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Abstract: In order to monitor temporal and spatial crustal activities associated with earthquakes,
ground- and satellite-based monitoring systems have been installed in China since the 1990s. In
recent years, the correlation between monitoring strain anomalies and local major earthquakes
has been verified. In this study, we further evaluate the possibility of strain anomalies containing
earthquake precursors by using Receiver Operating Characteristic (ROC) prediction. First, strain
network anomalies were extracted in the borehole strain data recorded in Western China during
2010–2017. Then, we proposed a new prediction strategy characterized by the number of network
anomalies in an anomaly window, Nano, and the length of alarm window, Talm. We assumed that
clusters of network anomalies indicate a probability increase of an impending earthquake, and
consequently, the alarm window would be the duration during which a possible earthquake would
occur. The Area Under the ROC Curve (AUC) between true predicted rate, tpr, and false alarm rate,
f pr, is measured to evaluate the efficiency of the prediction strategies. We found that the optimal
strategy of short-term forecasts was established by setting the number of anomalies greater than 7
within 14 days and the alarm window at one day. The results further show the prediction strategy
performs significantly better when there are frequent enhanced network anomalies prior to the larger
earthquakes surrounding the strain network region. The ROC detection indicates that strain data
possibly contain the precursory information associated with major earthquakes and highlights the
potential for short-term earthquake forecasting.

Keywords: receiver operating characteristic; a new prediction strategy; frequent network anomalies;
prediction efficiency; short-term earthquake forecasting

1. Introduction

It has been observed that the preparatory process and the occurrence of shallow
earthquakes are usually accompanied by crustal deformation. Precise observations of
surface displacement, using data from GNSS satellites, strainmeters and seismographs
all over the world, allow the investigation of complex tectonic structures [1–3] and the
prediction of short- and medium-term earthquakes [4,5]. However, earthquakes have
complicated changing spatio-temporal distribution characteristics, which makes the evalu-
ation of earthquake-related deformation data highly challenging. In recent years, various
studies have attempted to understand the interactions and relationships between strain
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data and earthquakes [6–9], including those related to the 2008 Wenchuan earthquake in
China [10,11] and the 2011 Tohoku earthquake in Japan [12–14]. Deformation data repre-
sented by borehole strain measurements are also considered to contribute to the estimation
of crustal changes. These measurements also play an important role in analysing geody-
namic processes, such as those related to volcanic activity [15], slow earthquakes [16,17],
and moreover precursory activity [6,18–20].

Although borehole strain have been considered to record some pre-earthquake anoma-
lies [8,9,21], whether these anomalies contain precursory information and their use in
forecasting of major earthquakes were not evaluated. Receiver Operating Characteristic
(ROC) analysis has previously been employed for short-term forecasting to explore whether
earthquake precursor information can be obtained from geophysical observations of pre-
cursor anomalies [22,23]. Prediction strategies are based on an alarm model that detects
and classifies the extracted anomalies extracted and targets earthquake events, thereby
evaluating whether measurements contain precursory information for large earthquakes.
Recently, various geophysical measurements have indicated the potential for earthquake
forecasting [24–26], through GPS data [27] and electromagnetic measurements [28–31].
However, current alarm models only focus on a single anomaly and underestimate the
clustering of earthquake anomalies [32,33], which may increase the risk of inaccurate results
from short-term forecasting.

In this study, we employ complex networks to jointly investigate borehole strain
observations from multiple stations, using seven YRY-4 borehole strainmeter measurements
in Western China from 2010 to 2017. We then propose a new prediction strategy to test
enhanced networks clustering and earthquake occurrences using ROC analysis and assess
its significance related to earthquakes. Furthermore, we discuss the efficiency of the strategy
under the influence of different factors. Also, by comparing with GNSS geodetic data, we
found that the prediction strategy performs more significantly when there are frequent
enhanced network anomalies prior to the earthquakes.

2. Data and Observations
2.1. Borehole Strain Observations

More than 40 YRY-4 borehole strainmeters have been installed in China with the
aim of coordinating with satellite-based measurement systems and monitoring surface
deformation associated with earthquakes. Surrounding the north and south sides of active
fault zones, such as the Longmenshan fault zone and Haiyuan fault zone, we selected the
following monitoring sights: YC, HY, LX, GZ, ZT, YS, and TC, all of which yield fairly
good data with long-term continuity. Table 1 lists the detailed information of the seven
stations, and Figure 1 shows their locations and the regional tectonic settings.

Table 1. Specifications of borehole strain stations used in this study.

Station Name Locations Depth (m)

YC 38.61◦N, 105.61◦E 50.00
HY 36.51◦N, 105.93◦E 60.37
LX 35.60◦N, 103.20◦E 44.70
GZ 30.11◦N, 102.17◦E 41.00
ZT 27.32◦N, 103.73◦E 45.00
YS 26.69◦N, 100.76◦E 43.00
TC 25.02◦N, 98.54◦E 45.00

YRY-4 borehole strainmeters sample every minute with a resolution of nearly one-
billionth strain changes. The strainmeters can test the quality and reliability of the obser-
vations through a self-consistency function, because of their four gauges arranged at 45◦

intervals. Consequently, the arrangement produces four components [21]. In this study,
the strain data were collected from 1 January 2010 to 10 August 2017, and we applied the
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areal strain, Sa, which is transformed by half of the sum of the four observed components
and describes the subsurface strain state [21].

Figure 1. Map showing the tectonic settings of the Western China and the locations of seven borehole
strain staioins (green triangles). The thin Black curves indicate faults. The bold black curves indicate
the main faults. The red circles show the epicenters of 26 earthquakes (Es ≥ 107) in the study area.

2.2. Studied Earthquakes

In this study, we employed the Es parameter, which considers the magnitude of the
earthquake and the epicentral distance to identify earthquake events. The Es index is the
daily sum of the local earthquake energy, whereas E′s is the local energy of an earthquake
in the borehole strain network defined by the following equation and the local energy of a
single station is shown by the multiplier in the root sign [28,34]:

Es = ∑
1day

E′s (1)

E′s =
M

√√√√ M

∏
i=1

104.8+1.5m

r2
i

(2)

Here, m and ri are the magnitude of the earthquake and the epicentral distance of
each site, respectively, and M is the number of sites. We selected the earthquakes in the
area 24◦–39◦N, 98◦–106◦E during 1 January 2010 to 10 August 2017. It should be noted
that all the events occurred within the study area during the study period are shallow
earthquakes (less than 60 km, mostly less than 30 km), and the earthquakes with magnitude
greater than 1.0 were taken into account. To avoid repeated detection of the same process,
we have declustered the earthquake catalog by the traditional Reasenberg declustering
algorithm, obtained from the Zmap toolbox [35,36]. The completeness of the declustering
earthquake catalog is around 1.5, and there are 162 earthquakes of Ms ≥ 4.0, 30 earthquakes
of Ms ≥ 5.0, 9 earthquakes of Ms ≥ 5.7 and 2 earthquakes of Ms ≥ 7.0. The local seismicity
and the daily Es are shown in Figure 2. First, we considered that an earthquake occurred if
the Es index on a given day exceeded 107 J/km2. There are 26 target earthquakes, and their
detailed information is presented in Table 2. If 107 is converted to magnitude, when the
average epicentral distance in the network is about 440 km, generally an earthquake should
be greater than Ms5.0. We only listed the type of fault of an earthquake when the seismic
moment tensors are available.
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Figure 2. From top to bottom are variations of the seismicity, the Es parameter and daily network degree during 2010-2017,
respectively. The pink horizontal line indicates Es = 107.

Table 2. List of earthquakes with Es ≥ 107 in the study area.

No. Date a Locations Depth
(km)

Magnitude
(Ms) b Es (lg) Type of Fault

1 25 February 2010 25.42◦N, 101.94◦E 20 5.2 7.1 right-lateral
strike-slip

2 10 April 2011 31.28◦N, 100.80◦E 10 5.4 7.4 left-lateral strike-slip
3 20 June 2011 25.05◦N, 98.69◦E 10 5.3 7.4
4 9 August 2011 25.00◦N, 98.70◦E 11 5.2 7.3
5 1 November 2011 32.60◦N, 105.30◦E 6 5.2 7.1 reverse
6 24 June 2012 27.71◦N, 100.69◦E 11 5.7 8.0 normal
7 7 September 2012 27.51◦N, 103.97◦E 14 5.7 8.3 strike-slip
8 18 January 2013 30.95◦N, 99.40◦E 15 5.5 7.4 left-lateral strike-slip
9 19 February 2013 27.10◦N, 103.10◦E 10 4.9 7.1
10 3 March 2013 25.93◦N, 99.72◦E 9 5.5 7.6 normal
11 17 April 2013 25.90◦N, 99.75◦E 10 5.1 7.0
12 20 April 2013 30.30◦N, 102.90◦E 17 7.0 10.0 reverse
13 22 July 2013 34.54◦N, 104.21◦E 15 6.7 9.4 reverse
14 31 August 2013 28.15◦N, 99.35◦E 10 5.9 8.2 normal
15 20 September 2013 37.73◦N, 101.53◦E 15 5.3 7.1
16 5 April 2014 28.14◦N, 103.57◦E 13 5.1 7.1
17 3 August 2014 27.11◦N, 103.33◦E 10 6.6 9.4 left-lateral strike-slip
18 17 August 2014 28.12◦N, 103.51◦E 7 5.2 7.3
19 1 October 2014 28.38◦N, 102.74◦E 10 5.2 7.3
20 22 November 2014 30.29◦N, 101.68◦E 20 6.4 9.1 strike-slip
21 12 October 2015 34.36◦N, 98.20◦E 10 5.3 7.0
22 21 January 2016 37.66◦N, 101.65◦E 10 6.4 8.7 reverse
23 18 May 2016 26.08◦N, 99.58◦E 17 5.1 7.1
24 23 September 2016 30.11◦N, 99.61◦E 16 5.2 7.4
25 27 March 2017 25.89◦N, 99.80◦E 12 5.1 7.2
26 8 August 2017 33.20◦N, 103.82◦E 10 7.0 9.8 left-lateral strike-slip

a The date refers to UTC+8 time. b Ms is the largest magnitude on one day.
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2.3. Tectonic Settings in Brief

The Longmenshan, the Xianshuihe and the Anninghe fault reflect the structural char-
acteristics of the compression of the Yangtze block by the Qinghai Tibet Plateau, as shown
in Figure 1. After a long period of geological development, these three fault zones have
become the primary zonal faults of Bayan Har Block, Sichuan Basin and Sichuan-Yunnan
Block. The total regional stress in this area comes from the compression of the Qinghai
Tibet Plateau in the northwest direction [37]. However, the fault structure in this area is
diversified, because of the complex geological environments. The Longmenshan fault,
which shows a thrust motion from south to north, can be divided into three main faults: the
Maoxian-Wenchuan fault (southern segment), the Beichuan-Yingxiu fault (central segment)
and the Anxian-Guanxian fault (northern segment) [38]. These three faults are imbricate
and all dip northwestward. At the depth of 20–24 km, they converge and merge into a
gently inclined reverse fault, which becomes the dominant structure of the Qinghai Tibet
Plateau napping over the Sichuan Basin [39,40]. The southernmost end of Xianshuihe fault
is the approximately north-south striking Anninghe fault, also known as the Xianshuihe-
Anninghe fault zone; it is a large left-lateral strike-slip shear zone [39,41]. The Haiyuan
fault is an important active fault zone in the northeastern border of the Qinghai Tibet
Plateau, which separates the Bayan Har Block of Qinghai Tibet Plateau from the relatively
stable Ordos plate. Its present movement mode is mainly left-lateral strike-slip with thrust
component [42].

3. Data Analysis
3.1. Extracting Network Anomalies of Borehole Strain

Complex networks can be used as an abstraction of strain monitoring systems to
express concealed interactions or relationships between spatial and temporal characteris-
tics [43–49]. we defined a borehole strain network by a graph consisting of M nodes and a
set of edges between nodes. M nodes are on behalf of M borehole stations, while edges are
defined by significant relationship between two nodes [50]. An adjacency matrix is applied
to describe the graph; A = aij, i, j ∈ V. The correlation between the sequences of length n
from two nodes, P = Pi and Q = Qj, i, j ∈ V, is defined as

RPQ =
∑n

t=1(pt − p̄)(qt − q̄)√
∑n

t=1(pt − p̄)2 ∑n
t=1(qt − q̄)2

. (3)

Here, p̄ and q̄ are the means of P and Q, respectively, and P and Q are the strain
components of each observation site [50]. The adjacency matrix A = aij, i, j ∈ V acquires
the components that were assigned as “one” if the absolute value of RPQ was greater than
0.8, and as “zero” if RPQ was less than 0.8, indicating whether nodes i and j were connected
or not connected. To monitor the changes in the borehole strain network connection,
the network degree is used based on the adjacency matrix A. The degree ki of a node is
defined as the total number of edges connected to that node in a borehole strain network:

ki =
M

∑
j=1

aij. (4)

Then, the network degree is calculated as the mean value of the ki, (i = 1, . . . , M) in
the network, which is expressed as follows:

k̄ =
1
M

M

∑
i=1

ki. (5)

The greater the network degree, the stronger the connection between networks; other-
wise, the nodes are considered to be weakly connected, indicating a disordered network.
Figure 3 shows an example of the strain network result of 2017 Ms7.0 Jiuzhaigou earth-
quake, Sichuan. The green lines represent the connections between two stations. It is a
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fully connected network of that day. The red star shows the epicenter of the earthquake.
The daily network degree together with the seismicity and the daily Es are shown in
Figure 2 for the complete period of 2010–2017.

Figure 3. An example of the strain network result for a fully connected network on 8 August 2017,
Ms7.0 Jiuzhaogou earthquake. The green lines represent the connections between two stations.
The red star shows the epicenter of the earthquake.

3.2. Evaluation of Strain Network Anomalies and Earthquake Occurrence

Due to an increase in the spatiotemporal coherence during earthquake precursory
activity [31,50,51], we assumed that the network would be highly connected during such
activities. In order to explore the correlations between strain network connection and
earthquakes, we proposed a prediction model to test their relationship through a Receiver
Operating Characteristic (ROC) curve. The prediction strategy is shown in Figure 4. We
analysed how many anomalies of the strain network degree, Nano, are in an anomaly
window, Tano, where the first day and last day of an anomaly window are required to be
anomalous. An alarm window, Talm, is described as the period in which an impending
earthquake would occur. First, we select a threshold to define the anomalies in the strain
network degrees. An anomaly is detected when the network degree exceeds the threshold.
Next, if the anomalies (Nano) in the alarm window (Tano) account for more than half (as
shown in Figure 4, the length of the anomaly window is 6 and the number of anomalies
exceeds 3), we assume that a target earthquake with Es ≥ 107 will occur in the following
alarm window, Talm.

Figure 4. (a) Schematic diagram of the prediction strategy of the borehole strain network. We assume that a target earthquake
with Es ≥ 107 will occur in an alarm window, Talm, if Nano ≥ Tano/2. (b) Confusion matrix of the prediction results.
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A target earthquake is labelled as predicted if it falls in the alarm window, or as
missed if it falls outside the window. The selected threshold is set to vary from the
maximum to the minimum network degree. Consequently, the number of anomalies
changes from 0 to the length of the sequence. As a result, tpr and f pr change from
0.0 to 1.0. Thus, the confusion matrix shown in Figure 4b can be used to estimate the
true positive rates, tpr, and false positive rates, f pr. We set tpr = TP/(TP + FN) and
f pr = FP/(FP + TN) [31,52]. Figure 5 shows an ROC detection result with tpr against
f pr. For a given alarm rate, tpr, the probability of n1 predictions in n target earthquakes is
subject to a binomial distribution [28]:

B(n1|n, tpr) = Cn1
n (tpr)n1(1− tpr)(n−n1). (6)

As a result, the diagonal line in the ROC diagram indicates a prediction by random
guessing [24,53,54], and the confidence interval of the true positive rate at each alarm
rate can be computed. Any prediction above the diagonal line shows that the number of
predicted earthquakes is better than that of false alarm days. Next, the Area Under the
Curve (AUC) is introduced to evaluate the efficiency of the prediction. The expected area
of random prediction is 0.5, where an area greater than 0.5 indicates that the strain network
anomalies may contain precursory earthquake information. The result in Figure 5 shows
that the prediction for Nano = 7 and Talm = 1 days is obviously better than random guess
with AUC = 0.81.

Figure 5. Receiver operating characteristic (ROC) curve used to detect the relationship between the
network degree and the earthquakes with Es ≥ 107. The black diagonal line shows prediction by
random guessing, whereas the blue steps provide 90% confidence intervals for the random prediction.
The red solid line indicates the prediction result for Nano = 7 and Talm = 1 days. For this prediction,
the AUC (Area Under the ROC Curve) was 0.81.

4. Results

To reduce the contingency of ROC detection, we performed statistical studies based
on Superposed Epoch Analysis (SEA) of the strain network during 2010–2017 preferentially.
SEA is a statistical method to highlight typical features of a special event by reducing
random noise by superposition [55–57]. First, if there is a network anomaly, we count
one for that corresponding day for the whole dataset. Here, we set the threshold of the
network degree to 4. Then, for each target earthquake, we extracted a data set of 45 days
before and 30 days after its occurrence day. We repeated this procedure for the 26 target
earthquakes, and then superposed the counts for all data sets. We performed the SEA
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results of 1-day count and 5-day counts as shown in Figure 6, respectively. To evaluate
statistical significance, we randomly selected 26 days instead of studied earthquakes in the
whole dataset, and conducted the same procedure. We repeated such random SEA tests
10,000 times to calculate the random_mean and the random standard deviation (σ) [54,57].

Generally, if the earthquake events and the network anomalies are not correlated,
the count distribution probably is random. In other words, if the 1-day or 5-day counts
exceed the random_mean+1.5σ level, it is indicative of a statistically significant correlation
between the earthquakes and the network anomalies. In Figure 6, the most anomalies
occurred on the earthquake day inferring that coseismic anomalies were recorded by each
station. Before an earthquake, there are clearly higher probabilities of network anomalies
than after. We found, about 20 days before, the results of 1-day counts are mostly significant.
The results of 5-day counts are also clearly significant during the periods 1–20 days before
the earthquake. We backtracked Figure 5, and found when f pr was surrounding 0.1–0.2, tpr
was more significant. The corresponding threshold is 3–5 at that time, which is consistent
with that in the above SEA analysis results. These results highly suggested the correlation
between the local earthquakes (Es ≥ 107) and strain network anomalies.

Figure 6. The Superposed Epoch Analysis (SEA) results of strain network anomalies. The blue, the black,
and the red lines indicate the counts of 1-day count, random_mean, and random_mean+1.5σ, respec-
tively. The grey bars and the pink line demonstrate 5-day counts and corresponding random_mean+1.5σ.
The “0 day” indicates the day when Es ≥ 107.

Moreover, we performed a comparative analysis with shuffled target earthquakes [58].
The SEA analysis and the ROC detection results are shown in Figure 7. The counts of
network anomalies corresponding to the shuffled target earthquakes are random and
not significant. And the ROC result indicates that the network anomalies do not contain
precursory information, with AUC being 0.42. Therefore, the above results further suggest
a possible relationship between the network anomalies and earthquakes (Es ≥ 107).

Next, their correlation was further discussed using the ROC prediction. Regarding the
prediction model, there are two variables related to the efficiency of detection: the number
of network anomalies in an anomaly window, Nano, and the length of the alarm window,
Talm. Thus, we first repeated the detections for the earthquakes (Es ≥ 107) with different
variable lengths. Nano and Talm were varied from 1 to 30 days as shown in Figure 8a.
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Figure 7. (a) The SEA results of strain network anomalies for shuffled earthquakes with Es ≥ 107. The blue, the black,
and the red lines indicate the counts of 1-day count, random_mean, and random_mean+σ, respectively. The grey bars and
the pink line demonstrate 5-day counts and corresponding random_mean+σ. (b) The pink line shows the ROC prediction
between the network degree and the shuffled earthquakes, under the condition of Nano = 7 and Talm = 1 days. The black
diagonal line indicates prediction by random guessing, whereas the blue steps provide 90% confidence intervals for the
random prediction. For this prediction, the AUC was 0.42.

Figure 8. (a) AUC for the condition of Es ≥ 107 for different numbers in an anomaly window and different lengths of the
alarm window. (b) Two typical AUC changes. The pink line indicates AUC changes with Nano when Talm = 1, whereas the
blue line indicates AUC changes with Talm when Nano = 7. The horizontal line is the threshold, which is the AUC of the
upper boundary of the 90% confidence interval for random prediction. The AUC of the upper boundary curve is 0.64.

We found that an optimal efficiency of predictability exists for Nano and Talm, as shown
in Figure 8a. When there were within 20 anomalies in the anomaly window and the alarm
window length was 1–25, the AUC was greater than 0.5, indicating the effectiveness of
the prediction strategy. Next, we extracted the row and column of the maximum AUC
(0.81), i.e., Talm = 1 when Nano = 7, and a detailed optimal area as shown in Figure 8b.
The AUC value exceeded the upper boundary of the 90% confidence interval when Nano
was between 1 and 15 and Talm was 1–12. Especially in Figure 5, the prediction of strain
network is clearly better than the random prediction when Nano = 7 and Talm = 1 days.
These results further suggested the statistical efficiency of short-term forecasts and indicate
that the network tends to be highly connected prior to the earthquakes (Es ≥ 107).
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Moreover, with regard to the prediction model in Figure 4, three other factors should
be discussed: different Es thresholds, different proportions of the anomalies in an anomaly
window, and local earthquake region. In the following, we further investigate the impact of
these three factors on ROC prediction efficiency. First, target earthquakes with different Es
values were selected, consisting of 8, 26, 75, and 184 earthquakes with Es thresholds of 108,
107, 106, and 105, respectively. With fixed values of Nano = 7 and Talm = 1, we performed
ROC analysis for these different target earthquakes as shown in Figure 9. The detection
efficiency increases when the threshold of Es was 107 and 108, with AUC values of 0.81 and
0.76, respectively. However, the ROC curves are not significant when the threshold was
105 and 106. This illustrates the higher efficiency of ROC analysis for the earthquakes with
larger energy.

Figure 9. ROC prediction of earthquake events selected according to different Es values.

Second, we tested the influence of different proportions of anomalies in an anomaly
window, as shown in Figure 10. This test also shows the ROC curves with fixed values
of Nano = 7 and Talm = 1. We found that, when there were more than half (2N) or a
third (3N) of network degree anomalies in an anomaly window, the detection efficiency
was more significant and stable. When there were few anomalies in an anomaly window,
the detection efficiency was low and especially when Tano = 8Nano, the result seems to be
accidental and irregular. This result shows that clusters of anomalies indicate an increased
probability of an earthquake, which is also consistent with the physical assumption [32].
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Figure 10. ROC prediction of different proportions of Nano to Tano.

Third, we selected the local seismicity for other two larger region, that is, 23◦–40◦N,
97◦–107◦E, and 22◦–41◦N, 96◦–108◦E, respectively. The condition of this ROC prediction
is that Es ≥ 107, Nano ≥ Tano/2, Nano = 7 and Talm = 1. The results are shown in Figure 11.
The AUC values decrease as the detection range increases, which also indicates the network
anomalies are related with local earthquakes. Earthquake selection within a larger region
may bring irrelevant events, thereby increasing the missing rate. Thus, ROC prediction
for earthquakes surrounding the network may be a good choice. In summary, we consider
that clusters of highly connected network anomalies may contain precursory information
related to local earthquakes (Es ≥ 107) surrounding the strain network.

Figure 11. ROC prediction of different earthquake selection regions. Region A: 24◦–39◦N, 98◦–106◦E,
Region B: 23◦–40◦N, 97◦–107◦E and Region C: 22◦–41◦N, 96◦–108◦E.
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5. Discussion

By using the ROC prediction, we proved that the pre-earthquake strain-network
anomalies are significant, which consequently suggests a possible correlation between the
borehole strain data recorded in Western China the and local earthquakes (Es ≥ 107). This
research supports the understanding of pre-earthquake processes, and the fault network
can be regard as a big seismogenic system in Mainland China [59]. In certain subsystems,
multiple ‘potential sources’ appear because of fault activities and fault blocks, crustal
movement and stress accumulation. The space-time evolution of the interaction between
‘potential sources’ and subsystems is considered as a self-organizing process. Regardless
of the expression of the measurements, the dimensionality and disorder will decrease
before reaching a new steady state [59]. Consequently, earthquake precursors are the
dynamic behavior in the self-organizing evolution of the seismogenic system. With regard
to borehole strain data, network anomalies before the target earthquakes probably indicate
that the steady state started to weaken due to the crustal movements. Meanwhile, a new
steady state is established through the recovery of the network after an earthquake. If we
think of this self-organization process as the entropy reduction of a seismic system, then the
unknown external energy that flows in may be related to impending earthquakes [50,60,61].

The crustal deformation before earthquakes is an important factor in integrated seis-
mological research. To examine whether borehole strain measurements are useful crustal
information before earthquakes, statistical tests were performed for the aligned GNSS-
azimuths related to earthquakes with magnitudes greater than 5 during 2012–2015 in
similar areas [24,62]. The ROC diagram of the optimal prediction strategy shows the
prediction is obviously better than the random prediction, indicating the correlation be-
tween aligned GNSS-azimuths and earthquakes. Precursor patterns recorded several days
before major earthquakes in the seismicity have also been found through the measurement
of other remote sensing data, which may be helpful for earthquake prediction [63–65].
Sarlis et al. [64] used the natural time analysis to study the electric signal activity and
found that changes of the order parameter appeared minima a few days before a main-
shock. [64]. The statistical significance of this study has recently been verified through the
ROC technique by focusing on the AUC [31] and event coincidence analysis [66].

From the 29 target earthquakes (Table 2), the 2013 Lushan Ms7.0 earthquake, 2014
Ms6.6 Ludian earthquake, and 2017 Ms7.0 Jiuzhaigou earthquake were the most remark-
able. During the Lushan earthquake, the deformation signal was extracted by analysing the
change of the GNSS geometry net-form, integrating the location, baseline length, and di-
rection information of all GNSS stations in the seismic source area [67]. A significant
pre-seismic deformation anomaly with locked status and deceleration in the first shear
strain and direction were found in the GNSS time series, implying the occurrence of strong
sinistral shear tectonic forces. Before the Ludian earthquake, the temporal evolution of
the GNSS-derived orientation exhibited a unique disorder-alignment-disorder sequence
that corresponded well with the four stages of an earthquake preparation [68]. This region
of stress accumulation was generally consistent with the earthquake preparation zones
estimated through numerical models [62]. And before the Jiuzhaigou earthquake, GNSS
data were usually used to study the long-term strain accumulation of 3–8 years [2,69].
With regard to short-term anomalies, the seismo-conductivity anomalies could be ob-
served by the geomagnetic data with epicentral distance from 63 to 385 km approximately
17 days before the earthquake, which matched the results of our predictive model. These
anomalies are considered to be created by earthquake-related stress that accumulates in
the crust [70]. Meanwhile, the rest target earthquakes with Ms ≥ 5 were also occasionally
accompanied by multiple types of pre-earthquake anomalies [71,72]. The pre-earthquake
anomalies of seismo-crustal deformation are also proved to contain precursory information
in New Zealand, California, Japan and Taiwan [27,28,73].

These results suggest that surface deformation provides useful crustal displacement
information before relatively large earthquakes. However, it is still far from the practical
application for short-term earthquake forecasts. Since mechanisms and preparation phases
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of earthquake events and the time lags between anomalies and earthquakes generally
are different from case to case, we were still unable to deal with accurate prediction [53].
Moreover, actual earthquake processes are more complicated than this prediction model.
In future studies, we will improve the model by including additional factors combined
with physical backgrounds and utilise more types of data, such as a combination of satellite
and ground-based measurements.

6. Conclusions

Strainmeters provide precise observation of surface deformation that permits to cap-
ture strain anomalies related to earthquakes. However, whether these anomalies contain
precursory information and their use for forecasting earthquakes were not evaluated be-
fore. In this study, we used ROC prediction to study the borehole strain data observed in
Western China from 2010–2017. Initially, daily connections between multiple stations of
borehole strain network were detected. The correlation between the network anomalies
and local earthquakes (Es ≥ 107) was verified by Superposed Epoch Approach. Then,
we proposed a new prediction strategy based on an assumption that clusters of network
anomalies indicate an increased probability of an earthquake and discussed how it can be
used in short-term forecasting. We further demonstrated the influences of Nano and Talm
on short-term earthquake forecasting using AUC values. Furthermore, on comparing with
GNSS geodetic data, the ROC prediction results indicate that the detection of borehole
strain networks has a higher significance for forecasting. We found the optimal strategy for
short-term forecast: that is to evaluate anomalies greater than 7 within 14 days and to set
the alarm window at 1 day. After discussing three other influences on the prediction strat-
egy, i.e., different Es thresholds, different proportions of anomalies in an anomaly window,
and local earthquake selection, we consider that clusters of enhanced network connections
may contain precursory information related to the earthquakes (Es ≥ 107) surrounding the
strain network. The methodology proposed in this study could help evaluate prediction
strategies and investigate the possibility of using different measurements for short-term
earthquake forecasting.
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