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Abstract: A comprehensive study of the serpentinite and associated veins belonging to the Frido Unit
in the Pollino Massif (southern Italy) is presented here with the aim to provide new constraints about
the hydrothermal system hosted by the accretionary wedge of the southern Apennines. The studied
serpentinites are from two different sites: Fosso Arcangelo and Pietrapica. In both sites, the rocks show
mylonitic-cataclastic structures and pseudomorphic and patch textures and are traversing by pervasive
carbonate and quartz-carbonate veins. The mineralogical assemblage of serpentinites consists of
serpentine group minerals (with a predominance of lizardite), amphiboles, pyroxene, chlorite, titanite,
magnetite, and talc. In some samples, hydro-garnet was also detected and documented here for
the first time. As for cutting veins, different mineralogical compositions were observed in the two
sites: calcite characterizes the veins from Fosso Arcangelo, whereas quartz and dolomite are the
principal minerals of the Pietrapica veins infill, suggesting a different composition of mineralizing
fluids. Stable isotopes of C and O also indicate such a different chemistry. In detail, samples from the
Pietrapica site are characterized by δ13C fluctuations coupled with a δ18O shift documenting calcite
formation in an open-system where mixing between deep and shallow fluids occurred. Conversely,
δ13C and δ18O of the Fosso Arcangelo veins show a decarbonation trend, suggesting their developing
in a closed-system at deeper crustal conditions. Precipitation temperature calculated for both sites
indicates a similar range (80 ◦C to 120 ◦C), thus suggesting carbonate precipitation within the same
thermal system.

Keywords: veins; hydrothermal fluids; C and O stable isotopes; Frido Units; southern Apennines

1. Introduction

Mantle peridotites are exposed on the seafloor at slow and ultraslow spreading mid-ocean
ridges [1]. Seafloor spreading developed in areas characterized by tectonic extension and detachment
faults, allowing uplift and exposure of mantle peridotite in oceanic core complexes [2–7]. Due to the
interaction with seawater and deep hydrothermal fluids, seafloor peridotites are readily serpentinized
over a wide range of conditions [8]. Serpentinites occurring in ophiolitic complexes are important for
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volatile cycling and fluid mobile elements acting as a source for water, carbon, sulfur, chlorine, boron,
arsenic, and nitrogen [9–26]. These rocks, in fact, in the last years have been widely studied to gain a
better understanding of their reactivity with respect to hydrothermal fluids promoting carbonation
processes and mineral immobilization of large amounts of CO2 [27,28].

Carbonates, usually as serpentinite matrix and/or vein infill within an extensive network, are a
common feature of altered oceanic lithosphere, although ocean-floor metasomatism is not the only
process responsible for their presence in these rocks. Carbonates are common minerals that form
in a number of geological settings and upon different environmental conditions. As the other
chemically-derived precipitates, carbonate composition mirrors the physico-chemical properties and
composition of the mineralizing fluid, a feature that helps to constrain the source fluid and environmental
conditions that promote carbonate precipitation also under a complex tectonic scenario [29–36].

In southern Apennines, serpentinites occur as slices within the geological and structural frame
of the Pollino Massif ophiolites (southern Ligurian Tethys) in the Ligurian Accretionary Complex
(LAC) [37]. These rocks are traversed by a complex network of veins with different textural and
macroscopic features. Their chemical and mineralogical compositions have never been studied
before, although could better constrain the geological evolution of the serpentinites in the LAC of the
Frido Unit.

With this in mind, we present here, for the first time, a comprehensive study of the serpentinites and
associated carbonate and quartz-carbonate veins from the Pollino Massif, based on field observations,
petrographic and mineralogical data, and carbon (δ13CV-PDB) and oxygen (δ18OV-SMOW) stable isotopes,
to provide new constraints about the hydrothermal system hosted by the accretionary wedge of
southern Apennines. Our principal goals are to define (1) source and composition of mineralizing
fluids and (2) processes leading to mobilization, fractionation, and redistribution of chemical elements
during the emplacement of the Frido Unit serpentinites within the accretionary wedge.

2. Geological Background

The Pollino Massif is located in the southern Apennines at the Calabria-Lucania border zone
(Figure 1). It consists of tectonically juxtaposed thrust belts derived from the deformation of the
African passive margin [38]. The deformation occurred between Oligocene and Pleistocene and
involved the Ligurian ocean ophiolitic crust and its sedimentary cover [38,39]. In this area, the Liguride
Complex [38], also defined as Liguride Units [40], is well exposed and is located in the highest position
in the tectonics edifice of the southern Apennines. The Liguride Complex is derived from the NW
subduction of the Tethyan ocean–continent transition zone and was divided into different tectonic
units, where fragments of Jurassic oceanic crust [38], associated with slices of continental crust rocks,
are preserved [38,39,41,42]. These terrains consist of a Mesozoic to Cenozoic flysch and a series of
ophiolitic nappes, widely exposed along the whole Apennine Chain and in Calabria [38].

The Liguride Complex has been subdivided into two units, the metamorphosed Frido Unit and
the non-metamorphic Calabro-Lucano Flysch [39] or North Calabria Unit [40]. The Frido Unit forms
the uppermost thrust sheet, and tectonically overlies the North Calabrian Units, which in turn is split
in a number of thrust sheets [39].

The Frido Unit consists of a metasedimentary sequence (phyllite, meta-arenite, quartzite,
and isolated bodies of meta-limestone or calcschist and metapelite) [37,43–46] with blocks of both
oceanic and continental rocks [38,41,42]. Oceanic lithosphere in the Frido Unit [47] is represented by
tectonized serpentinite [48–51], metabasalt [52], metagabbro, metapillow lavas [37], and dismembered
metadoleritic dykes [53–56]. Continental crust rocks mainly consist of weathered granofels, garnet
gneiss, garnet–biotite gneiss, leucocratic biotite gneiss and lenticular bodies of amphibolite [41,42]
often cross-cut by basic dykes [41].

According to several studies [38,39,41,53,54,57,58], the Frido Unit underwent a polyphase
blueschist to greenschist facies metamorphism developed in the deeper parts of the Liguride accretionary
wedge. The blueschist metamorphism in mafic rocks developed at peak pressure conditions of
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0.6–0.8 GPa and temperatures of 350 ◦C, whereas the subsequent greenschist facies overprint took
place at P = 0.4 GPa and T = 300–350 ◦C [37,59]. Cavalcante et al. [60] interpreted that also the
nearby metasediments were affected by HP–LT conditions using illite crystallinity data and the b0
parameter of K-white mica in phyllite. Similar metamorphic conditions have also been documented by
Invernizzi et al. [61] and Laurita and Rizzo [62] for the metabasites of the Frido Unit (200–300 ◦C and
0.6–0.8 GPa; 300–400 ◦C and 0.8–1.2 GPa, respectively).
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Figure 1. (a) Synthetic geological map of the Liguride Complex in the Pollino Massif and location of
the study area, (b) tectonic and stratigraphic sequence with the ultramaphic and continental rocks
contact (not to scale).

During blueschist facies conditions, crystallization of glaucophane occurred in metabasites [63],
and of magnesio-riebeckite in schist associated with metabasites [64] and carpholite in some veins
in metapelites and phyllites [37,65]. Afterward, in a brittle deformation regime, the most obvious
structures are characterized by cataclastic bands well developed in the serpentinites [63].

3. Sampling and Analytical Method

A total of 26 representative samples of serpentinites dominated by carbonate-veins (SpFA) and
serpentinites dominated by quartz-carbonate veins (SpPP) were collected at the Fosso Arcangelo site,
near the San Severino Lucano village, and in the Pietrapica site, at the Calabria-Lucanian boundary
(Figure 1) (Table 1).

The serpentinites outcropping at the Fosso Arcangelo site (SpFA) are brownish-grey-green and
appear intensely reworked by strong brittle and ductile deformation, evidenced by several slip surfaces
and by the presence of isoclinal and tight folds and some intrafolial folds often associated with
crenulation cleavage. The fractures are commonly filled by carbonate minerals and display changes in
both thickness and length (Figure 2a).

Serpentinites in this site crosscut by metadolerite dykes that were affected by metamorphism
under relatively HP/LT (blueschist facies) conditions during the formation of the Apennine accretionary
prism [45,53–55]. The Pietrapica site is characterized by a complex exposure of dark-green cataclastic
serpentinites (SpPP) with several slip surfaces and badland-like morphology. The serpentinite shows
quartz-carbonate veins with talc-rich domains (Figure 2b). At the surrounding of the Pietrapica area,
no rocks with any experience of HP/LT metamorphism occur.
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Table 1. GPS coordinates, texture, and mineral assemblages of the serpentinite samples.

Sample
No.

Sample
Code

GPS
Coordinates Texture Mineral Assemblage

Samples from the Fosso Arcangelo site (SpFA)

1 SpFA2 41◦01’40.2” N
16◦08’09.6” E Breccia, pseudomorphic and veins texture Srp–Cal–Am–Pren–Chl–Mag

and Ol–Opx relict

2 SpFA5 40◦01’39.2” N
16◦08’09.6” E Breccia, veins texture Srp–Cal–Am–Chl–Mag–Ttn

3 SpFA6.3 40◦01’38.3” N
16◦08’10.4” E

Breccia, pseudomorphic, veins and
patch texture

Srp–Cal–Am–Chl–Mag–Pmp
and Ol–Opx–Cpx relict

4 SpFA7 40◦01’37.6” N
16◦08’10.7” E Pseudomorphyc and veins texture Srp–Cal–Am–Chl–Pmp–Ol–

Opx–Cpx relict–Mag

5 SpFA7a 40◦01’37.6” N
16◦08’10.7” E Pseudomorphyc, veins and patch texture Srp–Cal–Am–Chl–Mag and

Ol–Opx–Cpx relict

6 SpFA9 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture Srp–Cal–Di–Adr–Mag

7 SpFA37 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

8 SpFA38 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

9 SpFA39 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

10 SpFA40 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

11 SpFA41 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage and
veins texture Srp–Cal–Di–Adr–Mag

12 SpFA42 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

13 SpFA43 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulations cleavage
and veins texture Srp–Cal–Di–Adr–Mag

14 SpFA44 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

15 SpFA45 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulation cleavage,
veins texture and protomylonitic fabric Srp–Cal–Di–Adr–Mag

16 SpFA46 40◦01’37.0” N
16◦08’11.9” E

Schistosity with crenulations cleavage
and veins texture Srp–Cal–Di–Adr–Mag

17 SpFA28 40◦01’45.3” N
16◦0.8’27.3” E

Pseudomorphyc texture–veins texture
Patch texture

Srp–Cal–Am–Chl–Mag and
Ol–Opx–Cpx relict

18 SpFA29 40◦01’45.3” N
16◦0.8’27.3” E

Pseudomorphyc texture Veins texture
Patch texture

Srp–Cal–Am–Chl–Mag and
Ol–Opx–Cpx relict

19 SpFA30 40◦01’45.3” N
16◦0.8’27.3” E

Pseudomorphyc texture Veins texture
Patch texture

Srp–Cal–Am–Chl–Mag and
Ol–Opx–Cpx relict

20 SpFA10 40◦02’56,8” N
16◦09’01.6” E

Pseudomorphyc texture Veins texture
Patch texture

Srp–Cal–Am–Chl–Mag and
Ol–Opx–Cpx relict

Samples from the Pietrapica quarry (SpPP)

21 SpPP31 40◦04’08.6” N
16◦0.9’19.6” E Patch texture, veins texture Srp–Cal ± Am–Chl–Mag

22 SpPP32 40◦04’08.6” N
16◦0.9’19.6” E Brecciated textures Tlc–Qtz–Cal

23 SpPP33 40◦04’08.6” N
16◦0.9’19.6” E Patch texture, veins texture Srp–Cal ± Am–Chl–Mag

24 SpPP34 40◦04’08.6” N
16◦0.9’19.6” E Brecciated textures Tlc–Qtz–Cal

25 SpPP35 40◦04’08.6” N
16◦0.9’19.6” E Patch texture, veins texture Srp–Cal ± Am–Chl–Mag

26 SpPP36 40◦04’08.6” N
16◦0.9’19.6” E Brecciated textures Tlc–Qtz–Cal

Petrographic characterization of all samples was carried out by optical microscopy on thin sections
of rock samples oriented following their foliations and lineations.
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Figure 2. (a) Carbonate veins in the serpentinite from the Fosso Arcangelo site (SpFA); (b) Cataclastic
serpentinites with quartz-carbonate veins and talc-rich domains in the Pietrapica quarry (SpPP).

Mineralogy analyses were performed on randomly oriented powdered samples of both host-rocks
and vein infill by using X-ray powder diffraction (XRPD) and µ-Raman techniques at the Department
of Sciences, University of Basilicata (Potenza, Italy). XRPD analyses were accomplished by means of
Siemens D5000 equipment with CuKα radiation, 40 kV and 32 mA, 2 s per step, and a step scan of
0.02◦ 2θ. Data were recorded between 5 and 70◦ 2θ for the bulk rock samples and from 15 to 70◦ 2θ
for the vein infill. The mineral phase identification was carried out by means of the X’Pert HighScore
Plus software (PANalytical 2001, Version 01 using the PDF-2 (2005) database. The µ-Raman analyses
were carried out using a Horiba Jobin-Yvon LabRam HR800 spectrometer equipped with a HeNe
laser source with a wavelength of 633 nm, a CCD detector operating at –70 ◦C, and an edge filter
that excludes from detection shift below 150 cm−1. A spectral resolution of 4 cm−1 was obtained by a
holographic grating with 600 lines/mm. Correct calibration of the instrument was verified checking
the position of the Si band at ±520.7 cm−1. Output laser power was 20 mV, and measurements were
performed using an optical microscope Olympus with objectives of 10×, 50×, and 100×. A laser
beam spatial resolution of 1 µm was obtained with the 100× objective. Spectra results were from the
average of 5 acquisitions of 10 s to optimize the signal/noise ratio. Two regions of the Raman spectra
were investigated: 1200–150 cm−1 for structural bonding characterization and 3800–3500 cm−1 for the
characterization of the hydroxyl groups. The minerals were identified based on the data reported in
the online RUFF database.

Mineral chemistry was determined at the Centro Nacional de Microscopía Electrónica (CNME)
of the Universidad Complutense (Madrid, Spain) by electron microprobe (EMP) analyses on the
serpentinites and associated veins, using a JEOL Superprobe JXA-8900M equipped with four wavelength
dispersive spectrometers. Silicate and oxide analyses were conducted at an accelerating voltage of
15 kV, an electron beam current of 20 nA, and a beam diameter of 5 µm. An accelerating voltage of 20 kV,
an electron beam current of 10 nA, and a beam diameter of 5 µm were used for carbonate minerals.
Each element was counted for 15 s. The following minerals were used as standards: sillimanite for the
Al, albite for the Si and Na, almandine for the Mn and Fe, kaersutite for Mg, Ti and Ca, microcline for
the K, fluorapatite for the P, Ca, F, Cl, and Ni, Cr pure metals. Corrections were made using the ZAF
(Z: atomic number; A: absorption; F: fluorescence) method. The estimation uncertainties for major
and minor elements were determined for each analysis, which have uncertainties from ±0.8% to ±5%.
The structural formula of amphiboles was recalculated on the basis of 23 oxygens and classified by
using the amphiboles nomenclature suggested by Leake et al. [66,67]. The andradite structural formula
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was recalculated on the basis of 24 oxygens. The structural formula of pyroxene was recalculated on
the basis of 6 oxygens.

A total of 21 vein infills were selected for stable oxygen and carbon isotope analysis including 15
samples from the SpFA and 6 samples from the SpPP. In detail, about 0.1 mg of powder samples were
put in a 12 mL screw cap Exetainer(R) vial and then flushed with pure helium to remove the air in the
headspace. Subsequently, about 50 µL of 100% H3PO4 was added to each sample for the conversion to
carbon dioxide. The analyses were performed using a Thermo GB-II peripheral coupled with a Thermo
Delta V Plus CF-IRMS at “Istituto Nazionale di Geofisica e Vulcanologia-Sezione di Palermo (Italy)
laboratories” (Palermo, Italy). The results are reported in delta per mil (%�) values relative to the Vienna
Pee Dee Belemnite (V-PDB) international scale. The δ18O values on the V-PDB scale are converted to
the Vienna Standard Mean Ocean Water (V-SMOW) using the equation of Coplen et al. [68]:

δ18OV-SMOW = 1.03091* δ18OV-PDB + 30.91

and are expressed in delta per mil (%�) relative to the Vienna Standard Mean Ocean Water (V-SMOW)
value. A Carrara Marble internal standard (MAB) and two international standards (NBS-18 and
NBS-19) were used for calibration. Analytical reproducibility was better than 0.1%� and 0.15%� for
δ13C and δ18O, respectively.

Some quartz-carbonate veins of the SpPP were selected for the study of fluid inclusions and for
the microthermometric determinations performed at the Departamento de Estratigrafía, Universidad
Complutense, (Madrid, Spain). Doubly polished 100 µm-thick sections were prepared for the samples
without any heating and glued to frosted glass with cyanoacrylate. The microthermometric study
was performed on the selected portions of samples in a linkam THMSG-600 heating and freezing
stage. The stage was calibrated with synthetic fluid inclusions, including the triple point of CO2,
melting point of H2O, and critical point of H2O. The melting point of H2O standards show that the
accuracy for low-temperature measurements is better than ±0.1 ◦C. Critical point standards show that
accuracy for high-temperature measurements is better ±0.1 ◦C. Homogenization temperatures (Th)
have been interpreted as minimum entrapment temperatures. In this case, no pressure corrections were
applied because a pressure determination would involve too many error-prone assumptions without
an independently obtained value of pressure. The interpretation of Th as minimum entrapment
temperatures is a typical procedure in working with Th data [69,70]. To interpret salinity, a NaCl-H2O
model (using the equations from [71]) was used on the basis of the observed ice-melting temperatures
of the last ice crystal Tm(Ice) from fluid inclusions.

4. Results

4.1. Petrography

4.1.1. The SpFA

The SpFA consist of serpentinite breccias with locally protomylonitic fabric and crosscutting
carbonate veins. The serpentinite breccias (Figure 3a) are characterized by angular and irregularly
shaped serpentinite grains embedded in the carbonate matrix. In the protomylonitic portion, breccias
show differentiated crenulation cleavage with antisymmetric microfolds. The main foliation is defined
by cleavage domains (limbs of microfolds) and microlithons (fold hinge areas). The main foliation is
well-developed and is marked by hydro-andradite. This schistosity refolded the previous foliation
(Figure 3b) defined by recrystallized serpentine, metamorphic clinopyroxene, and accessory minerals
such as titanite and magnetite.
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minerals are garnet, titanite, magnetite, and carbonate phases. As recently documented by Dichicco et al. [73], 
locally edenite amphibole may occur in chlorite-free samples.  

Lizardite + magnetite mesh texture or hourglass structures [74–76] usually occur in the SpFA showing 
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cleavage planes, lamellae and fibers of lizardite and chrysotile are spread on bastite pseudomorphs after 
pyroxene.  

Orthopyroxene is replaced by bastite pseudomorphs with exsolution lamellae of lizardite or fine-grained 
diopside aggregates. Primary magmatic clinopyroxene (augite) is preserved or replaced by metamorphic 
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Figure 3. Photomicrographs of SpFA samples: (a) The serpentinite breccia characterized by serpentinite
fragments in a carbonate matrix, plane polarized light, 4×; (b) schistosity with crenulation cleavage,
crossed polarized light, 4×; (c) relict olivine grains in the core of the mesh-texture. Olivine is replaced by
calcite, the mesh-texture are cross-cut by carbonate veins, crossed polarized light, 4×; (d) sub-parallel
carbonate veins, crossed polarized light, 4×; (e) vein infill with carbonate and serpentine minerals,
crossed polarized light, 4×; (f) carbonate veins with anastomosing network, crossed polarized light, 4×.
Cal = calcite; Srp = serpentine. Abbreviation after [72].

The SpFA samples consist of a primary mineral assemblage made up of olivine, orthopyroxene
and clinopyroxene (augite), and a serpentinite assemblage consisting of serpentine group minerals
(mainly lizardite and a minor amount of chrysotile and antigorite), tremolite, diopside, and clinochlore.
Accessory minerals are garnet, titanite, magnetite, and carbonate phases. As recently documented by
Dichicco et al. [73], locally edenite amphibole may occur in chlorite-free samples.

Lizardite + magnetite mesh texture or hourglass structures [74–76] usually occur in the SpFA
showing cores of relict olivine grains replaced by calcite that locally are cross-cut by carbonate veins
(Figure 3c). Along cleavage planes, lamellae and fibers of lizardite and chrysotile are spread on bastite
pseudomorphs after pyroxene.

Orthopyroxene is replaced by bastite pseudomorphs with exsolution lamellae of lizardite or
fine-grained diopside aggregates. Primary magmatic clinopyroxene (augite) is preserved or replaced
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by metamorphic diopside. Spinel is replaced by Cr and Al-magnetite at the core and clinochlore at
the rim.

Several types of carbonate veins have been recognized in the SpFA samples. As shown in
Figure 3d,e, veins crosscut the bulk rock and are distinguished in sheeted (micrite-filled veins,
carbonate veins with serpentine, carbonate veins with amphibole, fibrous calcite veins) and carbonate
types displaying different thickness. Veins occasionally form an anastomosing network with acicular,
fibrous, and radial serpentine and amphibole crystals (Figure 3f).

4.1.2. The SpPP

The SpPP are characterized by serpentinite breccias with quartz-carbonate rich veins. The serpentinite
assemblage is made up of lizardite and minor chrysotile and antigorite, carbonate minerals, amphibole
minerals (actinolite, tremolite), clinochlore, Cr-spinel, quartz, and talc. Magnetite is the only accessory
mineral. Similarly to the SpFA, in the SpPP, lizardite occurs in the relict mesh texture and in the matrix.

An irregular patchy texture with carbonates growing after serpentine (Figure 4a) characterizes the
SpPP samples. The carbonates occur as microcrystals, together with talc and rare fibrous tremolite.
They occur as elongated rombohedric crystals (Figure 4b) only in the veins. Locally, the SpPP samples
are characterized by talc-rich domains where quartz and carbonate minerals are also present. Quartz
is in micrometer sub-grains, showing undulatory extinction and dynamic recrystallization [77] and
intergrowths with carbonate crystals (Figure 4c). Talc, mostly associated with serpentine (lizardite and
chrysotile) and chlorite, occurs as massive coarse- to medium-grained aggregates, fine fibers, and/or
tabular crystals with perfect cleavage on the [001] plane (Figure 4d).
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Figure 4. Photomicrographs of SpPP samples: (a) irregular patchy texture, crossed polarized light,
4×; (b) carbonate veins with elongated rhombohedral crystals, plane polarized light, 4×; (c) dynamic
recrystallization of quartz, crossed polarized light, 4×; (d) fibers of talc associated with serpentine and
quartz, crossed polarized light, 4×. Qtz = quartz; Srp = serpentine; Tlc = talc. Abbreviation after [72].
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4.2. Mineral Chemistry

To better characterize silicate and carbonate minerals, an EMPA analysis was performed on
selected samples of serpentinites and associated veins, from Fosso Arcangelo (SpFA5 and SpFA39)
and Pietrapica (SpPP34A) sites. Amphiboles were analyzed in the host rock and associated veins,
pyroxene and garnet were analyzed in the host rock, carbonate minerals were analyzed in the veins
only (Tables 2–5).

The chemical composition of amphiboles is Ca-amphiboles [66], including tremolite and
magnesio-ferro-hornblende (Table 2). EMP analyses of edenite crystals are reported by [73].

Garnet is a Ti-rich hydro-andradite (TiO2 = 0.75–3.59 wt %) with high Fetot, Ca, and Mg contents
(FeOtot = 17.49–23.41 wt %; CaO = 27.57–32.88 wt %; MgO = 1.41–6.50 wt %) and low Al content (Al2O3

= 0.95–1.97 wt %) (Table 3, Figure 5).
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Figure 5. Secondary-electron image of serpentinite SpFA showing the presence of andradite (Adr),
diopside (Di), and small crystals of magnetite (Mag) analyzed by EMPA. Adr = andradite; Cal = calcite;
Di = diopside; Mag = magnesite; Serp = serpentine.

Clinopyroxene is characterized by a homogeneous composition rich in the diopside
end-member [78,79], with high Fe content (FeO = 0.88–2.85 wt %) and usually low Al (Al2O3 =

0.03–1.53 wt %) and Cr amounts (Cr2O3 = 0.01–0.16 wt %) (Table 4, Figure 5).
Carbonates consist of calcite (CaO = 52.05–62.38 wt %), Mg-calcite (CaO = 54.81–55.55 wt %; MgO

= 1.26 wt %), and dolomite (CaO = 29.60–29.79 wt %; MgO = 19.06–19.23 wt %; and FeOtot = 2.17–3.68
wt %) (Table 5).
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Table 2. Chemical analyses of amphiboles in serpentinites and associated veins (v subscript) of Fosso Arcangelo (SpFA39, SpFA5).

Sample Code SpFA39v SpFA39v SpFA5v SpFA5v SpFA5v SpFA5v SpFA39 SpFA39 SpFA5v SpFA5v

No. Analysis 73 76 77 78 79 91 98 102 109 130

Oxides (wt %)

SiO2 54.588 57.392 55.674 52.04 53.735 57.547 51.657 55.263 55.015 57.337
P2O5 0.031 n.d. n.d. 0.01 0.016 0.028 n.d. 0.005 0.024 0.057
TiO2 0.158 0.011 0.059 0.433 0.268 0.075 0.482 0.065 0.059 n.d.

Al2O3 2.798 0.479 1.559 5.282 3.543 1.369 5.484 1.871 2.509 n..d.
Cr2O3 0.224 0.007 0.092 0.425 0.486 0.009 0.502 0.006 0.225 n.d.
MnO 0.138 0.089 0.045 0.026 0.119 0.082 0.03 0.17 0.082 0.022
FeO 3.925 3.147 2.475 3.231 3.064 2.663 2.871 7.065 2.401 2.012
NiO 0.108 0.09 0.05 0.082 0.076 0.045 0.139 0.05 n.d. n.d.
MgO 23.1 23.415 24.408 22.602 23.236 23.524 21.81 20.999 23.623 23.445
CaO 11.427 13.574 12.845 11.959 12.063 12.273 12.421 9.68 12.523 13.653

Na2O 1.192 0.09 0.459 1.187 1.144 0.358 1.296 1.995 0.813 0.07
K2O 0.002 n.d. 0.014 0.008 0.014 0.014 0.028 0.015 0.016 0.022

F n.d. 0.093 n.d. 0.039 0.023 n.d. n.d. n.d. 0.037 0.032
Cl n.d. 0.018 0.019 0.004 0.02 0.011 0.027 0.003 0.006 0.01

Sum 97.691 98.362 97.695 97.311 97.792 97.996 96.741 97.186 97.316 96.645
Fe3+/ΣFe used 1.000 0.970 1.000 1.000 1.000 0.798 1.000 1.000 1.000 0.827

Mn3+/ΣMn used 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 0.000

Final wt %

MnO 0.00 0.09 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.02
Mn2O3 0.15 0.00 0.05 0.03 0.13 0.00 0.03 0.19 0.09 0.00

FeO 0.00 0.09 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.35
Fe2O3 4.36 3.39 2.75 3.59 3.41 2.36 3.19 7.85 2.67 1.85
H2O+ 2.14 2.14 2.17 2.05 2.10 2.18 2.05 2.15 2.15 2.18
Sum 100.28 100.88 100.15 99.74 100.26 100.42 99.12 100.14 99.76

Group OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl
Subgroup of (OH,F,Cl) Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca

Species Tr Tr Tr Tr Tr Tr Mg-Fe2-HblMg-Fe2-Hbl Tr Tr
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Table 2. Cont.

Sample Code SpFA39v SpFA39v SpFA5v SpFA5v SpFA5v SpFA5v SpFA39 SpFA39 SpFA5v SpFA5v

No. Analysis 73 76 77 78 79 91 98 102 109 130

T (ideally 8 apfu)

Si 7.493 7.800 7.619 7.207 7.389 7.813 7.209 7.628 7.561 7.907
P 0.002 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.001 0.003
Al 0.453 0.077 0.251 0.792 0.574 0.185 0.791 0.304 0.406 0.000
Ti 0.016 0.001 0.006 0.000 0.028 0.000 0.000 0.007 0.006 0.000

Fe3+ 0.036 0.123 0.123 0.000 0.008 0.000 0.000 0.061 0.025 0.090
T subtotal 8.000 8.001 7.999 8.000 8.000 8.000 8.000 8.000 7.999 8.000

C (ideally 5 apfu)

Ti 0.000 0.000 0.000 0.045 0.000 0.008 0.051 0.000 0.000 0.000
Al 0.000 0.000 0.000 0.070 0.000 0.034 0.111 0.000 0.000 0.000
Cr 0.024 0.001 0.010 0.047 0.053 0.001 0.055 0.001 0.024 0.000

Mn3+ 0.016 0.000 0.005 0.003 0.014 0.000 0.004 0.020 0.010 0.000
Fe3+ 0.414 0.225 0.160 0.374 0.344 0.241 0.335 0.755 0.251 0.102
Ni 0.012 0.010 0.006 0.009 0.008 0.005 0.016 0.006 0.000 0.000

Mn2+ 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003
Fe2+ 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mg 4.534 4.744 4.819 4.452 4.581 4.711 4.429 4.219 4.715 4.820

C subtotal 5.000 5.001 5.000 5.000 5.000 5.000 5.001 5.001 5.000 4.965

B (ideally 2 apfu)

Mn2+ 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000
Fe2+ 0.000 0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.000 0.000
Mg 0.193 0.000 0.160 0.214 0.182 0.050 0.108 0.102 0.125 0.000
Ca 1.681 1.977 1.840 1.775 1.777 1.785 1.857 1.432 1.844 2.000
Na 0.126 0.023 0.000 0.011 0.041 0.094 0.035 0.467 0.031 0.000

B subtotal 2.000 2.000 2.000 2.000 2.000 1.999 2.000 2.001 2.000 2.000
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Table 2. Cont.

Sample Code SpFA39v SpFA39v SpFA5v SpFA5v SpFA5v SpFA5v SpFA39 SpFA39 SpFA5v SpFA5v

No. Analysis 73 76 77 78 79 91 98 102 109 130

A (from 0 to 1 apfu)

Ca 0.000 0.000 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.017
Na 0.191 0.000 0.122 0.308 0.264 0.000 0.316 0.067 0.186 0.019
K 0.000 0.000 0.002 0.001 0.002 0.002 0.005 0.003 0.003 0.004

A subtotal 0.191 0.000 0.168 0.309 0.266 0.002 0.321 0.070 0.189 0.040
O (non-W) 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000

OH 1.967 1.954 1.983 1.892 1.930 1.982 1.892 1.986 1.970 1.984
F 0.000 0.040 0.000 0.017 0.010 0.000 0.000 0.000 0.016 0.014
Cl 0.000 0.004 0.004 0.001 0.005 0.003 0.006 0.001 0.001 0.002
O 0.033 0.002 0.012 0.090 0.056 0.015 0.101 0.014 0.012 n.d.

W subtotal 2.000 2.000 1.999 2.000 2.001 2.000 1.999 2.001 1.999 2.000
Sum T,C,B,A 15.191 15.002 15.167 15.309 15.266 15.001 15.322 15.072 15.188 15.005

Note: Hbl = hornblende; Tr = tremolite.
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Table 3. Chemical analyses of Ti-rich hydro-andradites in a sample (SpFA39) of Fosso Arcangelo serpentinite.

Sample code SpFA39 SpFA39 SpFA39 SpFA39 SpFA39

N. Analysis 8 18 26 29 48

Oxides (wt %)

SiO2 34.90 33.68 34.28 34.17 34.67
TiO2 3.55 2.75 3.1 3.56 3.41

Al2O3 3.90 2.95 2.94 3.65 3.97
MnO 0.06 0.12 0.07 0.09 b.l.d.
Fe2O3 20.27 23.41 21.49 21.32 20.88
MgO 0.94 0.41 0.50 0.85 0.64
CaO 33.47 33.49 34.57 33.87 33.85

Na2O 0.01 0.02 0.01 0.01 0.03
K2O n.d. n.d. b.l.d. b.l.d. b.l.d.
H2O* 1.45 1.36 1.34 1.37 1.40
Sum 98.55 98.19 98.30 98.89 98.85

Structural formula

Si 5.672 5.510 5.610 5,582 5.650
Ti 0.470 0.412 0.445 0.472 0.467
Al 0.740 0.640 0.634 0.705 0.745
Fe 2.770 2.988 2.899 2.831 2.779
Mn 0.010 0.020 0.011 0.013 0.000
Mg 0.172 0.106 0.110 0.156 0.131
Ca 5.878 5.898 6.002 5.950 5.932
H/4 0.349 0.329 0.319 0.334 0.343
Sum 16.061 15.903 16.030 16.043 16.047

Species Hy-adr Hy-adr Hy-adr Hy-adr Hy-adr

Note: n.d. = not-detected; b.l.d. = below limit detection. H2O* determined from stoichiometry. Hy-adr = hydro-andradite.
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Table 4. Analyses of clinopyroxene in serpentinite of Fosso Arcangelo (SpFA39, SpFA5).

Sample Code SpFA39 SpFA39 SpFA39 SpFA39 SpFA39 SpFA39 SpFA39 SpFA5 SpFA5 SpFA5

N.Analysis 5 10 19 21 50 51 53 57 58 61

Oxides (wt %)

SiO2 54.48 54.64 52.14 54.43 53.35 54.45 52.42 53.07 53.45 53.39
P2O5 0.01 0.02 0.03 b.l.d. 0.01 0.02 n.d. 0.02 0.06 0.01
TiO2 0.05 0.1 0.11 0.04 0.01 b.l.d. n.d. 0.02 0.02 n.d.

Al2O3 0.24 0.46 1.04 0.03 0.96 0.26 1.60 1.53 0.86 0.75
Cr2O3 n.d. 0.05 0.16 0.04 0.01 n.d. b.l.d. 0.02 n.d. 0.03
MnO 0.05 0.17 0.30 0.25 0.15 0.06 0.12 0.18 0.08 0.04
FeO 0.88 2.02 3.81 1.37 1.26 1.27 1.15 2.30 1.77 1.34
NiO 0.02 n.d. 0.01 n.d. 0.01 0.04 0.05 n.d. 0.05 0.06
MgO 17.38 17.23 17.07 17.76 17.68 17.08 14.99 16.51 16.92 17.51
CaO 25.86 24.42 23.57 25.44 23.64 25.34 24.48 24.53 24.83 24.72

Na2O 0.01 0.03 0.11 n.d. 0.10 0.06 0.05 0.14 0.09 0.07
K2O b.l.d. 0.01 0.04 0.02 0.05 0.03 n.d. 0.04 0.04 0.01

F 0.09 n.d. 0.01 n.d. n.d. n.d. 0.01 0.01 n.d. n.d.
Cl 0.01 0.01 0.04 b.l.d. 0.02 0.02 0.01 0.07 0.03 0.01

Sum 99.02 99.16 98.41 99.41 97.24 98.62 94.89 98.43 98.19 97.92

Structural formula

Si 1.99 1.999 2 1.986 1.984 2.002 1.998 1.965 1.98 1.987
Ti 0.001 0.003 0.003 0.001 0 0 0 0 0.001 0
Al 0.01 0.02 0.044 0.002 0.042 0.011 0.072 0.067 0.037 0.033
Cr 0.000 0.002 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.001

Fe+3 0.03 0.000 0.000 0.0023 0.000 0.000 0.000 0.000 0.000 0.000
Fe+2 0.004 0.062 0.115 0.019 0.039 0.039 0.037 0.071 0.055 0.042
Mn 0.001 0.005 0.009 0.008 0.005 0.002 0.004 0.006 0.003 0.001
Mg 0.946 0.94 0.918 0.966 0.98 0.936 0.852 0.911 0.984 0.967
Ca 1.012 0.957 0.911 0.995 0.942 0.998 1 0.973 0.985 0.981
Na 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
K 0.000 0.001 0.002 0.000 0.002 0.000 0 0.002 0.002 0
H 0.000 0.000 0.000 0.000 0.248 0.000 0.000 0.000 0.000 0.000

P+5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Cl 0.000 0.000 0.002 0.000 0.001 0.001 0.001 0.005 0.002 0.001
Ni 0.001 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.001 0.002
F 0.01 0.000 0.004 0.000 0.000 0.000 0.001 0.002 0.000 0.000

Sum 4 3.988 4 4 3.996 3.992 3.966 4.002 4 4.005
Species Di Di Aug-Di Di Aug-Di Di Aug Aug-Di Aug-Di Aug-Di
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Table 4. Cont.

Sample Code SpFA39 SpFA39 SpFA39 SpFA39 SpFA39 SpFA39 SpFA39 SpFA39

N.Analysis 62 63 69 70 78 97 98 104

Oxides (wt %)

SiO2 49.36 54.13 52.95 54.29 53.88 54.59 53.32 53.82
P2O5 0.01 0.01 0.01 b.l.d. 0.05 0.05 n.d. 0.08
TiO2 b.l.d. 0.01 0.01 0.02 0.02 n.d. 0.05 0.03

Al2O3 1.75 0.47 0.78 0.38 0.39 0.03 0.56 0.14
Cr2O3 n.d. 0.01 0.01 b.l.d. 0.01 n.d. n.d. 0.01
MnO 0.09 0.12 0.12 0.14 0.12 0.10 0.31 0.27
FeO 1.66 1.85 1.96 1.43 2.85 1.07 2.11 1.95
NiO 0.02 n.d. 0.05 0.03 0.01 0.02 n.d. n.d.
MgO 16.88 16.72 16.70 17.10 16.99 17.99 17.06 16.67
CaO 24.05 25.23 24.95 25.51 25.40 25.69 24.32 25.69

Na2O 0.11 0.08 0.06 0.10 0.06 n.d. 0.05 n.d.
K2O 0.04 n.d. 0.03 n.d. 0.01 0.01 0.01 0.01

F 0.02 0.02 n.d. n.d. n.d. 0.02 0.03 0.02
Cl 0.02 0.01 b.l.d. 0.01 0.01 b.l.d. 0.01 n.d.

Sum 94.03 98.68 97.65 99.02 99.794 99.56 97.82 98.69

Structural formula

Si 1.918 1.994 1.976 1.993 1.976 1.989 1.983 1.989
Ti 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.001
Al 0.08 0.021 0.035 0.017 0.017 0.001 0.025 0.006

Fe+2 0.054 0.057 0.061 0.044 0.087 0.032 0.066 0.06
Mn 0.003 0.004 0.004 0.004 0.004 0.003 0.01 0.009
Mg 0.978 0.918 0.929 0.936 0.929 0.977 0.946 0.918
Ca 1.001 0.996 0.998 1.003 0.998 1.003 0.969 1.017
K 0.002 0.000 0.001 0.000 0.000 0.001 0.000 0.001

P+5 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001
Cl 0.002 0.001 0.000 0.001 0.000 0.000 0.001 0.000
Ni 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000
F 0.003 0.003 0.000 0.000 0.000 0.002 0.003 0.002

Sum 4.042 3.995 4.006 3.998 4.014 4.01 4.004 4.005
Species Aug Di Aug-Di Di Aug-Di Di Aug-Di Aug-Di

Note: n.d., not-detected; b.l.d., below limit detection. Di = diopside; Aug = augite
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Table 5. Analyses of carbonate minerals in veins of Fosso Arcangelo (SpFA39v, SpFA5v) and Pietrapica (SpPP34Av) sites.

Sample Code SpFA394v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v

N.Analysis 1 2 3 4 11 12 14 23 24 31 32 39 40 41 54

Oxides (wt %)

P2O5 n.d. n.d. n.d. n.d. 0.035 0.055 0.014 0.047 0.027 0.071 0.078 0.058 0.049 0.035 0.035
TiO2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.058 n.d. n.d. 0.053 0.02 0.008

Al2O3 n.d. n.d. n.d. n.d. 0.03 0.016 n.d. n.d. 0.014 0.01 n.d. n.d. 0.002 0.04 n.d.
Cr2O3 n.d. n.d. n.d. n.d. n.d. 0.031 0.076 n.d. 0.045 0.003 n.d. 0.002 n.d. n.d. 0.001
MnO 0.114 0.055 n.d. n.d. n.d. n.d. 0.018 n.d. n.d. 0.015 n.d. n.d. 0.033 0.024 0.004
FeO 1.78 n.d. n.d. 0.005 0.113 n.d. n.d. n.d. n.d. n.d. n.d. 0.103 0.042 n.d. n.d.
NiO n.d. n.d. n.d. n.d. n.d. 0.095 n.d. 0.017 0.017 n.d. n.d. 0.012 0.041 0.005 0.032
MgO 18.706 n.d. n.d. n.d. n.d. n.d. 0.004 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.059
CaO 25.196 56.118 57.277 55.394 55.813 56.98 57.27 54.876 56.913 56.188 62.382 55.598 55.6 54.752 54.193
SrO n.d. 0.203 0.193 0.218 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Na2O n.d. n.d. n.d. n.d. 0.015 n.d. 0.03 0.025 0.006 0.018 n.d. n.d. n.d. 0.041 0.013
K2O n.d. n.d. n.d. n.d. 0.005 n.d. 0.032 0.002 n.d. 0.017 0.009 n.d. 0.009 0.01 n.d.

F n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.03 n.d. n.d. n.d. 0.018 0.026 0.049 0.003
Cl n.d. n.d. n.d. n.d. 0.003 0.003 0.015 0.002 0.005 n.d. 0.005 0.002 0.009 n.d. 0.013

Sum 45.796 56.376 57.47 55.617 56.013 57.179 57.456 54.986 57.026 56.38 62.473 55.785 55.851 54.955 54.357
CO2 * 41,36 44,16 45,03 43,57 44.03 44.86 n.d. 43.17 44.71 44.15 48.98 43.75 43.82 43.17 42.66

Structural formula

Sr 0.000 0.01 0.01 0.01 0.01 0.000 0.000 0.000 0.000 0.04 0.000 0.000 0.000 0.000 0.000
Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000
Al 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Fe+2 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.000 0.000
Mn 0.003 0.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000
Mg 0.988 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003
Ca 0.956 1.993 1.995 1.994 1.984 1.994 1.995 1.999 1.997 1.983 1.998 1.994 1.991 1.99 1.994
K 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

P+5 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001
Cl 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001
Ni 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001
F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.003 0.005 0.000
C 2 1.999 1.999 1.999 1.999 2 1.999 2 1.999 1.986 1.999 1.999 1.999 1.999 2

Sum 4 4.001 4.001 4.002 4.001 3.998 4 4 3.999 4.012 3.999 3.999 3.999 3.999 3.999
Species Dol Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal
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Table 5. Cont.

Sample Code SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA39v SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v

N. Analysis 55 56 59 60 66 73 85 87 92 46 51 65 70 86

Oxides (wt %)

P2O5 0.032 0.06 0.057 0.065 0.052 0.076 0.054 0.054 0.011 0.078 0.065 0.034 0.067 0.075
TiO2 0.048 0.017 0.014 n.d. 0.141 0.04 n.d. n.d. 0.017 0.036 0.028 0.024 n.d. 0.045

Al2O3 0.012 n.d. n.d. n.d. n.d. n.d. 0.226 n.d. n.d. 0.05 n.d. 0.592 n.d. 0.021
Cr2O3 n.d. 0.003 0.095 0.033 0.02 n.d. 0.019 n.d. n.d. n.d. n.d. 0.012 n.d. 0.016
MnO n.d. 0.046 n.d. 0.013 0.04 0.023 n.d. 0.035 n.d. n.d. 0.023 n.d. 0.026 0.004
FeO 0.014 n.d. 0.013 0.017 0.006 n.d. 0.017 0.13 0.227 0.099 0.048 0.025 0.003 n.d.
NiO n.d. n.d. 0.005 0.039 0.005 n.d. n.d. n.d. n.d. n.d. 0.052 0.06 n.d. 0.008
MgO n.d. n.d. n.d. n.d. n.d. n.d. 0.144 0.109 0.018 1.265 n.d. n.d. n.d. n.d.
CaO 54.686 54.332 54.804 54.074 53.64 55.502 55.12 52.047 44.394 54.813 57.314 55.63 56.344 56.791

Na2O 0.01 0.016 0.03 0.028 n.d. 0.012 n.d. 0.037 0.037 0.019 0.012 0.059 0.001 0.026
K2O 0.015 n.d. n.d. 0.013 0.015 0.017 0.001 0.004 0.009 n.d. 0.036 n.d. n.d. 0.009

F 0.016 0.025 0.028 n.d. 0.04 n.d. 0.015 n.d. 0.016 n.d. 0.022 n.d. 0.014 n.d.
Cl 0.016 0.007 0.005 n.d. 0.048 n.d. 0.005 n.d. 0.373 0.012 n.d. 0.006 n.d. n.d.

Sum 54.838 54.493 55.038 54.282 53.979 55.67 55.642 52.416 45,102 57.241 57.591 56.441 56.449 56.995
CO2 * 43.03 42.72 43.16 42.52 42.38 43.62 n.d. 41.10 45.011 45.18 45.16 44.04 44.28 44.68

Structural formula

Ti 0.001 0.000 0.000 0.000 0.004 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.001
Al 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.023 0.000 0.001
Cr 0.000 0.000 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe+2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.008 0.003 0.001 0.001 0.000 0.000
Mn 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.001 0.000
Mg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.001 0.061 0.000 0.000 0.000 0.000
Ca 1.994 1.996 1.992 1.995 1.985 1.996 1.981 1.987 1.961 1.894 1.992 1.975 1.997 1.994
K 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

P+5 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.001 0.001
Cl 0.001 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.026 0.001 0.000 0.000 0.000 0.000
Ni 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000
F 0.002 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.000 0.002 0.000 0.001 0.001
C 1.999 1.999 1.999 1.999 1.998 1.999 1.996 2 2 1.989 1.999 1.992 1.999 1.999

Sum 3.999 3.999 3.999 3.999 3.997 3.999 3.997 3.999 3.999 3.979 3.999 3.995 3.999 3.998
Species Cal Cal Cal Cal Cal Cal Cal Cal Cal Mg-Cal Cal Cal Cal Cal
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Table 5. Cont.

Sample Code SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v SpFA5v SpPP34Av SpPP34Av SpPP34Av SpPP34Av

N.Analysis 87 96 115 121 122 125 129 131 132 133 15 16 37 41

Oxides (wt %)

P2O5 0.068 0.016 0.022 0.053 0.041 0.017 0.055 0.027 0.044 0.047 0.034 n.d. 0.035 0.007
TiO2 0.035 n.d. 0.022 n.d. 0.04 n.d. n.d. 0.013 n.d. n.d. 0.001 0.036 0.025 n.d.

Al2O3 0.016 0.02 n.d. 0.02 0.001 n.d. 0.007 n.d. 0.014 n.d. 0.447 n.d. 0.253 n.d.
Cr2O3 n.d. n.d. n.d. 0.016 n.d. 0.049 n.d. n.d. 0.043 0.122 n.d. n.d. 0.028 0.009
MnO 0.116 n.d. 0.045 n.d. 0.041 n.d. 0.072 0.023 0.004 n.d. 0.223 0.167 0.355 0.231
FeO 0.106 0.079 0.018 n.d. 0.01 0.01 0.008 n.d. 0.033 0.03 2.303 3.685 2.166 2.405
NiO n.d. n.d. 0.052 0.044 0.041 0.01 0.018 n.d. n.d. 0.021 0.031 n.d. n.d. 0.049
MgO 1.264 n.d. n.d. 0.13 n.d. n.d. n.d. n.d. n.d. n.d. 19.178 19.232 19.124 19.062
CaO 55.551 56.642 55.904 56.896 55.968 57.21 58.56 56.413 56.831 57.205 29.598 29.653 29.794 29.685

Na2O 0.014 n.d. 0.024 0.034 0.012 0.019 n.d. n.d. 0.005 0.026 0.037 0.054 n.d. n.d.
K2O 0.013 0.004 n.d. 0.006 n.d. 0.035 0.029 n.d. 0.029 0.013 0.014 0.008 n.d. n.d.

F 0.012 n.d. 0.032 0.039 n.d. 0.143 n.d. n.d. 0.035 0.053 n.d. n.d. 0.013 0.076
Cl n.d. 0.005 0.002 0.001 n.d. 0.018 n.d. n.d. n.d. 0.006 0.005 0.013 n.d. n.d.

Sum 57.19 56.765 56.108 57.223 56.154 57.447 58.749 56.476 57.023 57.5 51.87 52.845 51.788 51.492
CO2 * 45.19 44.52 44.05 45.60 44.2 45.31 46.04 44.30 44.75 45.12 45.98 46.71 45.98 45.94

Structural formula

Ti 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000
Al 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.017 0.000 0.009 0.000
Cr 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.003 0.000 0.000 0.001 0.000

Fe+2 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.061 0.097 0.058 0.064
Mn 0.003 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.000 0.000 0.006 0.004 0.01 0.006
Mg 0.061 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.908 0.899 0.907 0.906
Ca 1.928 1.997 1.992 1.958 1.995 1.981 1.996 1.998 1.993 1.989 1.008 0.997 1.015 1.014
K 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000

P+5 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000
Cl 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Ni 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001
F 0.001 0.000 0.003 0.004 0.000 0.015 0.000 0.000 0.004 0.005 0.000 0.000 0.001 0.008
C 1.999 2 2 1.999 1.999 2 1.999 2 1.999 1.999 1.994 2 1.996 2

Sum 3.999 4 3.999 3.999 3.999 4 4 3.999 4 3.999 3.857 3.999 3.998 4
Species Mg-Cal Cal Cal Cal Cal Cal Cal Cal Cal Cal Dol Dol Dol Dol

Note: n.d. = non-detected; CO2 * = calculated from stoichiometry. Cal = calcite; Dol = dolomite.
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4.3. Mineralogy

According to petrographic observations, the XRD analysis revealed that serpentinite samples
from both studied sites are made up of serpentine polimorphs, mainly lizardite and, in minor amounts,
chrysotile and antigorite, amphibole-like minerals, mainly actinolite and tremolite, clinochlore,
magnetite, and calcite. Diopside and hydro-andradite are also present in the SpFA only.

As for veins, a different mineralogical composition was detected for the two analyzed sample
groups. The vein infill of the SpFA samples consists of prevalent calcite and traces of aragonite and
rhodochrosite. In these samples, traces of silicate minerals, such as serpentine, actinolite, and tremolite,
were also detected. The infill of veins traversing the SpPP is dominated by dolomite and Mg-calcite,
with quartz as the sole silicate phase.

µ-Raman spectroscopy has been used as a complementary technique to the X-ray diffraction
analysis to better identify the carbonate minerals (calcite, aragonite, and dolomite) of both serpentinites
and crosscutting veins. The optical vibrations are internal vibrations of the CO3 group (three Raman
bands lying between 1500 and 700 cm−1) and external or lattice vibrations involving translation and
librations of the CO3 groups relative to the Ca or Mg atoms (500–100 cm−1) [80]. In our samples, calcite
is characterized by a dominant Raman band at 1091 cm−1, minor bands at 713, 280, and 155 cm−1 and a
very weak band at 1439 cm−1 (Figure 6a). The Raman spectrum for aragonite signals are detected for a
dominant Raman band at 1086 cm−1, two strong bands at 212 and 150 cm−1, and three weak bands
at 703, 250, and 180 cm−1 (Figure 6b). In dolomite, the main peak in the Raman spectrum occurs at
1103 cm−1, whereas the weak peaks are at 730, 305, and 180 cm−1 (Figure 6c).
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4.4. Carbon and Oxygen Stable Isotope Analyses

Results of isotope analyses of carbonate phases in the veins of SpFA and SpPP are presented in
Tables 6 and 7.

The C and O isotope ratios of carbonates from the veins of the SpFA have two distinct ranges.
The δ13C values range from−0.81%� to +2.16%� and from−2.78%� to−3.66%� vs. V-PDB, corresponding
δ18O values are between +15.02%� and +16.38%� vs. V-SMOW, except for three samples (SpFA7av,
SpFA30v, SpFA10v) having δ18O values slightly more positive (between +18.36%� and +21.53%� vs.
V-SMOW). The δ13C values of carbonate veins of the SpPP are in the range from −1.78%� to −3.60%�

vs. V-PDB, and the corresponding δ18O average value is +21.3%� (1σ = 0.18; n = 6) vs. V-SMOW.
Based on the XRPD results, calcite and dolomite have been considered as dominant carbonate

phases in the veins of the SpFA and SpPP, respectively. Accordingly, equilibrium temperatures for
SpFA veins were computed from δ18O data and considering the calcite-water fractionation curves of
O’Neil et al. [81], Friedman and O’Neil [82], and Kim and O’Neil [83]. Instead, for vein samples of
SpPP, dolomite-water fractionation curves of Schmidt et al. [84] and Horita [85] have been considered.
In both areas, the oxygen isotope composition of water (δ18O) has been assumed to be 0%� similar to
modern seawater, as used by Agrinier et al. [86]. Depending on the fractionation factors available from
the literature, for the vein samples of SpFA we have obtained an equilibrium temperature ranging
from 83 to 117◦C (∆18Ocalcite from [81]), from 81 to 121 ◦C (∆18Ocalcite from [82]), and from 76 to 107 ◦C
(∆18Ocalcite from [83]).
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Table 6. C and O isotope data and calculated fluid isotopic composition for the calcite in serpentinites from the Fosso Arcangelo site.

Sample No. Sample
Code

Carbonate
Phase

δ13CPDB
(%�)

δ18OPDB
(%�)

δ18OSMOW
(%�)a) T ◦C b) T ◦C c) T ◦C d) δ13CCO2 fluid

(%�) e)
δ13CCO2 fluid

(%�) f)
δ13CCO2 fluid

(%�) g)

1 SpFA2v Cal–Arg 2.16 –15.07 15.37 113.47 116.99 104.09 –1.01 –1.21 –1.76
2 SpFA6.3v Cal–Arg –0.12 –14.98 15.47 112.68 116.00 103.36 –3.53 –3.35 –4.08
3 SpFA7av Cal–Arg 0.96 –12.17 18.36 89.52 88.51 81.88 –3.89 –3.96 –4.42
4 SpFA9v Cal–Arg –3.66 –14.94 15.51 112.33 115.57 103.04 –7.09 –6.91 –7.64
5 SpFA38v Cal–Arg –0.36 –14.41 16.05 107.74 109.92 98.80 –4.06 –3.93 –4.60
6 SpFA39v Cal–Arg –3.17 –15.41 15.02 116.49 120.79 106.88 –6.37 –6.14 –6.92
7 SpFA40v Cal–Arg –3.11 –15.06 15.38 113.38 116.88 104.01 –6.48 –6.29 –7.03
8 SpFA42v Cal–Arg 0.22 –15.02 15.42 113.03 116.44 103.69 –3.17 –2.98 –3.72
9 SpFA44v Cal–Arg –0.48 –14.32 16.15 106.98 108.99 98.09 –4.22 –4.11 –4.77

10 SpFA45v Cal–Arg –2.79 –14.95 15.50 112.42 115.68 103.12 –6.22 –6.04 –6.76
11 SpFA28v Cal 0.45 –14.32 16.15 106.98 108.99 98.09 –3.29 –3.18 –3.84
12 SpFA29v Cal 0.32 –14.09 16.38 105.03 106.63 96.28 –3.54 –3.44 –4.08
13 SpFA29.1v Cal –0.4 –14.37 16.09 107.40 109.51 98.48 –4.12 –4.00 –4.66
14 SpFA30v Cal –0.81 –11.39 19.17 83.57 81.86 76.35 –6.07 –6.19 –6.59
15 SpFA10v Cal–Arg 1.12 –11.97 18.57 87.97 86.77 80.45 –3.83 –3.92 –4.36

Average 105.93 107.97 90.17 –4,39 –4.30 –4.90

Note: n.d., non-detected. aδ18OV-PDB converted in δ18OV-SMOW using the equation: δ18OV-SMOW = 1.03091*δ18OV-PDB + 30.91 from [68]. b Temperature calculated using the equation
proposed by [81].c Temperature calculated using the equation proposed by [81]; [82].d Temperature calculated using the equation proposed by [83]. e δ13CCO2 fluid calculated using the
equation proposed by [87] considering b. f δ13CCO2 fluid calculated using the equation proposed by [87] considering c. g δ13CCO2 fluid calculated using the equation proposed by [87]
considering d.

Table 7. C and O isotope data and calculated fluid isotopic composition for the dolomite in serpentinites from the Pietrapica site.

Sample No. Sample Code Carbonate
Phase δ13CPDB (%�) δ18OPDB (%�) δ18OSMOW

(%�)a) T ◦C b) T ◦C c) δ13CCO2 fluid
(%�) d)

δ13CCO2 fluid
(%�) e)

1 SpPP33v Dol–Mg-Cal –2.69 –9.12 21.51 105.04 83.77 –6.97 –8.40
2 SpPP33.1v Dol–Mg-Cal –3.37 –9.17 21.45 105.57 84.15 –7.61 –9.05
3 SpPP33Dv Dol–Ank –2.7 –9.34 21.28 107.39 85.43 –6.83 –8.28
4 SpPP33D.1v Dol–Ank –3.6 –9.4 21.22 108.04 85.88 –7.69 –9.15
5 SpPP35v Dol–Cal –1.79 –9.49 21.13 109.02 86.57 –5.83 –7.29
6 SpPP35.1v Dol–Cal –2.26 –9.57 21.04 109.90 87.18 –6.24 –7.72

Average 107.49 85.50 –6.86 –8.32

Note: n.d = non-detected. aδ18OV-PDB converted in δ18OV-SMOW using the equation: δ18OV-SMOW = 1.03091*δ18OV-PDB + 30.91 from [68]. b Temperature calculated using the equation
proposed by [84]. c Temperature calculated using the equation proposed by [85]. d δ13CCO2 fluid calculated using the equation proposed by [85] considering b. e δ13CCO2 fluid calculated
using the equation proposed by [85] considering c.
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Similarly, for the vein samples of SpPP, the equilibrium temperature was inferred in the range
between 105 and 110 ◦C (∆18Odolomite from [84]) and between 83 and 87 ◦C (∆18Odolomite from [85]).

The pristine δ13CCO2 (gas) values of the fluid from which veins were formed were computed from
the δ13CCaCO3 values and the calculated carbonate deposition temperature for each carbonate sample.
We have assumed the achievement of the isotope equilibrium between fluid CO2 and a carbonate
mineralogical phase (calcite in the SpFA veins and dolomite in SpPP veins) and applied the following
equation:

δ13CCO2 = δ13Ccarb.min-∆carb.min-CO2

where δ13Ccarb.min is the isotope composition of the considered carbonate mineralogical phase, and
∆carb.min-CO2 is the equilibrium fractionation factor for carbon between the carbonate mineral and
CO2 and calcite [87] and between CO2 and dolomite [85] (Tables 6 and 7). Based on the equilibrium
temperature estimated using the fractionation factors computed by [81], [82], and [83], the average
δ13CCO2 values of SpFA veins is in the range from −4.36%� to −5.02%�. Slightly more negative average
δ13CCO2 values (from −6.86%� to −8.32%�) were obtained for SpPP veins if we consider the equilibrium
temperature estimated following [84] and [85], respectively.

4.5. Fluid Inclusions Hosted by Quartz in Sppp Veins

Most of the fluid inclusions in the quartz are arranged along lines of crystal growth, and thus,
they are considered as primary and/or pseudosecondary fluids according to the criteria defined by [88]
(Figure 7a). Some fluid inclusions occur along secondary trails and necking down is occasionally seen.
In Table 8, the primary or secondary origin of each fluid inclusion is indicated. When possible, fluid
inclusion assemblages [89] have been analyzed. Two major types of fluid inclusions were recognized
at room temperature: predominantly all-liquid fluid inclusions (single-phase inclusions: LH2O) and in
less amount liquid-vapor inclusions (biphasic inclusions: LH2O + VH2O) (Figure 7b). All-liquid fluid
inclusions usually nucleated a small gas bubble with little heating (around 50 ◦C) (Figure 7c). This
means that they are in a metastable state out of their stability field. Only the smallest ones (usually
<5 µm) remain all-liquid after heating. These ones cannot be used for microthermometric studies
because a bubble is required for temperature determinations.
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Table 8. Microthermometric data of fluid inclusions in quartz crystals in a quartz-carbonate vein from
the Pietrapica quarry (SpPP).

IF FIA Origin Th (◦C) Tm(Ice) (◦C) Tn (◦C) Size
(µm) L:V Salinity

(NaCl Mass %)

SpPP36.1_1v n.d. P 198–200 –0.8 –30 18 80/20 1.4
SpPP36.1_2v 1 S 121–124 + –33 8 95/5 n.d.
SpPP36.1_3v 1 S 125–130 –0.8 32 6 95/5 1.4
SpPP36.1_4v 2 P n.d. –0.6 –36 50 90/10 1.05
SpPP36.1_5v 2 S 120–125 + –40 7 95/5 n.d.
SpPP36.1_6v n.d. S 185–188 –0.3 –34 4 90/10 0.53

SpPP36.1A_7v n.d. n.d. n.d. + –30 n.d. n.d. n.d.
SpPP36.1A_8v n.d. n.d. 112–125 + –30 8 95/5 n.d.

SpPP36.1A_10v n.d. n.d. n.d. + –28 40 85/15 n.d.
SpPP36.1A_11v n.d. n.d. 190–196 –0.8 –29 10 90/10 1.4
SpPP36.1A_1v n.d. n.d. n.d. + –29 6 95/5 n.d.
SpPP34.1_13v 3 P >200 (–1.9) (–1.6) –30 17 70/30 3.23–2.74
SpPP34.1_14v 3 P 138–140 + –31.3 7 95/5 n.d.
SpPP34.1_15v 4 S 118–120 + –32.5 4 95/5 n.d.
SpPP34.1_16v 5 P >200 –1.9 –32 6 90/5 3.23
SpPP34.1_17v 6 S >200 –1.8 n.d. 4 90/10 3.06
SpPP34.1_18v 6 S 118–120 –0.8 –31 10 95/5 1.4
SpPP34.1_19v 7 S n.d. + –29.7 7 95/5 n.d.
SpPP34.1_20v n.d. P 105–110 –0.7 –30.8 11 90/10 1.23
SpPP34.1_21v 8 S n.d. + –34.8 6 95/5 n.d.
SpPP34.4_22v 9 P n.d. (–0.9) (–0.7) –31 11 70/30 1.57–1.23
SpPP34.4_23v 9 P n.d. –0.9 –30 10 90/10 1.57
SpPP34.4_24v 8 S n.d. –28 10 n.d. n.d.
SpPP34.4_25v 8 S n.d. –0.3 –29 5 95/5 0.53
SpPP34.4_26v 10 P n.d. + –30.8 7 95/5 n.d.
SpPP34.4_27v 10 P 280–288 (–0.7) (–0.5) –33.6 8 90/10 1.23–0.88
SpPP34.4_28v 11 S >200 –0.7 –34.2 5 90/10 1.23
SpPP34.4_29v 11 S 120.8 + –31.8 4 95/5 n.d.
SpPP34.4_30v 12 S 210–216 –0.7 –34.2 7 90/10 1.23
SpPP34.4_31v 13 S 288–293 –0.4 –34.8 5 50/50 0.71
SpPP34.4_32v 14 P 93 –0.6 –34.2 8 90/10 1.05
SpPP34.4_33v n.d. P 120–130 n.d. n.d. 5 95/5 n.d.
SpPP34.4_34v n.d. P 330 n.d. n.d. 7 10/90 n.d.
SpPP34.4_35v n.d. P 225–235 n.d. n.d. 4 50/50 n.d.
SpPP34.4_36v n.d. P >395 n.d. n.d. n.d. 10/90 n.d.
SpPP34.4_37v n.d. P 335 n.d. n.d. n.d. 10/90 n.d.

Note: n.d. = not-detected; + = positive value; FIA = fluid inclusions association; Th (◦C) = homogenization
temperatures; Tm(Ice) (◦C) = temperatures of final ice-melting; Tn (◦C) = nucleation temperature; L:V = liquid vapor
ratio; Salinity = wt. % NaCl calculated from Tm(Ice).

Collectively, the two types of fluid inclusions have rounded and sub-rounded shapes and exhibit
a relatively wide range of liquid/vapor volume ratios (some with ratios around 95:5 and others with
ratios between 50:50 and 90:10), indicating a heterogeneous entrapment.

We did not find any evidence for the presence of CO2- and CH4-phases (Tm = −56.6 and −147.0 ◦C
for CO2- and CH4, respectively). In fact, during the cooling phase, we went down until liquid nitrogen
temperatures and no melting process different than the melting of ice was observed. This means that
the gas is likely water vapor (Figure 7d). However, the presence of another gas different from water
vapor cannot be discarded. If present, this gas would have very low density (H2 or He), so that would
be undetectable by microthermometry. The temperatures of final ice-melting Tm(Ice) values range
from −0.3 to −1.9 ◦C. Many inclusions present positive ice-melting temperatures, which means that
they are under high pressure out of their stability field. Temperatures of the first melting (eutectic
temperature, Te) were observed around −30 ◦C, which is the metastable temperature of the H2O +

NaCl system.
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Based on the Tm(Ice) and taking into account the H2O + NaCl system, the biphasic inclusions are
found to be of low salinity, between 0.53 and 3.23 NaCl mass % equivalent (using equation by [71]).
All the biphasic inclusions homogenize to liquid, with the final homogenization temperature (Th)
present in two different ranges of temperature: the first one from 93 to 140 ◦C and the second one from
185 to 335 ◦C.

5. Discussions

5.1. Mineral Assemblage

As reported by previous studies, the mineral assemblages and texture of serpentinites of the Frido
Unit show evidence of ocean floor metamorphism [54,55]. In addition to minerals typical of worldwide
serpentinites, including serpentine minerals, amphiboles, pyroxene, chlorite, titanite, and magnetite,
the Frido Unit serpentinites are characterized by talc and hydro-garnet. In particular, the presence of
garnet in the serpentinitic rocks from the studied area has been documented here for the first time.

Hydro-andradite, containing variable amounts of TiO2 (0.75 to 3.60 wt %, Table 3), occurs in
several mineral assemblages of serpentinites, among which the “serpentine + diopside + magnetite”
association is one of the most common. Hydro-garnet is stable in these rocks over a wide range of
oxygen fugacities and Ca activities, and its stability is controlled by the following reaction [90]:

3Ca3Fe2Si3O12 + 9SiO2 + Fe2O3 = 9CaFeSi2O6 + 2O2

andradite + silica + magnetite = pyroxene + fluid

The titanian hydro-andradite may form in both magmatic and hydrothermal systems. According
to [91], in fact, the presence of such a mineral has been documented in rocks associated with silica
undersaturated magmatic systems (carbonatites, kimberlites, alkaline intrusions) as well as with
hydrothermally alterated oceanic lithosphere (for example the Sanbagawa metamorphic complex,
the mid-Atlantic ridge, the Nagaland ophiolite belt), testifying intermediate to low (150 to 300 ◦C)
temperature fluids with low SiO2 activity.

The hydrothermal activity is also thought of as responsible for the talc occurrence in the studied
serpentinites. Frost et al. [90] stated that hydrothermal fluids in equilibrium with basic rocks may have
high enough silica activity to alter serpentine to talc following the reactions below [16]:

Mg3Si2O5(OH)4 + 2SiO2(aq)→Mg3Si4O10(OH)2 + H2O

serpentine + silica-saturated fluid→ talc + aqueous fluid

and/or

2Mg3Si2O5(OH)4 + 3CO2 + 3CaCO3→Mg3Si4O10(OH)2 + 3CaMg(CO3)2 + 3H2O

serpentine + CO2-rich fluid + calcite→ talc + dolomite + aqueous fluid

Based on the mineralogical composition of studied samples, as also confirmed by the petrographic
observations (Figure 4d), the above reactions mirror the rock-fluid interaction processes that have
involved samples from the Pietrapica site only, in which talc-rich domains and dolomite have been
detected. However, in such samples along with talc and carbonate minerals, quartz is present as well.
According to Moore and Rymer [92], a large amount of dissolved silica may be supplied to serpentinite
rocks during the hydrothermal alteration of serpentine. Therefore, the quartz in the studied samples
could represent the result of direct precipitation from a silica-rich fluid derived from the breakdown of
serpentinite-forming silicates (serpentine).

The mode of occurrence of quartz in the SpPP veins suggests a further consideration of the
chemistry of the mineralizing fluid in the Pietrapica area. The petrographical study of veins, in fact,
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has shown that intergrowth structures characterize quartz and dolomite in those samples, and this is
consistent with the hypothesis of a contemporaneous formation of silicate and carbonate phases from
the same source fluid. As a consequence, the chemical features of fluid inclusions in the quartz can be
assumed as representative of the chemistry of the whole mineralizing fluid.

As for veins from the Fosso Arcangelo site, no hypothesis can be made on the basis of their
mineralogical composition only. These veins are dominated by calcite as the principal carbonate
phase. Calcite is a common mineral because it may form in a great variety of geological settings.
It represents an important rock-forming mineral in sedimentary rocks, can be an essential component
of metamorphic and igneous rocks, and is common in hydrothermal environments [93]. In particular,
in geothermal systems, the calcite formation is chiefly favored by boiling, dilution, and condensation
processes that control its occurrence, distribution, and stable isotope composition [94]. Further, during
serpentinization, the mineralogical and geochemical processes transforming the oceanic lithosphere
usually produce Ca-rich fluids that can migrate in the hydrothermal system and promote carbonates
precipitation (mainly calcite) as serpentinite matrix and/or infill of veins and veinlets [35,95,96]. In the
SpFA veins, calcite locally is in association with serpentine and amphibole crystals. Habitus of crystals
and the lack of a preferential orientation of these silicates allow us to suppose that they were englobed
into the hydrothermal fluid during its migration through the serpentinite host rocks. The lobate
contacts between serpentine and/or amphibole crystals and calcite support this hypothesis.

5.2. Temperature of Precipitation, Fluid Composition, and Sources

Stable isotope (carbon and oxygen) geochemistry provides relevant constraints about metasomatic
processes involving carbonates [97–101]. As previously stated, based on δ18O data and assuming
the water/mineral isotope equilibrium, equilibrium temperature fluctuates in a narrow range for
both the vein samples (T = 80–120 ◦C for SpFA and T = 80–110 ◦C for SpPP). Nonetheless, the veins
belonging to different outcrops show different prevalent carbonate minerals (calcite in SpFA and
dolomite for SpPP) and occurred under similar thermal regimes. The lack of a positive correlation
between δ13CCaCO3 and δ18OCaCO3 (Figure 8) seems to indicate that the depositional temperature
controls, exclusively, the isotope signature of the carbonate veins. Therefore, the computed δ13CCO2-gas

values are representative of the original CO2 supplied during vein formation.
The average fluid δ13CCO2 inferred from the fluid-carbonates isotope equilibrium range from

−4.36%� to −5.32%� in the veins of the SpFA and from −6.86%� to −8.32%� in the veins of the SpPP.
The range of the C-isotope composition of both vein groups is slightly more negative than that of

seawater carbonates (δ13CCO2 around 0%�), whereas it lies fully within the range of δ13CCO2 values
typically associated to mantle carbon (−8%�< δ13CCO2< −4%�; [102–104]. Degassing of CO2-rich
fluids during their rising from the underlying lithospheric mantle might lead to the precipitation of
calcite [105]. Thus, the inferred δ13CCO2 values are consistent with a magmatic CO2 component in the
hydrothermal fluids.

However, the available data do not allow us to rule out that carbon in these veins might derive
from other sources than the mantle. In fact, the mixing between fluids having different isotope carbon
isotope composition (e.g., seawater and carbon derived from organic rich sediments or from the
oxidation of methane having δ13CCO2 < −15%�) would reproduce δ13CCO2 values in the same range to
those inferred for the SpFA and SpPP veins.

Alternatively, decarbonation of marine sediments having a typical isotope signature (e.g., δ13C
close to 0%�, [106] would produce a lowering of δ13C, with or without change in δ18O, and an O shift
can be observed only when decarbonation is driven by infiltration by externally derived H2O-rich
fluids [34].



Minerals 2020, 10, 127 25 of 31

Minerals 2020, 10, 127 24 of 31 

 

rocks. The lobate contacts between serpentine and/or amphibole crystals and calcite support this 
hypothesis. 

5.2. Temperature of Precipitation, Fluid Composition, and Sources  

Stable isotope (carbon and oxygen) geochemistry provides relevant constraints about 
metasomatic processes involving carbonates [97–101]. As previously stated, based on δ18O data and 
assuming the water/mineral isotope equilibrium, equilibrium temperature fluctuates in a narrow 
range for both the vein samples (T = 80–120 °C for SpFA and T = 80–110 °C for SpPP). Nonetheless, 
the veins belonging to different outcrops show different prevalent carbonate minerals (calcite in 
SpFA and dolomite for SpPP) and occurred under similar thermal regimes. The lack of a positive 
correlation between δ13CCaCO3 and δ18OCaCO3 (Figure 8) seems to indicate that the depositional 
temperature controls, exclusively, the isotope signature of the carbonate veins. Therefore, the 
computed δ13CCO2-gas values are representative of the original CO2 supplied during vein formation.  

 
Figure 8. δ13CV-PDB vs. δ18OV-SMOW plot of calcite/dolomite in the serpentinites from the Fosso Arcangelo 
site (SpFA = green diamonds) and Pietrapica quarry (SpPP = red squares). Geochemical trends of 
carbonates affected by dissolutions [99], carbonate reduction [101], and carbonation and 
decarbonation [35] are also shown. 

The average fluid δ13CCO2 inferred from the fluid-carbonates isotope equilibrium range from 
−4.36‰ to −5.32‰ in the veins of the SpFA and from −6.86‰ to −8.32‰ in the veins of the SpPP. 

The range of the C-isotope composition of both vein groups is slightly more negative than that 
of seawater carbonates (δ13CCO2 around 0‰), whereas it lies fully within the range of δ13CCO2 values 
typically associated to mantle carbon (−8‰< δ13CCO2< −4‰; [102–104]. Degassing of CO2-rich fluids 
during their rising from the underlying lithospheric mantle might lead to the precipitation of calcite 
[105]. Thus, the inferred δ13CCO2 values are consistent with a magmatic CO2 component in the 
hydrothermal fluids. 

However, the available data do not allow us to rule out that carbon in these veins might derive 
from other sources than the mantle. In fact, the mixing between fluids having different isotope carbon 
isotope composition (e.g., seawater and carbon derived from organic rich sediments or from the 

Figure 8. δ13CV-PDB vs. δ18OV-SMOW plot of calcite/dolomite in the serpentinites from the Fosso
Arcangelo site (SpFA = green diamonds) and Pietrapica quarry (SpPP = red squares). Geochemical
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decarbonation [35] are also shown.

As shown in Figure 8, samples from the two studied sites fall in different fields of the δ18O vs.
δ13C diagram. In detail, the SpFA veins overlap the pathway typical of the decarbonation process as
suggested by [35] and references therein. Such a process likely developed at depth in the crust in a
“closed system” wherein no external fluid supply can occur.

On the contrary, for the SpPP site, vein samples are characterized by an oxygen isotope shift
toward more positive δ18O values. Moreover, significant differences in the mineralogical assemblage
were also found in SpFA and SpPP veins, being calcite prevalent in the former veins and dolomite and
quartz in the latter ones. Intergrowth structures between dolomite and quartz crystals suggest the
hypothesis of a contemporaneous formation of silicate and carbonate phases in the SpPP veins.

Data of fluid inclusions in the quartz (in SpPP veins) show abundant aqueous (LH2O-VH2O) and
low salinity features (between 0.53 and 3.23 NaCl mass % equivalent). Further, the decrease of salinity
associated with the decrease of homogenization temperature (335–185 ◦C and 140–93 ◦C) may be
related to a large infiltration of shallow, diluted, and fresh waters that also led to a progressive cooling
of the hydrothermal system. Therefore, it seems that SpPP veins are consistent with a crystallization in
an open-system at shallower crustal conditions.

Accordingly, all these features, even not well-constrained would suggest the hypothesis that SpFA
and SpPP veins were deposited under different boundary conditions (e.g., temperature), and/or from
parental fluids having different chemical composition.

Further detailed investigations on the fluid inclusions composition as well as on the oxygen
isotopes of the silicate are requested to clarify the formation process of these veins and to fully
understand the role and the compositions of the parental fluid(s).
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6. Conclusions

Our study demonstrates that, in serpentinites of the Frido Unit (southern Apennines), different
types of veins occur recording fluid production and migration in the accretionary wedge of the
southern Apennines. We envisage at least two formation episodes for veins that crosscut serpentines
from the studied sites (Fosso Arcangelo and Pietrapica) within the same thermal system (Figure 9a).
We have identified a first vein group formed by decarbonation of serpentinites in a closed hydrothermal
system that generated Ca- and CO2-rich fluids from which carbonates of the Fosso Arcangelo veins
derive. Even if not well-constrained, such fluids could migrate toward shallower depths, modifying
their composition by interaction with serpentinite host rocks. Then, fluid migration ended in an
open hydrothermal system where mixing between deep Si and Mg enriched fluids and externally
derived H2O-rich fluids occurred, promoting the quartz-carbonate vein formation in the Pietrapica
serpentinites. Subsequently, serpentinite slices and associated veins were involved by tectonic activity
related to the formation of the Liguride Complex and finally exhumed (Figure 9b).Minerals 2020, 10, 127 26 of 31 
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As a consequence, our study contributes to a better understanding of processes leading to
mobilization, fractionation, and redistribution of chemical elements within subduction zones, with
particular attention to the southern Apennines.
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