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ABSTRACT

Producing probabilistic subseasonal forecasts of extreme events up to six weeks in advance is crucial for many

economic sectors. In agribusiness, this time scale is particularly critical because it allows for mitigation strategies

to be adopted for counteracting weather hazards and taking advantage of opportunities. For example, spring

frosts are detrimental for many nut trees, resulting in dramatic losses at harvest time. To explore subseasonal

forecast quality in boreal spring, identified as one of the most sensitive times of the year by agribusiness end

users, we build a multisystem ensemble using four models involved in the Subseasonal to Seasonal Prediction

project (S2S). Two-meter temperature forecasts are used to analyze cold spell predictions in the coastal Black

Sea region, an area that is a global leader in the production of hazelnuts. When analyzed at the global scale, the

multisystem ensemble probabilistic forecasts for near-surface temperature are better than climatological values

for several regions, especially the tropics, evenmany weeks in advance; however, in the coastal Black Sea, skill is

low after the second forecast week. When cold spells are predicted instead of near-surface temperatures, skill

improves for the region, and the forecasts prove to contain potentially useful information to stakeholders willing

to put mitigation plans into effect. Using a cost–loss model approach for the first time in this context, we show

that there is added value of having such a forecast system instead of a business-as-usual strategy, not only for

predictions released 1–2 weeks ahead of the extreme event, but also at longer lead times.

1. Introduction

Subseasonal forecasts are extended-range weather

forecasts: a few times a week, general circulationmodels

(GCMs) used for short-range forecasts are extended for

30–45days. In recent years, this time scale ranging be-

tween the limit of deterministic predictability (which is

usually set to 10–14 days; Lorenz 1982) and the season

(i.e., 60–90 days) has been given particular attention.

Indeed, such forecasts can provide crucial advance

warning to decision-makers about forthcoming weather

events (Batté et al. 2018), while application-ready ca-

pabilities could allow many sectors (e.g., energy, trans-

port, agriculture) the opportunity to systematically plan

on a new time horizon (White et al. 2017).

The weather time scale is considered a pure atmo-

spheric initial-condition problem, while the seasonal to

interannual range depends strongly on the slowly evolv-

ing components of the Earth system, such as ocean tem-

peratures. Subseasonal variability fills the gap between

the two, and it has always been considered a challenging

time range for predictions, since the lead time is suffi-

ciently long to dilute the information imparted by the

atmospheric initial conditions, and it is too short for the

memory of the ocean to influence the climate system

(Vitart et al. 2017). However, potential sources of pre-

dictability for this time range have been identified,

mostly the Madden–Julian oscillation [MJO; e.g., Vitart

and Molteni (2010) and references therein], the state of
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El Niño–Southern Oscillation (ENSO, e.g., Liang and

Lin 2018) and their interconnection (Hoell et al. 2014),

as well as soil moisture (Guo et al. 2011; Koster et al.

2011), snow cover (Thomas et al. 2016; Orsolini et al. 2013),

sea ice (Furtado et al. 2016), stratosphere–troposphere

interactions (Tripathi et al. 2015), and cross-time-scale

interference of multiple climate drivers (Muñoz et al.

2015, 2016, 2017). Despite the increasing knowledge on

sources of predictability, and its socioeconomic impor-

tance, subseasonal forecasting is still at a relatively early

stage of development. Climate models’ prediction skill

at such time scales is in fact still modest at mid- and high

latitudes (DeFlorio et al. 2018).

Nonetheless, the experience acquired through years

of seasonal forecast research and operations show that

increasing the ensemble size allows for a wider sampling

of the possible weather/climate evolution (Palmer et al.

2000), enhancing the probabilistic forecast skill (Buizza

2008). Due to various constraints, very few institutes can

run 45-day forecasts several times a month with a large

ensemble set. Efforts like the Subseasonal to Seasonal

Prediction project (S2S) database (Vitart et al. 2017),

which freely provides a set of subseasonal forecasts and

hindcasts produced by 11 different prediction systems,

are helping the scientific community to advance under-

standing of sources of predictability, model improvement

and forecast skill. Many studies have demonstrated the

enhanced forecast quality of multimodel ensembles

compared to amore conventional single-model ensemble

approach (Hagedorn et al. 2006; DelSole and Tippett

2014; Vigaud et al. 2017). In addition, a large sample size

allows the use of consensus between the different model

forecasts to get some insight into the predictability

(Piedelievre 2000), provides for an insightful evalua-

tion of probabilistic skill (Krishnamurti et al. 2006),

and imparts a potential economic value to the forecast

(Richardson 2000; Alessandri et al. 2011).

Although a few studies have recently evaluated the

subseasonal forecast quality and potentialities in a multi-

system setting, both for precipitation (Vigaud et al. 2017)

and for temperature (Ferrone et al. 2017), there is still no

assessment regarding cold extremes at such time scale.

After the first two weeks, the aggregation of outputs

into weekly values tends to increase the skill of most at-

mospheric field predictions (Rodwell and Doblas-Reyes

2006). The weekly time frame is often sufficient to

detect a cold spell: althoughmany cold events last two or

three days, especially those occurring early in boreal

spring, their impact on weekly temperature anomalies is

identifiable. The 2–3 day time frame is shorter than the

typical time span established by the Expert Team on

Climate Change Detection and Indices (ETCCDI) for

cold spell duration (i.e., six consecutive days of minimum

daily temperatures lower than the 10th percentile;

Alexander et al. 2006), but a few hours below freezing

are enough to heavily harm crops and fruit farms

(Rodrigo 2000).

Hazelnuts, for instance, are vulnerable to severe frost

in late winter and the beginning of spring, when female

flowers have just begun their development, and low tem-

peratures may be destructive for germination (Ustaoglu

2012; Beyhan andOdabas 1996). In particular, in 2004 and

2014 two abrupt extreme cold spells hit the coastal Black

Sea at the end of March, causing profound damages to

hazelnut plantations there. Curbing chances for plants to

fructify, more than half of the annual harvest was lost

and hazelnut prices increased sharply (Erdogan and

Aygün 2017). If farming of one commodity is concen-

trated in a small region, such localized and ephemeral

weather events can easily affect its worldwide produc-

tion. Hazelnut agribusiness is in fact highly centralized

in the southern and eastern coastal Black Sea, where

about 70% of the world’s production is found [Food

and Agriculture Organization of the United Nations

(FAOSTAT) 2016]. This high vulnerability, strongly

affecting prices’ volatility, urges an exploration of the

opportunity to predict such extreme events through

targeted subseasonal forecasts, which are able to pro-

vide early notice of possible weather hazards.

The main motivation of this study is the implementa-

tion and assessment of a methodology to supply the ag-

ribusiness sector in general, and the one in the coastal

Black Sea as a case study, with timely and reliable infor-

mation at subseasonal time scales. Since the nature of this

method requires a large ensemble set of subseasonal

forecasts, the main objectives of this study are

d to explore a consistent multimodel approach for

temperature-related variables in the context of S2S,

and evaluate it through forecast verification metrics;
d to assess the quality and potential economic value of

cold spell seasonal forecasts during the most critical

season for nuts production.

2. Methodology

a. Multimodel and observational data

In this study, we make use of several models partici-

pating in the S2S database (Vitart et al. 2017), to ensure a

robust number of ensemble members. The selection of

the models participating in the multisystem ensemble

was based on two criteria:

1) models should have reforecast periods that overlap

for the longest number of years, so that robust statistics

can be obtained;
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2) models should have at least 45-day-long integrations

to allow forecast verification on periods longer than

a month.

Based on these conditions, four models—with a total

of 40 realizations—were selected for the multisystem

(MSys; see the appendix for a list of abbreviations and

acronyms used in this paper) for the analysis of cold spell

events; Table 1 summarizes the ensemble size of each

GCM and forecast start dates. The horizontal resolution

of the dataset is a 1.58 regular latitude–longitude grid,

and the reference reforecast length is 19 years, 1996–

2014. We selected three start dates at the beginning of

the meteorological boreal spring (1 March, 15 March,

and 1April), with each integration spanning a time lapse

of 42 days (i.e., six aggregated weeks). To consider a

robust sample size when assessing skill, since the fore-

casts are assumed to be independent, the three initiali-

zations were concatenated; the resulting time series are

equivalent to 57 (19 years for the three start dates)

42-day-long forecasts per model.

The reference data for comparison and evaluation of

the forecast quality are provided by the ECMWF in-

terim reanalysis (ERA-Interim, hereinafter ERAI; Dee

et al. 2011), which will be referred to as ‘‘observations’’

below. The spatial resolution of the dataset is approxi-

mately 80 km (T255 spectral), but it has been reduced to

about 150 km to match with the forecast data.

b. Near-surface temperature and definition of the cold
spell index

Asimple analysis of temperature anomalies predicted in

the area of interest is insufficient for an evaluation of cold

spells. Nonetheless, as a reference, we evaluated theMSys

near-surface (2m) temperature skill, both at the global

scale and for a region including the coastal Black Sea.

At the regional scale, we derived a cold spell index

based on the study of Peings et al. (2013), customized for

the region with the vastest hazelnut-farmed lands in the

world. This region is located on the coastal Black Sea,

and we refer to it as the northern coast of Turkey (NCT).

The Turkish provinces where hazelnuts are cultivated,

together with theirmodel grid representation, are shown

in Fig. 1.

To define the cold spell index, we consider a geo-

graphical domain approximately corresponding to these

provinces (see boxes in Fig. 2). Since the area identified

by this domain is too small for a reliable interpretation

of subseasonal forecast outcomes, we enlarged its extent

by selecting nearby grid points that shared similar climate

anomalies during the reforecast period (1996–2014).

Hence, we calculate temperature anomaly correlations

(TAC) using the Pearson coefficient between each of

the boxes and the surrounding points over the refer-

ence period. In this way we obtain maps of correlations,

where regions characterized by higher values share similar

thermal features with NCT (Fig. 2).

We arbitrarily retain regions whose TAC is higher

than 0.85, in order to implement further calculations

over areas large enough to be suitable for the type of

analyses performed. The robust covariance guarantees

that the climate variability of the enlarged region is

strongly associated with that of NCT. This operation is

repeated for each of the 40 ensemble members and

each of the six weeks of the subseasonal hindcasts

(starting on 1 March, 15 March, and 1 April), as well as

for the observations. We thus obtain 40 correlation

maps per start date, plus one for the observations, for

every forecast week.

When more than 20% of the grid points featured by

TACgp . 0.85 have temperature anomalies colder than

TABLE 1. Characteristics of the seasonal forecast systems participating in the multisystem. The last row corresponds to the multisystem.

Model Institution Country Ensemble size Start dates

BCC-CPS-S2Sv1 CMA China 9 27–28 Feb, 1 Mar

13–15 Mar

30–31 Mar, 1 Apr

GloSea5 UKMO United Kingdom 7 1 Mar

17 Mar

1 Apr

IFS Cy43r3 ECMWF Europe 10 28 Feb

14 Mar

28 Mar

CNRM-CM 6.0 Météo France France 14 1 Mar

15 Mar

1 Apr

Multisystem (MSys) 40 1 Mar

15 Mar

1 Apr
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the 10th percentile (Peings et al. 2013), calculated over

the observed (for ERAI) or forecast (for MSys) tem-

perature distribution of the grid point itself, a cold spell

is detected.

The cold spell index defined above is characterized by

the following magnitude and extent:

d The magnitude (MGN) of the cold spell is determined

by the average temperature anomaly of the pixels with

temperature , 10th percentile;
d The extent (EXT) of the cold spell is the fraction

of area with temperature , 10th percentile (always

greater than 0.2 by construction).

We can define a cold spell power index (CSPI) by

CSPI5MGN3EXT. (1)

Figure 3 illustrates the steps to obtain the CSPI defi-

nition in a simple schematic. The choice of using the 10th

percentile threshold to identify the occurrence of cold

spells is not meant to diagnose temperatures dropping

below zero or truly affecting plant phenological cycles.

Varying thresholds to account for such local features are

beyond the scope of this work and may be considered in

studies that use higher horizontal resolution.

c. Metrics to assess forecast quality and value

1) SCORES FOR THE MULTISYSTEM EVALUATION

To assess the quality of probabilistic subseasonal

forecasts, we focus on measuring attributes that any

good prediction should have reliability, resolution,

uncertainty, and discrimination.

Ignorance (IGN), an information theory–based veri-

fication metric, is selected because it simultaneously

measures reliability (REL), resolution (RES), and un-

certainty [UNC; see Weijs et al. (2010) for an extensive

dissertation]:

IGN5REL2RES1UNC. (2)

Reliability is a measure of the conditional bias in the

forecast probabilities and is 0 for a perfectly calibrated

forecast. Ideally, the observed frequency equals the fore-

cast probability for all of the issued forecast probabilities:

REL5
1

N
�
K

k51

n
k
D(o

k
kf

k
) . (3)

Here, the difference between the observed frequency

distribution ok and the forecast probability mass distri-

bution fk, both in the category k, is expressed in terms of

relative entropy D, also known as Kullback–Leibler

divergence (Kullback and Leibler 1951); N is the total

number of forecasts issued, K is the number of unique

forecasts issued, and nk is the number of forecasts with

the same probability category.

Resolution measures the amount of uncertainty in the

observation explained by the forecast. The minimum

resolution is 0, which occurs when the climatological

probability is always the forecast or the forecasts are

completely random; practically, it can be seen as the

amount of information in the forecast:

RES5
1

N
�
K

k51

n
k
D(o

k
ko) , (4)

where relative entropy D is calculated between the

conditional and marginal probabilities of occurrence.

FIG. 1. Turkish provinces (in green) where hazelnuts are farmed

for commercial purposes. In purple, the box used for most the

analyses carried out in this work.

FIG. 2. Example of 2-m temperature correlation maps for a

random ensemble member and a random start date. Shadings in-

dicate correlation with the nut farms’ grid points, averaged in the

black box. CSPI was calculated over the area points with r . 0.85

(orange and yellow shades in this map).
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Uncertainty measures the initial observational uncer-

tainty about the event through the entropy of the clima-

tological distribution H(o). Being a function of the

observational climatology, it does not depend on the

forecast; the uncertainty is maximum if the probabil-

ity of occurrence is 0.5 and 0 if the probability is either

0 or 1:

UNC5H(o)52�
n

i51

(o
i
) log(o

i
) , (5)

where n is the number of categories in the probabilistic

forecast (n 5 3 in this study).

Due to its relationship to Shannon’s information en-

tropy, IGN is frequently used as a proxy for forecast utility,

or the amount of information gain expected from a fore-

cast (Roulston and Smith 2002). Due to its easy interpre-

tation, the ignorance skill score (ISS) is used here:

ISS52
log

2
p
k

log
2
n
, (6)

where pk denotes the probability of the realized category.

This definition of the ignorance skill score is negatively

oriented; locations where ISS . 1 contain less informa-

tion than the climatology (ISS 5 1), and locations with

ISS , 1 contain more information than climatology.

A perfect forecast has zero IGN and ISS.

The generalized relative operating characteristics

(GROC) is used to assess discrimination of tercile-

based probabilistic forecasts. GROC is a particular

case of the two-alternatives forced choice score (2AFC;

Mason andWeigel 2009), and measures ‘‘the proportion

of all available pairs of observations of differing cate-

gory whose probability forecasts are discriminated in the

correct direction’’ (Mason and Weigel 2009).

These metrics are computed using the International

Research Institute for Climate and Society (IRI) Climate

Predictability Tool (CPT;Mason and Tippett 2019), once

the probabilistic forecasts have been computed by simple

counting.

In addition, a deterministic evaluation is carried out

using a time correlation, computed according to the

Spearman coefficient operating on the ensemble mean

of each subseasonal forecast (i.e., each start date) and

the corresponding observations at every grid point

(Wilks 2011).

2) SCORE OF THE CONTINGENCY TABLES

To assess the MSys forecast performance, we need to

verify whether the predicted cold spells were in fact

FIG. 3. Schematic of the methodology used to define a cold spell. For each start date, week, and ensemble member a correlation map is

computed; in every map, only grid points with a correlation higher than 0.85 are kept for cold spell determination. If no less than 20% of

these grid points have temperatures , CST (cold spell threshold, i.e., 2-m temperature is in the 10th percentile), that member is char-

acterized by a cold spell, defined in the bottom right box (icons made by Freepik and Vectors Market from www.flaticon.com).
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recorded by ERAI reanalysis. If the forecasts were

deterministic, a retrospective prediction would either

identify or not a cold spell defined by CSPI. However,

because the forecasts are probabilistic, an additional

choice is required: how high must the forecast proba-

bility be to trigger a cold spell alarm? In other words, do

we consider a forecast of a cold spell one for which, for

instance, CSPI has 16% chance of occurrence? To assess

the skill of CSPI forecasts we make use of the Gerrity

skill score (GSS; Gerrity 1992; Gandin and Murphy

1992), a categorical score that measures the quality

of a given index at capturing the values in each of the

multiple categories (Siebert 2016). The first step for

the assessment of GSS consists in the assignment of a

value to each of the four possible outcomes between

the forecasts and observations:

1) A cold spell is predicted by the MSys hindcast and is

then verified by ERAI [hit event (HE)].

2) A cold spell takes place in a specific week, but the

MSys was not able to predict it [missed event (ME)].

3) TheMSys predicts a cold spell, which is not recorded

in ERAI [false alarm (FA)].

4) CSPI is neither predicted nor occurs [correct rejec-

tion (CR)].

These four outcomes will populate a so-called contin-

gency table, a 2 3 2 table where the main diagonal (from

top left to bottom right) contains HE and CR, in other

words cases in which the hindcast and reanalysis agree,

while the antidiagonal (from bottom left to top right)

contains FA andME, namely, wrong forecast assessments.

GSS provides the following scores for the elements of

the contingency table:

e
HE

5

�
12 p

w

p
w

�
, (7)

e
CR

5
1

(e
HE

)
, and (8)

e
ME

5 e
FA

521, (9)

where pw is the 10th percentile threshold (i.e., 0.1)

needed to define the CSPI.

3) COST–LOSS MODEL

To examine the potential economic benefit of the

subseasonal forecasts, we make use of a simple cost–loss

model (Richardson 2000). We consider a decision-maker

sensitive to spring cold spells: if the cold spell occurs, the

decision-maker loses part of the harvest, incurring a loss

L. However, the decision-maker may decide to take ac-

tion against the cold spell (a farmer could use antifrost

turbines, while a buyer could purchase hazelnuts before

the frost comes); in this case, there will be a costC to take

action, but L will be avoided.

Supposing the fraction of CSPI per week s is known

for past seasons: having no additional information the

decision-maker could choose to apply a mitigation plan

every week, with an average expenditure Ealways 5 C,

or never take action, and the average loss would be

Enever 5 sL. Hence, the best strategy would be

E
no2info

5min(C,sL). (10)

Of course, the best case scenario would be a perfect

knowledge of future weather, where the action is put in

place only when CSPI will take place:

E
perfect

5sC . (11)

Relying on subseasonal forecasts, the decision-maker

will not be able to nullify the costs but could get closer to

Eperfect, minimizing the expenses and losses. Here the

contingency table comes in to help (Table 4): the mean

expense of using the forecast is obtained by multiply-

ing HE, FA, ME, and CR by their correspondent

expenditure:

E
forecast

5HE3C1FA3C1ME3L1CR3 0:

(12)

The price difference between Eforecast and Eno-info is a

measure of the value of the forecast for the decision-

maker. Relative to the perfect scenario, where the ac-

tion is put in place only when the cold spell occurs, the

value V of a forecast is

V5
E

no-info 2E
forecast

E
no-info 2E

perfect

, (13)

which can be expanded making use of Eqs. (5)–(7) in

V5
min(C,sL)2FR(C/L)(12s)1HRs(12C/L)2s

min(C,sL)2s(C/L)
,

(14)

where the false alarm rate is FR5 FA/(FA1 CR), and

the hit rate is HR 5 HE/(HE 1 ME), namely, the

number of false alarms (hit events) over the total num-

ber of nonoccurred events (occurred events, i.e., CSPI).

3. Results

a. Validation of the multisystem

The models’ global 2-m temperature deterministic

skill in target weeks 2 and 5 is shown in Fig. 4. As ex-

plained in section 2, we use 57 seasons, instead of only
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19, to increase the sample size available for skill

assessment, an approach that has been recently used

by Muñoz et al. (2018) for similar purposes.

At week 2, model skill is at a maximum in the

Northern Hemisphere’s low and midlatitudes, particu-

larly in central Asia, the Middle East, northeast China,

India, and eastern North America. The only equatorial

area showing homogeneously high correlations is the

western Amazon basin, while the rest of the tropics

display fluctuating skill among different models. Models

hardly agree with reanalysis in central South America

and Indonesia, as well as in many parts of Africa where

FIG. 4. Forecast skill (Spearman correlation) for (a)–(d),(f)–(i) global 2-m temperatures predicted by each single model and (e),(j) the

multisystem ensemble. A concatenation of the three start dates (1 Mar, 15 Mar, and 1 Apr) was used to calculate correlations to enlarge

the sample to 57 years. Shown in (a)–(e) is skill at week 2, and (f)–(j) show skill at week 5.
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the lack of data, though, could affect the reanalysis

itself. CMA shows lower skill than the other models,

with major weaknesses in North America, northwestern

Russia and Scandinavia, Australia, and southeastern

Asia (Fig. 4c). As expected, correlations are noticeably

lower at week 5 in all prediction systems, and skill dis-

cordance among models reduces. However, rain forests,

southeastern Asia, and northeastern China maintain

significant forecast quality in all models at longer lead

times, showing that the system skill—as measured by

Spearman correlation—can go well beyond the de-

terministic limit when outputs are aggregated over a

weekly time range.

The 40-member MSys shows an overall improvement

of the subseasonal forecast skill with respect to each of

the single models, particularly for longer-range predic-

tions. At week 2, most midlatitude continental lands,

southern Africa, South Asia including Indonesia,

eastern Australia, and great part of the Amazon basin

show correlations higher than 0.7 (Fig. 4e), while the large

majority of the remaining land shows values larger than

0.6. The whole subequatorial band, southern Africa, the

Great Lakes region, and northeastern Asia preserve

significant forecast skill at week 5 (Fig. 4j).

A frequent way to provide uncertainty information in

forecasts is to use a probabilistic format (Doblas-Reyes

et al. 2000). As indicated before, we use the ignorance

skill score to measure reliability, resolution, and uncer-

tainty of the probabilistic near-surface temperature pre-

dictions of the MSys. Regions showing low ignorance

(i.e., good skill; see blue shades in Fig. 5) during the first

weeks of the forecasts tend to show decreasing skill

with lead time, with several tropical locations still

skillful at week 6, consistent with previous studies (Li

and Robertson 2015). Nonetheless, some regions ex-

hibiting worse-than-climatology ISS values (red shades

in Fig. 5) in week 1 tend to show climatological values

toward week 6, that is, an increase in skill. This is due to

the fact that the models tend to be overconfident during

the first weeks of the forecasts, and then converge to-

ward climatological values (in white in Fig. 5). Hence,

except perhaps at the global scale, no generalization on

the tendency of probabilistic skill for spring near-surface

temperature should be made when referring to any

particular region. In the case of the entire Black Sea

basin, a closer analysis (not shown) indicates that

near-surface temperature probabilistic skill quickly

degrades with lead time, suggesting that the MSys

temperature forecasts are only useful during approxi-

mately the first two weeks of prediction. As shown in

the next subsection, it is possible to extract actionable

information from these forecasts when a different but

related variable is used.

The forecasts’ discrimination, as assessed by GROC,

is better than climatological values (GROC. 50%, red

shades in Fig. 6) for most of the tropical Americas, the

Maritime Continent, and Africa, even in week 6. Since

discrimination (and resolution) is considerably higher in

the tropics, the evolution of GROC in Fig. 6, together

with the ISS analysis described above, indicates that the

forecasts require more calibration to obtain functional

discrimination in the extratropics, where the region

of interest is located. The role of calibration in the

type of subseasonal forecasts used in this research is

out of the scope of this study and will be addressed

elsewhere.

It is also interesting to explore how the multisystem

performs in the location where the hazelnuts are found.

Figure 7 shows the model deterministic skill in the do-

main that could potentially host a grid point participat-

ing in the CSPI calculation (see section 2b), that is, the

domain in Fig. 2. Here, time correlation averaged over

the domain, for all of the six weeks of each of the start

dates (Figs. 7a,b,c) is shown for every model and the

multisystem, allowing us to visualize the forecast quality

per target week. Increasing the sample size to 57 seasons

(Fig. 7d) allows for a reduction of random data fluctu-

ations. Correlation drops dramatically after the deter-

ministic limit of skill (Lorenz 1982), with correlations

normally not exceeding 0.4 beyond the week-2 lead

time. This is in line with other studies carried out within

the European domain. An attempt to reforecast the July

2015 heat wave (Ardilouze et al. 2017) concluded that

the prediction system involved could not guarantee a

skillful forecast more than 12–14 days before the be-

ginning of the episode. Besides, Monhart et al. (2018)

found out that, in Europe, spring is the season charac-

terized by the worst subseasonal prediction skill.

In general, correlations decrease with time, but dif-

ferences in skill are hardly appreciable between weeks 3

and 5, while a steep downward step is noticeable at

week 6. The MSys is always among the three best

models, often the best performing in the first two

forecast weeks.

b. Prediction of cold spells in the coastal Black Sea

Table 2 shows CSPIs in the NCT enlarged regions for

the six March and April lead weeks corresponding to

the 15 March start date (similar tables for 1 March and

1 April can be found in Tables S4 and S5 in the online

supplemental material). Forty-six cold spells are de-

tected in ERAI during the 14 analyzed weeks (while

there are 18 forecast lead weeks, that is, six per start

date; only 14 are measurable in observations, since four

weeks overlap in the 1 March and 15 March start dates).

In some years, spring is not affected by any cold spell,
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and cold spells become rarer after 2005, especially in the

early part of the season. However, most of the late

events (May, see Table S5) take place from 2005 on-

ward: two events are tracked in the first nine years, and

four since 2005.

Table 3 shows the probability associated with CSPIs

retrospectively predicted on the start date of 15March

(Tables S4 and S5 show the same for the start dates of

1 March and 1 April, respectively). The probabilistic

forecast provides the percentage of ensemble mem-

bers forecasting a cold spell (a method commonly

known as ‘‘simple counting,’’ including one additional

ensemble member that is split between the various

outcomes based on their climatological probabilities),

as defined by Eq. (1), in the six following weeks. There

is an evident disparity in forecast confidence between

the deterministic forecast time (weeks 1–2) and the

other weeks.

For the analysis, we consider 114 forecasts for each

start date, that is, six weeks over the 19-yr reference

period. On week 1 and week 2 the system is often overly

confident. This means that in the first forecast weeks,

cold spell events are predicted by most of the ensemble

members, then the probability of occurrence given by

the dynamical system is rather high (often above 40%).

Similarly, a prediction of no cold spell is often shared,

in the first forecast weeks, by the quasi totality of the

members, resulting in a 0% (or very close to 0) proba-

bility of occurrence.

The spread between members amplifies in the fol-

lowing weeks as they drift apart from the initialization

date. Only once during weeks 5 and 6 does more than a

FIG. 5. Multisystem ignorance skill score for near-surface temperature during boreal spring. Blue (red) regions exhibit better (worse) skill

than climatological values, which is shown in white; a perfect forecast has a value of zero ignorance skill score.
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third of the ensemble set agree on the occurrence of

a cold spell (in the 1 March 1996 forecast, Table S4).

Similarly, only in very limited cases do all members

agree on zero CSPI chance after week 2, and essentially

never after week 4. This behavior is expected in a system

subjected to a random perturbation of the initial con-

ditions, where the error shows an amplification that in-

creases in time (Lorenz 1963).

To take into consideration the decrease in forecasts’

confidence with time, that is, the increase in the en-

semble members’ dispersion, we treated weeks 1–2,

weeks 3–4, and weeks 5–6 separately. The sum of the

38 GSSs, relative to the 19 outcomes (1996–2014) for

each two-week chunk, is maximized by changing the

threshold triggering a forecast of CSPI. Consequently,

for each start date we obtain the three lowest probability

limits (LPLs), each associated with one two-week chunk,

which set the minimum forecast probability required for

a cold spell alert. In other words, a CSPI forecast

probability . LPL can be considered a deterministic

forecast of a cold spell.

The aggregated contingency table (Table 4) shows the

realization of each of the four outcomes (HE, FA,ME,CR)

separated by lead time.When the cold spell event occurs

in the reanalysis (HE 1 ME), the system is able to

predict it 48% of the time. More generally, the MSys

forecast agrees with reanalysis over 77% of the time

(HE 1 CR 5 263 out of 342), with HE events being

about 12% of the CR events.

The MSys produces HE 1 FA 5 77 predicted cold

spells in the NCT region, with correct forecasts recor-

ded about 36% of the time. Considering the predicted

FIG. 6. As in Fig. 5, but for GROC. Values above 50 (in blue) indicate better discrimination than climatology (white), and vice

versa (in red).
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nonevents (ME 1 CR), the forecast is correct almost

90% of the time.

When a cold spell is detected in the reanalysis, the

MSys provides a correct forecast about 48% of the

time [HE/(HE 1 ME)]. When CSPI does not occur

(FA 1 CR 5284), the system foresees its occurrence

49 times (total number of false alarms), that is about

17% of the observed nonevents. The forecast probabil-

ity of having a cold spell is considerably higher when

cold spells occur, meaning the forecast is different de-

pending on the outcome; hence, the forecast has good

discrimination.

TABLE 2. Cold spells identified by the CSPI index in ERA Interim: values for NCT for the target weeks of the 15 Mar start date.

ERA Interim CSPI in the northern coast of Turkey (8C)

16–22 Mar 23–29 Mar 30 Mar–5 Apr 6–12 Apr 13–19 Apr 20–26 Apr

1996 — — — 21.2 21.9 23.1

1997 21.1 24.8 — 26.5 22.4 —

1998 23.3 — — — — —

1999 — — — — — —

2000 20.9 — — — — —

2001 — — — — — —

2002 — — — 21.0 — —

2003 22.2 24.6 — — — 21.0

2004 — — 24.8 — — —

2005 — — 24.4 — — —

2006 — — — — — —

2007 — — — — 23.8 22.1

2008 — — — — — —

2009 — — — — — —

2010 — — — — — —

2011 — — — 20.8 — 20.7

2012 — — — — — —

2013 — — — — — —

2014 — — — — — —

FIG. 7. Forecast skills (Spearman correlation to the ERAI reference) for 2-m temperatures predicted by each

single model and theMSys ensemble averaged the region around Turkey (20.08–49.58E, 32.08–48.08N; see Fig. 2 for

the exact domain location): (a) 1Mar start date, (b) 15Mar start date, (c) 1 Apr start date, and (d) concatenation of

the three start dates.
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When the forecast predicts a cold spell, that is,

less than a quarter of the total number of predictions

(HE 1 FA 5 77 times out of 342 forecasts), the event

takes place about 36% of the times. Conversely, when

the system foresees no CSPI alert, that is, 265 times

(more than 77% of the total), it is almost always right:

CSPI occurs once out of 10 predicted nonevents. The

outcome, then, differs considerably depending on the

forecast, meaning the system contains strong resolution.

Discrimination (and resolution) shown by the MSys

indicates that the forecast contains potentially useful

information (Mason 2004) that may be exploited by end

users and translated into economic value (see section 3c).

Figure 8 shows the geographical distribution of the four

possible outcomes in the three aggregated start dates

forNCT. The area where CSPI is calculated differs at each

start date, forecast week, and ensemble member; the

number and location of the enclosed grid points depend on

the correlation with the nut farming domain [see Eq. (2)].

Therefore, grid points close to the nut farming sites will be

more frequently shown than those located farther away.

To draw the map, we proceeded as follows. For every

lead week in which a CSPI is forecasted, and CSPI oc-

curs in ERAI, each grid point of all the MSys ensemble

members is flagged as a hit event outcome. For instance,

in week 1, HEs take place in 1996 and 2012 on the

1March start date (Table S4), in 1998, 2000, and 2003 on

the 15 March start date (Table 3), and again in 1997,

1998, and 2005 on the 1 April start date (Table S5).

Therefore, in week 1, the maximum frequency of HEs

for each grid point is 280 (40 ensemble members

multiplied by 7 hit events).

We apply the same methodology for every week and

each of the four elements of the contingency table,

obtaining the outcome frequency (OF) for each element.

To illustrate this, we compute the indicator OF in the

following way:

OF
gp,w,e

5
nE

w,e
3M

gp,w

M
T
3 nSD

, (15)

where OFgp,w,e is the outcome frequency per grid point

(gp) andweekw for each element e), nEw,e is the number

of outcomes per week for each element, Mgp,w is the

number of members per grid point and week, MT is

the total number of ensemble members (40), and nSD is

TABLE 4. Contingency tables for the aggregated start dates. Font

conventions are as in Table 3.

Northern coast of Turkey (all start dates)

ERAI yes ERAI no

Weeks 1–2 Model yes 13 7

Model no 7 87

Weeks 3–4 Model yes 7 20

Model no 12 75

Weeks 5–6 Model yes 8 22

Model no 11 73

TABLE 3. Forecast probability of having a cold spell, in all the reforecast weeks of the 15 Mar start date. The lowest probability limits

(LPLs) required to call for a cold spell forecast are shown under the indication of the two regions. Values in bold font indicate a hit, values

in italic a false alarm, values in bold italic font a missed event, and values in normal font a correct rejection.

Probability of predicted CSPI (15 Mar)

LPL 5 18.6% LPL 5 13.7% LPL 5 10.8%

16–22 Mar 23–29 Mar 30 Mar–5 Apr 6–12 Apr 13–19 Apr 20–26 Apr

1996 0% 17.5% 27.5% 20% 15% 20%

1997 12.5% 0% 10% 10% 12.5% 17.5%

1998 60% 42.5% 17.5% 12.5% 7.5% 5%

1999 2.5% 0% 5% 2.5% 5% 5%

2000 20% 17.5% 17.5% 20% 12.5% 12.5%

2001 0% 2.5% 2.5% 12.5% 7.5% 7.5%

2002 0% 0% 7.5% 0% 2.5% 5%

2003 65% 45% 17.5% 17.5% 20% 15%

2004 0% 0% 7.5% 7.5% 7.5% 2.5%

2005 0% 20% 15% 7.5% 15% 7.5%

2006 0% 0% 0% 5% 12.5% 10%

2007 0% 0% 0% 5% 5% 7.5%

2008 2.5% 0% 12.5% 17.5% 7.5% 7.5%

2009 5% 20% 7.5% 7.5% 15% 0%

2010 0% 0% 2.5% 10% 15% 20%

2011 0% 7.5% 12.5% 15% 7.5% 5%

2012 22.5% 12.5% 12.5% 10% 10% 17.5%

2013 0% 0% 7.5% 7.5% 5% 10%

2014 0% 5% 10% 5% 7.5% 15%
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the number of start dates (three). A grid point showing

large values of OF proves the strong correlation be-

tween the 2-m temperature variability of that grid point

and that of the NCT domain.

As we did in Table 3, results are shown by the two-week

aggregation: Figs. 8a–d illustrate the four outcomes

(HE, FA, ME, and CR, respectively) for weeks 1–2,

Figs. 8e–h illustrate the outcomes for weeks 3–4, and

Figs. 8i–l illustrate the outcomes for weeks 5–6.

In the first two weeks, most of the recorded cold spells

have been correctly forecasted, as so the noncold spells,

hence the HE and CR outcomes have the highest fre-

quency. The reason why frequency of correct rejections

is so much higher than that of hit events is because CSPI

events are rare.

In weeks 3–4, frequency of CR decreases, because the

forecast sometimes predicts a CSPI and the event does

not take place; in fact, false alarm frequency increases in

turn. At this lead time there is also an increase of missed

event frequency, because the forecast misses a fewCSPIs,

thereforeHE frequency declines. A very similar behavior

can be seen in weeks 5–6, where the performance is

almost identical to that in weeks 3–4.

c. Value of the forecast

The potential value of the CSPI forecast for a possible

decision-maker is estimated through a simple cost–loss

model (Richardson 2000). In practical terms, an ag-

ribusiness player may start trading on nut price in

advance, when the kernel is not even formed yet, on the

basis of the forecast outcome. In the event of a predicted

cold spell, they can fix the price beforehand, guaranteeing

a net gain in case the cold spell occurs.

Results are shown in Fig. 9 and display the fraction of

economic gain potentially imparted by the use of sub-

seasonal forecasts. Again, the contingency tables for the

three start dates are merged together. Since we have no

information on either the cost C of action (e.g., putting

in place a forecast system and acting depending on the

predictions) or the potential loss L (i.e., the increase in

price following a cold spell occurrence), results are

expressed in terms of the C/L ratio. In general, when

C/L � 0.1, the mitigation strategy is so cheap that the

decision-maker would always put it into action; there-

fore, the forecast is not needed or useful. In contrast,

when C/L l 1, C and L are comparable, so it is not

worthwhile to act (i.e., to use the forecast); rather, it is

more remunerative to pay for the possible loss.

Since skill is higher at lower lead times, the forecast

value of weeks 1–2 is higher than that of weeks 3–6 for

both targets. Agribusiness operators in northern coastal

Turkey benefit from the use of the medium-range fore-

cast (target up to two weeks), with a potential gain well

exceeding 50% for aC/L ratio around 0.2. However, the

forecast value is not marginal after week 3, with some

potential users obtaining almost 20% gain by using the

long-range predictions. Our results indicate that the

potential forecast value is similar in the two areas, and

FIG. 8. Geographical distribution of the NCT outcome frequencies, that is, the average occurrence of each of the four elements of the

contingency tables [see Eq. (15)]. (a),(e),(i) Hit events (HE), (b),(f),(j) false alarms (FA), (c),(g),(k) missed events (ME), and (d),(h),(l)

correct rejections (CR). (top) Forecast weeks 1–2, (middle) forecast weeks 3–4, and (bottom) forecast weeks 5–6.
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that there is no significant benefit loss beyond week 3.

In fact, the potential value of forecast weeks 3–4 and

weeks 5–6 is very much alike.

4. Discussion

This work has been designed to assess the potential

usefulness of subseasonal forecasts, treated as an early-

warning tool to plan mitigation strategies against cold

spells hitting hazelnut production in the Black Sea area.

It is not meant to evaluate concrete frost-induced

damages that could impact plant tissues or phenology.

Recent spring frost events were recorded by in situ

weather stations in 1993, 1997, 2000, 2003, 2004, and 2014

(Erdogan 2018), withERAI datamatching this list except

for the 2014 cold spell, which strongly hit only the east-

ernmost side of the domain and is not disclosed in

Table 2. Among these events, only some have been re-

ported to cause extensive damage to hazelnut production.

Temperatures in north Turkey dropped far below 08C
between March and April 2004 (Ustaoglu 2012), giving

rise to serious crop losses: more than 70% of the harvest,

with peaks of almost 90%, was wasted compared to the

normal production yielded in 2002 (Erdogan and Aygün
2017). As a result, the country’s expected production de-

creased from 600000 to 350000 tons, and prices exploded.

Another frost event, similar in magnitude but more cir-

cumscribed in space, occurred in 2014, when late winter

was much warmer than usual and vegetation function

started early all throughout the country. On the night of

30 March, heavy snow followed by low temperatures

of 258C destroyed young leaves, shoots, and pollinated

female flower clusters, wiping out the crop above the

elevation of 300m in the eastern Black Sea region.

Hazelnuts orchards in the western Black Sea region

were also damaged but in a less dramatic way, while or-

chards along the coasts were not affected by the cold spell.

Conversely, the other aforementioned frosts were not re-

ported to end up damaging the following hazelnut har-

vests, despite taking place in the same time of year

(Erdogan andAygün 2017). This fact is surely linked to the
duration or the intensity of the cold spells, but also to the

physiological state of the plants at the arrival of the frost.

For this sort of consideration, a crop model forced by

climate forecasts should be run. In this case, variable

thresholds would be chosen for CSPI definition, since a

constant 10th percentile limit does not guarantee the

onset of a frost, and even less whether this frost is det-

rimental for the plant. Moreover, higher-resolution data

would be needed for this aim, since the S2S grid covers,

in one single point, the Black Sea coastal areas and the

Pontic Mountain peaks, whose climates are totally in-

comparable. Finally, model output bias correction should

be implemented to take into consideration the MSys

systematic errors, and similarly, a cost–loss analysis could

be implemented using atmospheric circulation variables

[e.g., weather type frequencies of occurrence, which have

been shown to be good predictors for extreme rainfall

events (Muñoz et al. 2016; Doss-Gollin et al. 2018)] rather

than near-surface temperatures directly.

This study does not include any specific analysis to

relate the forecast skill to a specific source. Hence,

FIG. 9. Value of the forecast (fraction of economic gain imparted by the use of subseasonal

forecasts over no use of any forecast, multiplied by 100 to get a percentage) obtained through

the cost–loss model. Full lines are for weeks 1–2, dashed lines are for weeks 3–4, and dotted

lines are for weeks 5–6.
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hypothesizing over possible drivers of predictability

would be just speculation. However, the fact that weeks

3–4 and 5–6 have a similar level of skill suggests that

predictability could come from lower-frequency vari-

ability (possibly antecedent land surface state) rather

than higher-frequency signal like the MJO. This con-

jecture is corroborated by a few studies that linked late

winter snow with temperature cold anomalies in eastern

Europe (Shongwe et al. 2007), which is shown to be

a region of strong snow–atmosphere coupling (Xu and

Dirmeyer 2011). Snow, in fact, acts on the atmosphere

by both changing the radiatively driven albedo and im-

pacting the hydrological cycles, since soils covered in

snow are slowly provided with water able to infiltrate

in depth, thus affecting temperatures in the months to

come (Xu and Dirmeyer 2013). Such mechanisms are

able to impart predictability to the system for a few

weeks, although they likely explain a small portion of

the total temperature variability in the area. On the

other hand, even if recent studies have made first at-

tempts to directly link temperature extremes in eastern

Europe with MJO (Seo et al. 2016), a clear telecon-

nection has not been yet established for Turkey in the

beginning of spring.

To release information of use for stakeholders, a

probabilistic warning needs to be transformed into a

definite decision. To help in making this decision, GSS

came to use to set the lowest probability limit, that is, the

minimum likelihood required for a cold spell forecast.

GSS was not used to assess the benefit imparted by the

forecast. Rather, it was required to assign each outcome a

score, in order to obtain an LPL. Given the way GSS is

constructed, it places an equal penalty on the two forecast

‘‘mistakes’’: both false alarms and missed events are,

in fact, marked with a 21. Practically, these individual

outcomes can have very different consequences from

a decision-maker’s perspective: a false alarm generates a

useless expenditure, but a missed event could lead to a

catastrophic loss. In real-world use, such scores should

be weighted according to a wider assessment that takes

risk analysis into top-level consideration.

5. Conclusions

In this work, a subseasonal forecast multisystem was

established, blending four of the forecast systems in-

volved in the Subseasonal to Seasonal Prediction project

(Vitart et al. 2017); it was analyzed for three different

initializations (1 March, 15 March, and 1 April) over 19

recent springs (1996–2014). The main aims of this study

were the evaluation of the multisystem near-surface

temperature global forecast quality for boreal spring,

the assessment of cold spell prediction in the southern

region facing the Black Sea, key for the production of

hazelnuts, and the estimation of potential forecast value

for end users.

The 2-m temperature forecast was first evaluated

using a deterministic metric, the ensemble mean corre-

lation, globally showing that the correlation between

the multisystem and reanalysis is higher than that of

any single model, especially for longer lead weeks. The

equatorial regions, as well as midlatitude highly populated

areas such as the Great Lakes region and northeastern

China maintain substantial skill at week 5, higher than

0.5, and further studies are planned to explore potential

sources of such high skill. Probabilistic metrics such as

the ignorance skill score and the generalized ROC score

show that although at global scale skill tends to decrease

with lead time, some regions seem to exhibit an increase

in skill, which is related to overconfidence in the fore-

casts at shorter lead times, as confirmed by a decom-

position of the ignorance skill score. Overall, the tropics

showbetter-than-climatological skill values in near-surface

temperatures, even at lead times as large as week 6.

In the south coastal Black Sea, correlations are less re-

markable after the deterministic skill time, and generally

show values below 0.4 beyond week 2. There is high var-

iability across the three spring start dates as well as across

the fourmodels. However, the choice of concatenating the

start dates effectively triples the number of forecast years,

removing part of the noise, and clearly shows that the

multisystem is always the best or the second best choice.

Although the area does not exhibit temperature pre-

diction skill after week 2, this work shows that low skill

for 2-m temperatures does not prevent the forecast from

being potentially valuable to decision-makers if a dif-

ferent but related variable is used instead. Indeed, pre-

vious studies have shown that considering number of

rainy or dry days tends to provide higher skill than ac-

cumulated rainfall (Moron et al. 2010;Muñoz et al. 2015,
2016), suggesting that frequency-based variables like

cold spells are less noisy and thus more predictable. In

fact, the CSPI subseasonal forecast is shown to embody

resolution and discrimination, which are crucial attri-

butes to determine the information usefulness.

When a cold spell is detected in the reanalysis, the

multisystem is able to predict it around half of the time

(i.e., 48%). When CSPI does not occur, the system in-

correctly foresees it about 17% of the time. The forecast

probability is considerably higher when CSPI occurs

than when CSPI is not observed, meaning the forecast is

different depending on the outcome; hence, the forecast

holds discrimination.

In turn, when themultisystem predicts a cold spell, the

event takes place about 36% of the time. Conversely,

when the system foresees a no-CSPI alert, it is almost
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always right: CSPI occurs in only 10% of the predicted

nonevents. The outcome, then, differs considerably

depending on the forecast, meaning the system contains

strong resolution. These two characteristics reveal that

the forecast incorporates potentially useful information

that should not be ignored by decision-makers.

To the best of our knowledge, a cost–loss model was

used for the first time in this context to explore the value

of subseasonal predictions applied to cold spells. We

found that the potential value of the forecasts is con-

spicuous for a number of users, who may potentially

benefit from the use of subseasonal predictions com-

pared to a no-action strategy. On the northern coast of

Turkey, as expected, the confident lead time (weeks 1–2)

has more intrinsic value than the dispersive lead times

(weeks 3–4 and 5–6). However, even forecasts supplied

3–6 weeks in advancemay result in up to a 20%economic

gain for agribusiness operators, despite the evident loss in

2-m temperature skill after the deterministic skill time.
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APPENDIX

Abbreviations

CR Correct rejection

CSPI Cold spell power index

ERAI ERA-Interim

EXT Extent of the detected cold spell

FA False alarm

GSS Gerrity skill score

HE Hit event

IGN Ignorance metric

ISS Ignorance skill score

LPL Lowest probability limit

ME Missed event

MGN Magnitude of the detected cold spell

MSys The multisystem used in this study

NCT Northern coast of Turkey

REL Reliability of the forecast

RES Resolution of the forecast

TAC Temperature anomaly correlation

UNC Uncertainty of the forecast
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