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  24 

Abstract 25 

Preliminary interpretation of geological processes during field measurement 26 

campaigns require fast data analysis to adapt ongoing target strategies. It is the case of 27 

soil investigations where coupling geochemical and geophysical records favor a better 28 

understanding of subsurface processes. This task requires (i) statistical analysis is 29 

needed to identify areas of interest during spatial surveys and (ii) signal processing is 30 

required to analyze temporal series.   31 

Here we present SoilExp, an open-source Python-based Graphical User 32 

Interface (GUI) that permits to process spatial and temporal surveys of soil gases (e.g. 33 

soil CO2 flux) combined with common physical parameters (e.g. self-potential, 34 

temperature) that are synchronously recorded on the field. SoilExp mixes innovative 35 

algorithms with the more common tools used for the analysis of both spatial surveys 36 

or temporal series. It offers the possibility to display distribution plots, maps, 37 

comparative plots, spectra and spectrograms, as well as data statistical analysis, in 38 

order to deal efficiently with datasets acquired on the field. Field measurements 39 

performed at Stromboli (Italy) supports that such software solution facilitates a quick 40 

visualization of the data output and is a powerful tool on the geochemical and 41 

geophysical analysis.  42 

 43 
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1. Introduction 47 
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Identifying hidden geologic structures and studying gas and hydrothermal fluid 48 

circulation within the ground is of first interest in many disciplines as agriculture 49 

(Kucera & Kirkham, 1971), mineral resources (Hinkle & Dilbert, 1984; Lovell et al., 50 

1983),  geothermy (Chiodini et al., 2001, 2005), geological storage (Sandig et al., 51 

2014) and natural hazards (Allard et al., 1991; Finizola et al., 2002; Hernandez et al., 52 

2001; Irwin & Barnes, 1980). Coupling geochemical and geophysical records has 53 

demonstrated a real complementarity to characterize soil heterogeneities and related 54 

fluid circulations (Aubert et al., 1984; Boudoire et al., 2018; Elskens et al., 1964; 55 

Finizola et al., 2003; Gaudin et al., 2015; Giammanco et al., 1997). In particular, 56 

diffusive CO2 degassing (CO2), self-potential (SP) and temperature (T) measurements 57 

are among the most common methods used by the scientific and industrial community 58 

to perform both spatial surveys or temporal records for monitoring purposes 59 

(Boudoire et al., 2018; Byrdina et al., 2012; Finizola et al., 2003; Gresse et al., 2016; 60 

Pearson et al., 2008).  61 

These measurements often require (i) the use of self-alone instruments and (ii) 62 

a preliminary data treatment to be used reliably. For instance, (i) measurements of 63 

diffusive CO2 degassing (CO2) may require the use of a stainless steel probe (active 64 

method) or an accumulation chamber (passive method) connected to infrared 65 

spectrometers, self-potential may require the use of non-polarizable Cu/CuSO4 66 

electrodes coupled with a high impedance voltmeter and temperature (T) 67 

measurements may be performed with K-type thermal probes and a digital 68 

thermometer or with a pyrometer (Finizola et al., 2010). Additionally (ii), spatial 69 

surveys often need a quick first idea of results during the daily performed acquisitions 70 

in order to identify the main areas of interests and eventually adapt or correct the 71 

ongoing fieldwork strategy (Chatterjee et al., 2019). Meanwhile, temporal series are 72 
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often subjected to an environmental influence that needs to be corrected before an 73 

accurate use of the signals as regression, moving average or cut-band filter for the 74 

most common ones (Boudoire et al., 2017a; Liuzzo et al., 2013; Padron et al., 2008; 75 

Viveiros et al., 2008). Many industrial software packages or homemade codes are 76 

able to deal efficiently with this kind of data but often required to be used additionally 77 

to cover the whole range of expected common data treatment tools (with various file 78 

formatting). It is often time consuming and limit a fast and efficient evaluation of the 79 

datasets. 80 

Here we present a new user-friendly Python-based GUI (Graphical User 81 

Interface) software: Soil Exploration (SoilExp). SoilExp is able to analyze both spatial 82 

and temporal datasets obtained  on the field and respecting some file formatting rules. 83 

The final aim of SoilExp is to provide to the geologic-environmental researchers 84 

community both innovative and classical tools for a first data processing: (i) data 85 

correction (linear regression, moving average, cut-band filter), (ii) data analysis 86 

(statistical analysis, populations identification), (iii) data comparison (correlations, 87 

cross-correlations) and, (iv) graphical representation (distribution plots, comparative 88 

plots, spectra, spectrograms, maps). To illustrate the potentiality of SoilExp to sustain 89 

field surveys and to address scientific issues, both soil CO2 flux and self-potential 90 

measurements were performed at Stromboli (Italy). Results are presented in a final 91 

section and discussed with respect to those obtained from previous field surveys. 92 

 93 

2. Overview on the SoilExp software 94 

The SoilExp 1.0 software distribution is written in Python 2.7 (Fig. 1). The Graphical 95 

User Interface (GUI) is based on the Tkinter library. It requires the following 96 

libraries: Pandas, Numpy, SciPy, Matplotlib, Scikit-Learn, PySerial is required. Thus, 97 
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as processed during SoilExp 1.0 development, we recommend to the user to install the 98 

Anaconda distribution on their machines in order to benefit of the Spyder open source 99 

cross-platform integrated development environment (IDE) with scientific libraries. 100 

Full details are provided in the user guide. Information related to the installation of 101 

the software distribution (SoilExp 1.0), to its step-by-step use and to potential script 102 

modifications are reported in the associated user manual. 103 

 Indeed, in this study, we focus on the main functionalities provided by the 104 

SoilExp 1.0 distribution. These main functionalities are exposed through three 105 

independent scripts described in the following parts (Fig. 2). The first script is 106 

dedicated to save/reset field data from the MEGA (Multisensors Electrical and Gas 107 

Analyzer) instrument and calibrate its sensors using an USB-Serial connection (so-108 

called “Serial” option in the following parts) (Fig. 3a). The second script is dedicated 109 

to the analysis of spatial surveys (so-called “Space” option in the following parts) 110 

(Fig. 3b). The third script is dedicated to time series processing (so-called “Time” 111 

option in the following parts) (Fig. 3c).  112 

The “Serial” option is dedicated for applications based on the use of the 113 

MEGA instrument that has been entirely conceived and designed at the INGV of 114 

Palermo by two of the current authors (Liuzzo & Cappuzzo). The MEGA instrument 115 

is not the focus of this paper and will be better presented to the community in future 116 

specific contributions. The other two options are composed of four panels (Fig. 3): (i) 117 

the first one (e.g. ‘1. File Treatment’) is used to treat raw data files and create 118 

intermediate formatted files; (ii) the second one (e.g. ‘2. Data Processing’) is used to 119 

select a parameter of interest from an intermediate formatted file, modify its 120 

corresponding series (correction, filtering, average) and, display resulted plots (for the 121 

“Time” option); (iii) the third one (e.g. ‘3. Data Analysis’) is dedicated to show the 122 



 6 

results of the data analysis as correlations, cross-correlations, statistics, populations 123 

identification and plots (for the “Space” option); (iv) the last one (e.g. ‘4. Save’) is 124 

used to save final processed datasets and related information (as populations) in .csv 125 

files. 126 

 127 

3. Main functionalities 128 

3.1. Initialization 129 

The initialization step (first panel of the “Time” and “Space” options)  aims at 130 

converting raw data files to intermediate files that may be manipulated in the other 131 

panels (Fig. 3b, c). Raw data files are “.csv” files downloaded from the MEGA 132 

instrument or created by the user in a compatible format to be correctly processed (see 133 

the user manual).  134 

In the “Space” and “Time” options (Fig. 3b, c) the user can choose either the 135 

instrumental calibration by default or new calibration parameters to recalculate data 136 

series. Data reduction then performed in order to identify internal errors 137 

(typographical errors) or unreliable measurements, i.e. out of the range of values 138 

defined for the battery voltage, the pump flux and the horizontal dilution of precision 139 

(HDOP) of the global positioning system (GPS). These limit values used to define 140 

outliers are set by default but may be changed by the user directly in the GUI. Rows 141 

containing bad values are either linearly interpolated with the “Time” option in order 142 

to correctly apply further time series analysis (in this case interpolated rows are kept 143 

in memory in order to be removed in final .csv files) or left as empty rows with the 144 

“Space” option. Additionally, as soil CO2 measurements may be acquired with the 145 

accumulation chamber method in the “Space” option, an additional filter is applied on 146 

the r-squared value of computed soil CO2 flux. In this case, values of soil CO2 flux 147 
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out of the r-squared range will be considered as outliers values and thus set at 0 gm-2d-
148 

1 (no flux). In the case where soil CO2 flux has to be calculated from the dynamic 149 

concentration method, the software integrates the possibility in both options to 150 

convert the CO2 %molar contents in flux (Camarda et al., 2006; Gurrieri and Valenza, 151 

1988; Liuzzo et al., 2015). The conversion is made by the use of the equation of 152 

Camarda et al. (2006) that takes into account the soil permeability value defined by 153 

the user. 154 

Once the raw data file is cleaned, the last step will generate intermediate files 155 

that are of first interests to keep processing the data thanks to the other panels of the 156 

GUI. The definition of the time-lag period (in seconds) is here fundamental. We 157 

define the time-lag as the period in seconds separating two independent series of 158 

measurements (i.e. the period during which the used instrument will be in stand-by). 159 

With the “Time” option, a new intermediate file will be created each time that two 160 

consecutive rows are separated by a duration greater than the time-lag. With the 161 

“Space” option, an unique intermediate file will be created with the median values of 162 

each independent series (the median value being here considered as representative of 163 

the acquisition to avoid the effect of potential spikes on the average). The time-lag 164 

must not be confused with the sampling rate that is necessary shorter and defines the 165 

period (in seconds) between two measurements within the same series. The sampling 166 

rate is used to correctly adapt the scale and the legend of plots (spectra, spectrogram) 167 

by converting a range of measurements (number of records) into a time range 168 

(number of seconds). 169 

  170 

3.2. The “Space” option: dealing with spatial surveys 171 
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The “Space” option aims to propose innovative and classical tools to deal with spatial 172 

surveys, i.e. with datasets where each point of measurements is defined by distinct 173 

geographical coordinates (Fig. 3b).  174 

 175 

3.2.1. Correlations and preliminary data correction 176 

The “Space” option allows coefficients of linear correlations to be identified (slope, 177 

offset, r-squared) between the parameter of interest (e.g. CO2) and other records (e.g. 178 

temperature, pressure, wind speed) obtained by the user (Fig. 3b). In particular, these 179 

coefficients are often useful during soil surveys, where records can be affected by 180 

external parameters. For instance, soil CO2 flux may be slightly dependent on 181 

pressure (Barde-Cabusson et al., 2009; Liuzzo et al., 2013; Viveiros et al., 2008). The 182 

equation used for the linear regression is the following: 183 

 184 

��������	(�, ) = ���������(�, ) − (� × (��������(�, ) − ��������)   185 

 186 

where SignalClr (x,y) is the value of the parameter of interest at the geographical 187 

position (x,y) after the correction by linear regression, SignalRaw (x,y) is the value 188 

before the correction, a is the slope of the linear correlation, ParamRaw (x,y) is the 189 

parameter used to performed the regression at the geographical position (x,y) and, 190 

ParamAvg is the average of this parameter for the whole dataset in order to correct the 191 

offset linked to the correction. After the correction, coefficients of linear correlations 192 

are reprocessed and automatically updated in order to verify the efficiency of the 193 

correction and identify potential needs of further steps of correction. 194 

  195 

3.2.2. Statistical analysis 196 
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In order to better constrain the data distribution of the parameter of interest, the 197 

“Space” option allows the user to display also a probability histogram together with 198 

the best fit line of the potential normal distribution (see Supplementary Material). The 199 

normality of the data series is tested via the Anderson-Darling normality test (SciPy 200 

library; Anderson and Darling, 1952; Stephens, 1974, 1976). In our case, i.e. making 201 

the assumption that both mean and variance are initially unknown, the Anderson-202 

Darling normality test rejects the hypothesis of normality with a 95% significance 203 

level if A2 (the squared of the test statistic A) exceeds 0.752 for data series owning 204 

more than 8 samples (D’Agostino, 1986).  205 

 Together with the Anderson-Darling normality test, the “Space” option gives 206 

the opportunity to calculate some classical statistical values: mean, standard deviation, 207 

median, minimum, maximum, kurtosis, skewness (Fig. 3b). Here we focus on the last 208 

two indicators less common for non-regular users of statistical tools. The kurtosis is a 209 

measure of the tailedness of the probability distribution of a random variable, i.e. 210 

describing the shape of the probability distribution (Zwillinger and Kokoska, 2000). 211 

Using the Fisher’s definition, normally distributed data should provide a result of 0. 212 

Skewness is the measure of the asymmetry of the probability distribution of a random 213 

variable with respect to its mean. The skewness, which could be either positive or 214 

negative, should be about 0 for normally distributed data (Zwillinger and Kokoska, 215 

2000).  216 

If the indicators described above (skewness, kurtosis, Anderson-Darling 217 

normality test) do not argue in favor of a normal distribution, it may be due to the 218 

presence of more than one population in the data series. Indeed, during spatial survey, 219 

one subject of major interest is often to discriminate the different populations that 220 

contribute to the data series. This is crucial in order to recognize the existence of 221 
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distinct sources as, for example, biogenic or magmatic ones for soil CO2 flux in 222 

volcanic context (Boudoire et al., 2017b; Liuzzo et al., 2015; Viveiros et al., 2008). In 223 

order to address this specific issue, we have developed a new algorithm in SoilExp 224 

able to combine the two statistical methods more used in environmental scientific 225 

research, which can  distinguish various populations from log-normally distributed 226 

data (Fig. 4a, b). The first is the graphical method based on probability plots known as 227 

Sinclair method (Chiodini et al., 1998; Giammanco et al., 2010; Sinclair, 1974); the 228 

second is the maximum-likelihood numerical method based on the use of Gaussian 229 

Mixture Model (GMM) implementing an expectation-maximization (EM) algorithm 230 

(Benaglia et al., 2009; Boudoire et al., 2018; Elio et al., 2016). The Sinclair method 231 

provides an user-friendly view of the populations and mixed values, however, it has 232 

two main shortcomings. One is related to the low accuracy for datasets counting less 233 

than 100 values (Sinclair, 1974). The second limitation is related to the difficulty to 234 

precisely estimate the confidence intervals. These problems are solved using the 235 

maximum-likelihood (ML) method that fits finite mixtures of normal distributions: we 236 

have implemented a Scikit-Learn-based algorithm that simulates such fitting with 1 to 237 

10 populations with 1000 iterations for each simulation. The best simulation is then 238 

selected based on the value of the Bayesian Information Criterion (BIC) developed for 239 

model selection among finite set of simulations (Ghosh et al., 2006) and displayed on 240 

the GUI (Fig. 3b) . Finally, for each value of the data serie, the algorithm predicts the 241 

probability that the value belongs to one of the defined populations. In our case, we 242 

have considered that if one value shows a probability to be defined by a single 243 

population greater than 95% thus it will be considered as part of this population. If 244 

not, this value is considered as an intermediate value (or mixed value) between the 245 

two neighboring populations. A the end, the algorithm allows the user to 246 
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automatically see the result of this ML-based partitioning of the values on probability 247 

plots (Fig. 4a, b). Furthermore, the users can simulate different partitioning by 248 

modifying the number of inferred populations directly on the GUI (Fig. 3b), if the first 249 

step of differentiation is not satisfying.  250 

 251 

3.2.3. Mapping 252 

After having performed data correction and statistical analysis, it is possible to obtain 253 

a first idea of the two-dimensions (2D) distribution of the data (Fig. 4c, d). Our aim is 254 

not to develop complex interpolating algorithms for which many software are already 255 

built. Here we propose a simple graphical representation of the data through two 256 

distinct maps. The first one uses a simple color gradient to show the 2D evolution of 257 

the values. The second one is more innovative (presented on Fig. 4 for SP and CO2 258 

data obtained at Stromboli), meaning that the map-builder takes into consideration the 259 

results of the population analysis described above, generating and displaying a 260 

repartition of the values between the different populations (and related mixing 261 

values). If an internet connection and an API key are available 262 

(https://developers.google.com/maps/documentation/javascript/get-api-key), a 263 

background satellite map will be automatically downloaded and georeferenced from 264 

the Google Maps Platform. If not, the background will remain neutral. However, the 265 

upper left box (Fig. 4c, d) highlights the coordinates of the corners to facilitate the 266 

extraction of an adequate background map from other sources. 267 

 268 

3.3. The “Time” option: processing time series 269 
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The “Time” option aims to propose classical tools to deal with time series, i.e. with 270 

datasets where the measurements have specific frequency (here defined as the 271 

sampling rate) (Fig. 3c).  272 

 273 

3.3.1. Correlations and cross-correlations 274 

“Time” option allows to identify coefficients of linear correlations (slope, offset, r-275 

squared) between the parameter of interest and other records, where the control panel 276 

(Fig. 3c) is similar  to the one in "Space" option. Sometimes some signals may have a 277 

time delay between them, which can be attributed either to an instrumental lag or to 278 

an effect caused by a natural phenomenon. To take into account these effects, we have 279 

implemented a SciPy-based algorithm to calculate the cross-correlations between each 280 

parameters. The algorithm couples complex-valued functions with conjugates and 281 

Fast Fourier Transform (FFT) to numerically determine both lags and r-squared 282 

values between time series. Best results are shown in the table of the “Time” option 283 

GUI (Fig. 3c).  284 

 285 

3.3.2. Signal processing 286 

The “Time” option gives the possibility to the user to apply three of the most common 287 

signal processing tools used in the geo-scientific community: (i) linear regression, (ii) 288 

moving average and, (iii) cut band filter. 289 

 The linear regression method is the same than in the “Space” option and only 290 

require to select the parameter used for the regression and to compute the 291 

corresponding coefficients. This method is used to remove short-term environmental 292 

influence on geochemical and geophysical signals (Boudoire et al., 2017a; Liuzzo et 293 

al., 2013). 294 
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The moving average method is a type of finite impulse response filter used to 295 

smooth out short-term signal variations. This method performs an average on a 296 

defined subset of the data series, then shifts forward to repeat the calculations, 297 

excluding the first value of the previous subset and including the next one. Using the 298 

convolution operator of the Numpy library, we have implemented a simple moving 299 

average method, i.e. giving the same weight to each value aj: 300 

 301 

����� (��) = � 
!"  × # �$  

�%!/'
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 for  � ∈ ]  !
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 303 

where i is the position of the value ai in the data series on which the moving average 304 

is applied, n the length of the data series and k the size of the subset. To deal with 305 

border effects (i.e. when the number of available values to perform the moving 306 

average is lower than the size of the defined subset), we have adapted the convolution 307 

to the number of available values: 308 

 309 
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 313 

To enhance the reliability of the calculations linked to correlations and cross-314 

correlations, the moving average method is applied to all data series when computed. 315 

 Finally, to treat long-term signal variations, we have used the Fast Fourier 316 

Transform (FFT) package of the SciPy library to develop a cut (or block) band filter. 317 
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This filter removes from the signal spectra (cf. ‘fft’) the frequencies belonging to an 318 

interval defined by the user before making the inverse operation to rebuild the signal 319 

(cf. ‘ifft’). 320 

 321 

3.3.3. Graphical representation 322 

When pressing the plot-related buttons of the “Time” option, the user automatically 323 

applies the correction and filtering methods that has been defined previously (Fig. 2).  324 

Consequently, the user may decide to perform several combination between 325 

the signals which is intended to compare: 326 

(i) Compare the raw signal with the new corrected and filtered signal, and 327 

eventually reinitialize the signal to apply a distinct protocol (Fig. 5a). 328 

Based on the same statistical algorithm used with the “Space” option to 329 

characterize populations, we have implemented an option allowing the 330 

user to directly show on the plot the values belonging to the “highest” 331 

population (often considered as representative of anomalous values with 332 

respect to the background; Boudoire et al., 2017a; Liuzzo et al., 2013, 333 

Liuzzo et al., 2015); 334 

(ii) Compare the treated signal with another signal of interest (Fig. 5b). This 335 

plot may be particularly useful to investigate well correlated or cross-336 

correlated signals; 337 

(iii) See the FFT spectrum on which are displayed the three greatest 338 

frequencies (Fig. 5c). Thanks to the labels indicating the corresponding 339 

number of measurements, the user may define the frequency interval on 340 

which applying the cut-band filter; 341 
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(iv) See the corresponding spectrogram that is a different visual representation 342 

of the FFT spectrum, extensively used in geophysical signal processing 343 

(Fig. 5d). It is particularly useful to detect periodic components and signal 344 

perturbations that may affect all frequencies. Here we use the ‘specgram’ 345 

function of the Matplotlib library with a linear detrend and a magnitude 346 

mode of 256 NFFT of default (Nonequispaced Fast Fourier Transform: the 347 

number of points in each processed block) and a 128 noverlap (the number 348 

of points of overlap between processed blocks). The user is free to modify 349 

these parameters directly in the Python 2.7 script (see user manual). 350 

The signal analysis depends on the sampling rate, therefore we cannot use an unique 351 

legend for spectrum and spectrogram axes. Consequently, we have adapted the 352 

algorithms to show both the results of the raw signal analysis (in term of number of 353 

measurements) and their meaning using more classical units. For the last one, we have 354 

coupled the number of measurements and the sampling rate to have a real temporal 355 

scale (i) in seconds (between parenthesis) on the spectrum and (ii) in hertz on the 356 

spectrogram.  357 

 358 

3.4. Saving and exporting results 359 

The SoilExp software gives the opportunity to save every graphical object with 360 

different extensions (.png, .eps …), which can be easily further modified later.  361 

Additionally both “Space” and “Time” GUI options have dedicated buttons to 362 

save .csv files. In the “Space” option, the final .csv file is similar to the intermediate 363 

file but takes into account the results of the linear regressions that could be applied to 364 

correct the dataset. Additionally, it is possible to save a .csv file recording the data 365 

repartition between the defined populations and mixing groups. Both files aim to be 366 
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eventually further processed through software dedicated to complementary and more 367 

specific tools as e.g. data interpolation, kriging, sequential Gaussian simulation 368 

(SGS). In the “Time” option, the final .csv file is also similar to the intermediate file 369 

but (i) has one supplemental column for the corrected and filtered data series and (ii) 370 

shows empty rows for missing values, which have been interpolated for the needs of 371 

signal processing. Such final file may be then processed through other complementary 372 

software for measurements of volcanic gas in plume or other environmental 373 

applications in atmospheric measurements (Fig. 1e, f). 374 

 375 

4. SoilExp application: an example at Stromboli (Italy) 376 

In volcanic environment, two of the main goals of soil surveys are (i) the 377 

identification of volcano-tectonic structures (Giammanco et al., 1997; Finizola et al., 378 

2002, 2010) and (ii) the characterization of hydrothermal fluid circulation (Revil et 379 

al., 2011; ; Boudoire et al., 2018). Once, because these low permeable structures may 380 

favor the ascent of magmatic fluids leading to fissural eruptions (Boudoire et al., 381 

2017b). Moreover, such structural interfaces may raise important issues concerning 382 

soil stability and thus landslide outbreak (Neri et al., 2004). To test the ability of 383 

SoilExp to deal with such goals, we have performed a spatial soil survey at Stromboli 384 

(Sicily, Italy) by the mean of the MEGA instrumental kit (Fig. 1). Three transects 385 

were performed with a 20 m-spacing for a total of 45 measurements of soil CO2 flux 386 

and self-potential (dataset available with our distribution as “intermediate” test file). 387 

Here, we focused on the first transect (14 measurements), the one on the northern 388 

flank of the volcano which is the closest to populated areas (Fig. 1c). 389 

Data analysis performed with the “Space” option of SoilExp reveals (i) the 390 

absence of correlation between soil CO2 ‘dynamic’ concentration (‘CO2_10’) and the 391 
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environmental parameter (pressure ‘P_atm’, temperature ‘T_atm’, humidity ‘Rh’) 392 

during the transect and (ii) an important correlation (R2 = 0.79) between soil CO2 393 

‘dynamic’ concentration (‘CO2_10’) and self-potential measurements (‘SP’). 394 

Consequently, no correction from the environmental influence was applied (Viveiros 395 

et al., 2008) and we focus on both soil CO2 flux and self-potential measurements in 396 

the following parts. The analysis performed by SoilExp shows that soil CO2 397 

‘dynamic’ concentration (‘CO2_10’) varies from 0.07 to 0.95 %. Self-potential (‘SP’) 398 

varies from -155 to +77 mV. The Anderson-Darling normally test gives A2 equal to 399 

14.3 and 3.3 for ‘CO2_10’ and ‘SP’, respectively. These values are well above 0.752, 400 

and testify that both datasets do not present a normal distribution (at 95% of 401 

significance level). It means that these datasets are better explained by the presence of 402 

two or more populations. Actually, the new statistical algorithm developed in SoilExp 403 

highlights the presence of two populations of values for both parameters (Fig. 4a, b). 404 

Soil CO2 ‘dynamic’ concentration shows the presence of two populations: one with 405 

high values (>0.20 % for 7.1% of the dataset; Fig. 4a) and the other with low values 406 

(<0.20 % for 92.9% of the dataset). We applied the equation of Camarda et al. (2006) 407 

to convert soil CO2 ‘dynamic’ concentration in soil CO2 flux for a range of soil 408 

permeability between 15 and 50, i.e. the most common values for volcanic soils 409 

(Camarda et al., 2006). The calculated upper limit of the population of low soil CO2 410 

flux does not exceed 42 gm-2d-1. This value is in accordance with the definition of a 411 

“background” population characterized by low soil CO2 flux and generally ascribed to 412 

the biological soil activity (Liuzzo et al., 2015; Boudoire et al., 2017b). Conversely, 413 

the population of higher soil CO2 flux (up to 233 gm-2d-1) is consistent with a 414 

magmatic-hydrothermal origin of the released fluids (Giammanco et al., 1997; Liuzzo 415 

et al., 2015). Self-potential shows also the presence of one population of high values 416 
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(from -9 up to +77 mV for 14.3% of the dataset; Fig. 4b) whereas most of the dataset 417 

is defined by a population of more negative values (from -169 up to -100 mV for 418 

85.7% of the dataset). 419 

Interestingly, the map-building of the soil CO2 ‘dynamic’ concentration (Fig. 420 

4c) and self-potential (Fig. 4d), based on this population analysis, shows that the 421 

population of high soil CO2 ‘dynamic’ concentration spatially correlates with the high 422 

self-potential measurements. This positive correlation between the two parameters is 423 

consistent with an upward migration of hydrothermal fluids in a restricted part of the 424 

transect (<40 m-wide) as documented for other volcanic systems (Barde-Cabusson et 425 

al., 2009; Bennati et al., 2011).  Actually, this restricted part of the transect is cut by 426 

the Nel Cannestrà eruptive fissure that is known representing a low permeability 427 

structure, in relation with N41° inferred regional faults, (Finizola et al., 2002, 2010; 428 

Carapezza et al., 2009). The identification and characterization of such structure that 429 

favors the ascent of magmatic fluids raise important civil protection issues (Boudoire 430 

et al., 2017b). Current monitoring is performed in this area by the Istituto Nationale di 431 

Geofisica e Vulcanologia (INGV) (Carapezza et al., 2009).  432 

 433 

5. Conclusion 434 

In this work we presented an open-source Graphical User Interface (GUI) software, 435 

SoilExp, which is written in Python language and is able to provide statistical and 436 

spectrum analysis as well as  several options on filtering and correcting analysis on 437 

records acquired during  spatial/temporal surveys. The software is based on two main 438 

options. Firstly, the “Space” option, aims to display the main statistical indicators 439 

used to study spatial surveys, to test the normality of data series, to identify and define 440 

the populations constituting the dataset through an innovative algorithm, and to show 441 
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results on satellite maps. The second one, the “Time” option, aims to process time 442 

series through classical tools used in signal processing (linear regression, moving 443 

average, cut-band filter, cross-correlations) and in signal representations (scatter plots, 444 

spectra, spectrogram).  Beyond facilitating the fast outcome from field surveys by 445 

offering filtering tools, graphical results and statistical analyses, SoilExp gives to the 446 

users the possibility to integrate all the results in a unique tool of elaboration, 447 

improving the research potential of the scientific community dealing with spatial and 448 

temporal soil surveys. 449 
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Fig. 1. (a) The MEGA instrument and the SoilExp software, in evidence the USB-Serial 674 

communication between the instrument and the software. (b) Tests of soil surveys at 675 

Stromboli (Sicily, Italy) (c) based on soil CO2 flux, self-potential and ground 676 

temperature. These tests aim to illustrate the use of the SoilExp software in this study.  677 

 678 

Fig. 2. General scheme of use of the SoilExp software applied either to dataset acquired 679 

with the MEGA instrument or though external sources. 680 
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Fig. 3. Graphical User Interface (GUI) of the “Serial” (a), “Space” (b) and “Time” (c) 682 

option of the SoilExp software. The GUI is divided in 4 panels. Panel (1) is dedicated to 683 

format the raw file in intermediate formatted files after applying potential distinct 684 

calibrations and conversions, and cleaning the dataset. Panel (2) aimed to process the 685 

data obtained from the intermediate formatted files either from the previous step or 686 

formatted independently by the user (conversion, moving average, linear regression, cut 687 

band filter). Panel (3) shows the result of the datasets processing and analysis 688 

(correlations, cross-correlations, statistics, analysis of populations, distribution, maps). 689 

Panel (4) allows to save the dataset transformed with the above operations in final .csv 690 

file. 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 



 32 

 708 



 33 

Fig. 4. Example of data analysis obtained by using the “Space” option at Stromboli (soil 709 

CO2 flux and self-potential measurements along a transect with a 20 m-spacing; cf. Test 710 

“Spatial” on Fig. 1c, d). Probability plot of (a) soil CO2 flux measurements obtained 711 

using a 0-10 %molar IR spectrometer (e.g. CO2_10 by “dynamic” concentration; 712 

Gurrieri & Valenza, 1988; Camarda et al., 2006) and (b) self-potential measurements 713 

carried out with a pair of non-polarizable Cu/CuSO4 electrodes (e.g. SP; Finizola et al., 714 

2010). The identification of distinct populations is based on the maximum-likelihood 715 

numerical method (see text). Map highlighting the corresponding (c) soil CO2 flux and 716 

(d) self-potential transect performed at Stromboli (cf. Fig. 1). The satellite map is 717 

obtained from Google Map. In case of absence of API key 718 

(https://developers.google.com/maps/documentation/javascript/get-api-key), the 719 

background will stay white. However, the (decimal) coordinates of the corners are 720 

reported in the upper left box in order to let the user free to download a map from 721 

distinct sources. In this example, the “Space” option allows to identify a soil CO2 722 

anomaly coupled with a positive SP anomaly that highlight an upward migration of 723 

hydrothermal fluids along the Nel Cannestrà eruptive fissure. This result is in 724 

accordance with previous study (Finizola et al., 2002, 2010; Carapezza et al., 2009). 725 
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Fig. 5. Example of data analysis obtained by using the “Time” option at Stromboli (soil 737 

CO2 flux measured during about 2 hours at 0.1 Hz at the same site; cf. Test “Temporal” 738 

on Fig. 1b). (a) Comparison between raw and treated data (after applying the moving 739 

average). The threshold analysis allows us to detect the highest population of values 740 

(often considered as “anomalous” values) during the acquisition. (b) Comparison 741 

between treated soil CO2 flux (e.g. CO2_10) and self-potential (e.g. SP) time series. Here 742 

the detected soil CO2 flux anomaly is synchronous with low self-potential records. (c) 743 

Fast Fourier Transform (FFT) spectrum of the treated soil CO2 signal. The 3 greatest 744 

frequency peaks are labelled with the corresponding period that may be cut using the 745 

cut band filter. (d) Spectrogram of the treated soil CO2 signal (linear detrend; 746 

magnitude mode; NFFT=256; noverlap=128). In this example, with about 1200 747 

measurements, there are not enough data available to obtain a smoothed spectrogram 748 

considering a NFFT of 256. 749 




