration (SA) at 0.3, 1 and 3 s periods. The outputs of
our model always need to have the dimensions (39.5), regardless of
the number of stations for which we have the data. To fill the missing
target data (i.e. missing true IMs values) in the training process we
use predictions calculated using USGS ShakeMap software, with
the latest configuration for Italy (Michelini et al. 2019), since hav-
ing an estimate of ground motions at the stations with missing data
is more representative of real rapid response or EEW application,
as opposed to predicting zeros or some randomly sampled value.
ShakeMap predictions are also used in the test data set to assess
model performance for the stations which had no true IM values
recorded. ShakeMaps have been calculated using the IMs from all
available stations. This approach, however, can introduce some error
since the ShakeMap prediction may be incorrect given the uncertain-
ties in the estimation of the ground motion. We note, however, that
Michelini et al. (2019) have shown that nearly no systematic bias
in the prediction of the maximum IMs was observed with the new
ShakeMap configuration giving us good confidence that the values
inserted as target values are statistically relevant. The target data
for the noise waveforms were the maximum amplitudes recorded at
the station inside the window used as input. In the case of missing
inputs in the noise waveforms, the target has been set to zero.

3 M E T H O D A N D T R A I N I N G

The ML model adopts a CNN developed using Keras (see Data and
Resources). Input to the model is a combination of all the waveform
data (all 39 stations) for a given earthquake (Fig. 4), for an input
array size (39, N, 3), where 39 is the number of stations, N is the
number of samples (with a sampling rate of 100 samples per second)
and 3 is the number of components. The ordering of the stations is
always preserved. All the waveform data for each earthquake start
at the event origin time. The data are normalized by the input max-
imum (i.e. the largest amplitude observed across all stations within
the time window), and this maximum is saved as the normalization
value which is later inserted into the network. It is recommended to
normalize the input data for improved CNN performance (LeCun
et al. 2012). However, we note that it is important to retain the
maximum amplitude of the input waveforms since they are crucial
to accurately predict the target peak IMs To overcome these limi-
tations we normalize the input waveform by it’s maximum value,
and insert the normalization value into the last fully connected layer
(following Lomax et al. 2019). In order to verify the effectiveness
of our normalization schema, we compared the training performed
using the (i) non-normalized inputs, (ii) normalized inputs without
retaining maximum amplitude information and (iii) normalized in-
puts with the insertion of the maximum amplitude value into the
last fully connected layer. The latter approach was found to produce
the best CNN model results in terms of the averaged fivefold mean
squared error of the CNN model. The outputs are arrays of size
(39,5), where 39 is the number of stations, and 5 is the number of
predicted IMs per station. The base-10 logarithm has been applied
to all the IMs (i.e. log10IM).
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Figure 2. Earthquake-magnitude distribution of the selected earthquakes.

Figure 3. Stations used, with colours showing the number of earthquakes recorded per station. The circles represent the approximate travel times of direct P
arrivals using Vp = 5.5 and Vs = 3.2 of the biggest event in sequence (M 6.5 2016/10/30; shown with a star). Earthquakes as light grey points.
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Figure 4. Non-normalized input example. Orange vertical lines show the trace peak value. Green vertical lines show the end of the 10-s window.

The CNN model architecture is based on Kriegerowski et al.
(2018) with minor modifications (Fig. 5). The first two convolutional
layers, having 32 and 64 filters, respectively, have filter kernels
with height of 1 and width of 125 and 250, respectively, whose
purpose is to learn the temporal patterns station by station. The third
convolutional layer, having 64 channels and kernels with height 39
and width 5, gathers the cross station information. The first two
convolutional layers have the stride (1,2), and the third layer has
the stride (39,5). The last convolutional layer is then flattened and
concatenated with the normalization value of the input, and then
fed to a fully connected layer. Finally, the last fully connected layer
produces an array of size (39,5) with continuous values inside.
The ReLU activation function, a = max(0,x), has been used in
all layers, except the last layer in which linear activation has been
used. L2 regularization has been applied to the convolutional layers
with a regularization rate of λ = 10−4. Furthermore, a 40 per cent
dropout rate has been applied before the last fully connected layer
(Goodfellow et al. 2016). The data had been split randomly into
training (80 per cent) and test (20 per cent) subsets. For evaluation
of the performance of the CNN model fivefold cross-validation
has been used, which splits the randomly permuted data set into 5
equally sized disjunct subsets, and uses each of them as the test
set to the model trained on the remaining 4 subsets. The batch size
used for optimization was 5, and the mean squared error (MSE)
function was used as the loss function in the model. Hyperparameter
values for model optimization were based on Kriegerowski et al.
(2018) with minor modifications. The model was trained for 12
epochs (the training history plot is shown in Fig. S5 of the electronic

supplement). The training took approximately 3 min on an Nvidia
GTX 1060 6GB for a 10 s input window.

4 R E S U LT S

4.1 Window length

In the first part of this study, we explored the window length after
the origin time needed to make reliable predictions of the maxi-
mum values of the IMs We used window lengths of 7, 10 and 15 s.
The results are shown only for PGA (Fig. 6), as other IMs follow
similar trends. For the 7 s window, the MSE of the residuals be-
tween the base-10 logarithms of observed and predicted values [i.e.
log10(IMtrue/IMpredicted)] was 0.228. For the 10 s window, the MSE is
reduced to 0.176, and for the 15 s window, the misfit was further re-
duced to 0.165. A significant drop in performance is thus occurring
for shorter windows.

The vertical stride of the observed values at approximately −0.9
derived from the occasional bad input waveforms (examples in the
Figs S1 and S2 in the electronic supplement). In what follows, we
adopt a 10 s window as a good compromise between accuracy of
the predictions and the timeliness.

4.2 Model performance

The performance of the CNN model has been evaluated using five-
fold cross-validation. The results from all five test sets were then
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Figure 5. The architecture of the CNN model used. Boxes shaded yellow represent filter banks and operators, whereas boxes shaded green represent activations.
Parenthesized vectors denote the dimensions of the outputs in question (height, width and depth).

averaged, and are presented next. The target values are the recorded
IMs (93 per cent), and the ShakeMap predictions of IMs that were
used when no recordings were available (7 per cent). The resid-
uals [log10(IMobs/IMpredicted)] have been calculated together with
their mean, median and standard deviation. Large residual values
[log10(IMobs/IMpredicted >|1|)] were removed resulting in 87.49 per
cent of the data kept for the ShakeMap predictions and 92.00 per
cent for the observed IMs Table 1 and Fig. 7 show the performance
of the CNN model on the observed values, along with the ShakeMap
predictions.

As noted above, the ShakeMap predictions are used for the train-
ing set when no observed data are available, and the input is set to a

zero value time series. In this regard, we find it notable the capacity
of the adopted CNN algorithm to learn how to treat those stations
that occasionally may be missing data and the target value consists
of the ShakeMap predictions. In general, a slight positive bias in
the CNN predictions of IM values is observed, indicating that the
CNN model is slightly underpredicting the observed values with
the exception of the ShakeMap predicted SA(3.0).

To test the CNN model performance against a baseline case, we
compare our results to the predictions obtained using the GMPE by
Bindi et al. (2011) calibrated for Italy. For the IM predictions using
Bindi et al. (2011), we used the INGV catalog magnitude and loca-
tion (see data and resources) and the IM predictions are corrected
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Figure 6. Log10(PGAobseved) versus log10(PGApredicted) for different time window lengths: (a) 7 s length, (b) 10 s length and (c) 15 s length. The units are
log(m s–2).

Table 1. IM residual statistics log10(IMobserved/IMpredicted) for the CNN predictions for the observed IMs (for the stations having recorded data) and ShakeMap
predictions (for the stations that had no recorded data). The last three columns show the values obtained using the Bindi et al. (2011) GMPE to estimate the
IMs

IM Observed Observed Observed ShakeMap ShakeMap ShakeMap GMPE GMPE GMPE
median mean STD median mean STD median mean STD

PGA 0.038 0.035 0.346 0.059 0.038 0.372 0.013 0.017 0.352
PGV 0.036 0.034 0.338 0.043 0.041 0.380 − 0.174 − 0.151 0.33
SA(0.3) 0.031 0.031 0.34 0.056 0.046 0.37 − 0.284 − 0.252 0.359
SA(1.0) 0.029 0.034 0.338 0.001 0.017 0.374 − 0.207 − 0.198 0.303
SA(3.0) 0.019 0.027 0.374 − 0.037 − 0.012 0.404 0.026 0.083 0.368

Figure 7. Boxplots for the residuals log10(IMobserved/IMpredicted): (a) CNN model results for the observed IMs, (b) CNN model results for the ShakeMap
predicted IMs and (c) GMPE results.

appropriately using the station EC8 site classes. No between-event
correction (Al Atik et al. 2010), however, has been applied when
predicting the ground motion using the GMPE by Bindi et al. (2011).
The outliers have been discarded using the same criteria used earlier
which left us with 90.3 per cent of the data. For the CNN model
performance, only the results obtained for the observed IM values
are significant. The residuals log10(IMobserved/IMpredicted) have been
calculated for the results obtained with the GMPE model, in the
same way as for the CNN model.

The mean, median and standard deviation of the differ-
ences between the logarithms of observed and predicted values,

log10(IMobserved/IMpredicted), for the CNN and the GMPE models are
reported in Table 1 and they are shown in Fig. 7. We find that the
median values of log10(IMobserved/IMpredicted), which are an expres-
sion of the model bias, are significantly reduced in the CNN model,
especially for PGV, PSA(0.3) and PSA(1.0), yet they are slightly
higher for PGA. Concerning the standard deviation, we find that
the values are comparable for the two models, and are in agreement
with those reported by Bindi et al. (2011) who reported a standard
deviation between 0.34 and 0.38 log10(IMobserved/IMpredicted).

The variation of the residuals with magnitudes (shown in Fig. S6
of the electronic supplement) shows that the bias of the residuals
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[log10(IMobs/IMpredicted)] increases with magnitude, that is that the
CNN model is underpredicting the values for the larger magnitudes.
This is to be expected, given the large imbalance in the magnitudes
of the training examples (Fig. 2). In contrast, the variations of the
residuals with epicentral distance (shown in Fig. S7 of the electronic
supplement) show no clear trend.

When applied to the three largest events in the sequence (using
fivefold cross-validation), with magnitudes of M = [5.9, 6.0, 6.5],
the CNN model performance deteriorates (Fig. 8), compared to the
model performance on events with smaller magnitude. These re-
sults are due to the unbalanced dataset with few training examples
at large magnitude (Fig. 2), which makes learning at larger mag-
nitudes difficult. More specifically, the poor performance for the
M 6.0 event can be also attributed to the use of only 24 station
waveforms in the input data, as no temporary stations had yet been
installed in the area before the 24 August 2016, M 6.0 main event.
This same reasoning, however, does not hold for the performance
differences between the M 6.5 and M 5.9 events (33 and 35 stations,
respectively) with the former one performing much more poorly
than the latter. One possible and partial explanation for this perfor-
mance disparity could be ascribed to the difference in the pattern
of the input waveforms (Figs S3 and S4). Since the M 5.9 event is
located to the north where there is a larger number of stations, this
event features more stations with ‘significant’ earthquake P wave
(or even S wave for the nearest ones) signal information within the
10 s window when compared to the M 6.5 earthquake. However,
given that these are only two examples, it’s hard to make a quantita-
tive analysis that would confirm all the points discussed here. More
in general terms, the rather poor predictive performance observed
for the M 6.0 and M 6.5 earthquakes derives primarily from the lack
of earthquake waveform data at the larger magnitudes. We have also
trained the CNN model only on the events before the Amatrice M
6.0 earthquake (388 events), and then tested it on the Amatrice M
6.0 earthquake and the events that happened after (528 events). We
found that the CNN model performs worse than the model trained
on the complete dataset, especially for larger values of IMs This
mainly can be explained by the low number of events available for
training, and partly also by the 125 events for which the 9 temporary
stations were missing. In Figs S8(a) and (b) of the electronic sup-
plement a comparison between the number of station waveforms in
the inputs and the performance of the CNN model predictions has
been shown. When the comparison is done on the residuals of the
CNN model predictions and observed PGA targets, increasing the
number of station waveforms in the inputs reduces bias and has no
clear effect on the standard deviation. When the same comparison
is done on the residuals calculated with ShakeMap predicted tar-
gets, there is also a bias reduction, and no clear trend in standard
deviation.

4.3. Including noise examples in the data

It is important to evaluate the CNN model performance in the pres-
ence of noise-only data, to understand the model performance if
used on real-time streamed data, without an earthquake detector
paired to the CNN model. For noise-only data the predicted IM’s
should reflect the maximum noise level of the input waveforms at
each station. We added 1037 examples of the noise data to both the
training and the test subset, and again we used the maximum PGA
of the input waveforms as the training and test target variables. The
results (Fig. 9) show that the CNN model is also able to predict
the target IMs of the noise data reasonably well. The target data for

the non-existing noise waveforms (for which inputs are filled with
zeros) are zero, and they are not shown in the plot.

5 D I S C U S S I O N

In this study, we have shown that a CNN model can be used to
accurately predict earthquake IMs at recording stations using only
raw, multistation waveforms with a 10 s time window starting at
the earthquake origin time. That is, from the very first recordings at
stations near the epicenter, it is possible to predict accurately the IMs
at farther stations that have not yet recorded the earthquake signal
or its maximum values. To this end, we exploit the 3C station data
(i.e. waveforms) and the pattern of the waveforms of the recording
network without any knowledge concerning the earthquake location
or magnitude. The output targets, the 5 different IMs, are estimated
by the CNN model for all the 39 stations as a regression problem.
This is similar to a GMPE model where the input parameters are
the direct ground motion observations from the network of stations
(i.e. the pattern of waveform ground motion), instead of earthquake
source and station site parameters.

Input data consist of the recorded acceleration waveforms, while
the target variables are PGA, PGV and SA at 0.3, 1 and 3 s periods.
The CNN model generally performs equally well regardless of the
IM type. As expected, model performance improves when longer
time windows (e.g. 15 s time windows) are used as input.

Because of the Gutenberg-Richter distribution of earthquake
magnitudes, our data set is severely unbalanced with a much larger
frequency of smaller events than larger ones. As shown in Fig. 8,
this makes it difficult to predict the IMs of larger events. A pos-
sible solution to this problem could follow from the use of data
augmentation (e.g. Chollet 2018) by introducing more training data
for the larger magnitudes after applying random transformations to
the existing larger events. Another alternative can consist of cal-
culating synthetic seismograms at the same recording stations for
additional (hypothetical) larger events in the same area. Another
approach towards mitigating problems due to small data sets is the
use of transfer learning methods (Pan and Yang 2010.). These meth-
ods allow the CNN model to subspecialize by training on a smaller
data set, using a pre-trained model which was previously trained
on a larger data set. Following Chollet (2018), we could even use
a training network developed elsewhere and for different purposes,
but with a very large data set, and use it to our goal of IM prediction.
Similarly, the network developed in this study could be adopted as a
pre-trained model for other areas where IM predictions are required.

To test the methodology, we have used raw waveforms without
any preliminary data cleaning, in order to simulate real-time analysis
where missing or erroneous data due to equipment malfunctioning
or data transmission problems is common. To compensate for these
deficiencies, we found that replacing missing data with zero val-
ues and the adoption of ShakeMap predicted target data values is
suitable to ensure that the target data exist for all cases during learn-
ing. We have shown that by adopting this strategy, the CNN model
is still capable of predicting the IMs fairly accurately. In practice,
this is somewhat similar to applying the station dropout technique
(Kriegerowski et al. 2018) to the training procedure. We have found
that the CNN model was able to accurately predict the ground mo-
tions at the stations with missing data, albeit with a slightly lower
accuracy when compared to the IMs of the stations which have no
missing data. This all suggests that the CNN model is able to learn
the seismic wave propagation characteristics and can compensate
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Figure 8. Log10(PGAobseved) versus log10(PGApredicted) for the three largest events in the sequence(using 10 s waveforms). The vertical stripe visible at
approximately −0.9 log10(PGAobseved) results from data logger equipment malfunctioning

for the presence of missing data when using imperfect target data,
like the ShakeMap predictions, for learning.

To verify the predictive performance of our CNN model, and
compare it against the results of a more conventional way of pre-
dicting the IMs, we have used the GMPEs proposed by Bindi et al.
(2011) which are adopted in the configuration of the ShakeMap for
Italy (Michelini et al. 2019) to predict the IMs at our selected sta-
tions. The results shown in Fig. 7 indicate the CNN model to be su-
perior in terms of IM residuals. This follows from (i) the CNN model
being independent of earthquake magnitude uncertainties (i.e. no
need for between-event correction terms), (ii) our source-receiver
geometry featuring similar wave paths within a rather small area,
and all earthquakes occurring approximately in the same source
region and (iii) the ability of the CNN model to capture local site
anomalies and compensate for them. We note that these points are
all taken into account by CNN modelling procedure automatically
by learning directly from the 3C waveforms.

As noted above, the earthquakes used in these experiments are
concentrated spatially which significantly reduces the variability at
a given station resulting from different paths, and this may be one of
the main reasons for the good quality of the results obtained. We are
confident, however, that by using a bigger data set, with the different
spatial distribution of epicenters, the CNN model will likely be able
to learn the path and site characteristics of each station and for each
zone where the earthquakes occur. This aspect will be addressed in
future studies encompassing larger areas and data sets.

Our results with earthquake and noise only data (Fig. 9), have
shown that the methodology is capable to predict the ground motion
adequately. This fact combined with the translational invariance
characteristics of convolutional neural networks suggest that the

technique could be used in a real-time setup with data streamed
continuously to predict the IMs seamlessly at farther stations as
the earthquake nearest stations start recording the first earthquake
generated signals.

6 C O N C LU S I O N S

A CNN model has been used to predict IMs (PGA; PGV; PSA
0.3 s, 1 s, 3 s) with satisfying accuracy adopting multistation, 3C
10 s window waveforms starting at origin time. The waveforms
come from a data set recorded by 39 stations from a set of 915
earthquakes with M ≥ 3.0 and 1037 only noise examples, for a total
of 33 855 earthquake waveforms, and 40 443 noise waveforms.

The IM predictions do not require previous knowledge of earth-
quake location, distance and magnitude. When using longer time
windows the performance of the CNN improved but the selected 10 s
window of our setup appears to be a good compromise between ac-
curacy and timeliness. No feature extraction or pre-processing was
to be applied on the data because CNN models do it automatically.
The performance of the CNN model does not depend on the IM
type.

We have found that the CNN model was able to predict with
satisfying accuracy the IMs for stations which had no input data
when training. Comparison between the CNN results and those ob-
tained with the Bindi et al. (2011) ground motion model, calibrated
with earthquakes in Italy, has shown that the CNN model does not
suffer from prediction bias while exhibiting similar variance of the
residuals.

The performance of the CNN model degrades for large mag-
nitudes (M > 5) because of the small number of earthquakes (5)
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Figure 9. Log10(PGAobseved) versus log10(PGApredicted) for training with noise and event data. The vertical stripe visible at approximately −0.9
log10(PGAobseved) results from data logger equipment malfunctioning.

available for training. We have also observed that the CNN model
performs well when noise-only data were included in the data set.
These results indicate that the proposed analysis could be imple-
mented in a real-time analysis configuration. Although the technique
is not strictly designed for earthquake early warning, we found that
it could provide useful estimates of ground motions within 15–20 s
after the earthquake origin time depending on the data transmission
infrastructure, latencies and processing time requirements.

The study uses a specific set of stations and earthquakes con-
centrated spatially and it could be applied to larger areas with more
widespread seismicity as long as enough data are available for train-
ing. The main purpose of this study was to show that the technique
can provide quite satisfactory results in terms of predicted ground
motion only by learning patterns of multistation 3C waveforms.

7 DATA A N D R E S O U RC E S

Earthquake catalogue and waveform data have been downloaded
through the INGV FDSN web services (http://terremoti.ingv.it/en/w
ebservices and software; INGV Seismological Data Centre 2006;
Emersito Working Group 2018). Waveforms have been downloaded
and processed using python library Obspy (Beyreuther et al. 2010).
IMs for the stations with no data have been calculated using USGS
ShakeMap 4 (http://usgs.github.io/shakemap/sm4 index.html). The
CNN model has been developed using the Keras Python Deep
Learning library (Chollet et al. 2015). The code and the data of
this paper will be available on https://github.com/djozinovi/CNNpr
edIM.
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Supplementary data are available at GJI online.

Figure S1. Bad earthquake data.
Figure S2. Bad earthquake data.
Figure S3. Waveforms for M = 5.9 earthquake. Green is the 10-s
marker and orange the PGA marker.
Figure S4. Waveforms for M = 6.5 earthquake. Green is the 10-s
marker and orange the PGA marker.
Figure S5. Training and test loss during the training epochs.
Figure S6. Variation of residuals with magnitude.
Figure S7. Variation of residuals with epicentral distance.
Figure S8. Mean and standard deviation of the PGA residuals,
calculated for each number of stations that have the data in the
input waveforms. In the figure (a) the results are calculated for the
stations with observed targets (i.e. the stations which have the input
data). In the figure (b) the results are calculated for the stations with
ShakeMap predicted targets (i.e. the stations for which the input
data are missing).
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