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Abstract  
 

Geochemical and geophysical prospecting methods (including measurements of soil heat flux 
and soil CO2 flux, gravimetry, self-potential and geomagnetism) are used to produce an integrated 
data set aimed at imaging the migration of fluids in the sub-surface at the Salinelle mud 
volcanoes, located on the lower southwestern flank of Mt Etna (Sicily, Italy). This area was 
affected by magmatic eruptions from local volcanic centers between about 48 and 27 ka. Today, 
only pseudo-volcanic phenomena due to over-pressured multiphase pore fluids there occur. 
Carbon dioxide of magmatic origin, mixed with biogenic hydrocarbons, warm hypersaline waters 
and mud, are constantly released at the surface through the main conduits of mud volcanoes, 
whose activity is characterized by alternation of mild gas bubbling periods and strong paroxysmal 
phases. The latter produce violent gas eruptions that eject warm water (T ≈ 50° C) to a height up 
to about 1 m. Surface distribution of the geophysical and geochemical parameters have been 
investigated to detect the main pathways through which fluids move toward the shallow crust. 
Integration of geochemical, geophysical and geological maps allowed for the tracing of the fluid 
flow in the shallowest (a few tens of meters below the surface) part of the local hydrothermal 
system. Our results showed that the rising of fluids from a deep reservoir is controlled by the main 
structural and geological features of the area and their temporal and spatial evolution depends 
on pressure conditions inside the hydrothermal system. 
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1. Introduction 
 

Mud volcanoes are geological structures formed by pseudo-volcanic phenomena caused by over-pressured 
multiphase pore fluids, generally high-salinity water and methane gas, trapped in sedimentary basins by an 
impermeable top layer of rock. They are commonly associated with compressive tectonics coupled with sediment 
accretion at convergent margins [Kopf, 2002], where large amounts of organic material were buried at high 
sedimentation rates by relatively young sedimentary rocks, thus forming hydrocarbon reservoirs. Over-pressured 
multiphase pore fluids escape along either lithologic or structural discontinuities and through permeable rocks 



until eventually erupt muddy liquid and gas at the surface. Mud volcano activity is generally characterized by 
alternating low-emission periods and strong paroxysmal phases. This activity produces typical morphological 
structures that vary both in their shape (ranging from conic edifices to sub-circular crater-like depressions), 
and in their size [Carveni et al., 2012], these features being ephemeral and easily modifiable by following 
emissions. Generally, mud volcano fields are covered with clays, they show no vegetation, and have diffuse salt 
precipitates on their surface, deposited as incrustations from evaporation of the emitted water [Etiope et al., 
2002]. For this reason, in certain areas of Italy they are named Salinelle or Salse [Carveni et al., 2012], from the 
Italian words that mean “salt”. In some cases, when the conduits of mud volcanoes get clogged by solidified 
material, methane accumulates pressure until exploding violently, with emission of hot, acid and/or poisonous 
gases. This poses a high potential risk for the people who live nearby. The most recent tragic episode of gas 
explosions at mud volcanoes occurred in 2014 at the Macalube of Aragona, the largest mud volcano in Sicily 
(with a total surface of about 1.4 km2) located near Agrigento (southern Sicily). A powerful explosion of mud 
caused by methane over-pressure killed two kids, who were buried under a thick (about 20 m) cover of mud. In 
Sicily, mud volcanoes are quite widespread both onshore and offshore [Etiope et al., 2002; Cangemi and Madonia, 
2014]. The main vents are located in the central-southern part of the island, with the exception of three groups 
of mud volcanoes located on the southwest flank of Mt Etna volcano, the main of which is named “Salinelle di 
Paternò” (Figure 1). These lay at the contact between the sedimentary rocks of the eastern margin of the Sicilian 
foredeep and the volcanic rocks of Mt. Etna’s edifice, where an actively growing anticline is rooted at shallow 
depth and related to the gravitational loading and spreading of the southern flank of the volcano [Bonforte et 
al., 2011]. In this area, the released multiphase fluids consist of a muddy liquid and a separate gas phase. The 
former derives from interaction between warm hyper-saline water (originally a geothermal brine) and local 
clays that form the rock cover overlying the hydrocarbon reservoir [Chiodini et al., 1996; Parello et al., 2001]. 
The latter is a mixture, in variable proportions, of hydrocarbons (mostly methane) that accumulate in shallow 
pockets/reservoirs and magmatic gases (mostly carbon dioxide) that are released from the deepest levels of Mt. 
Etna’s feeder system [Chiodini et al., 1996; Caracausi et al., 2003]. Emitted fluids have normally a temperature 
slightly higher than that of air, but at times, during stronger eruptions, the temperature can rise up to almost 
50° C [Giammanco et al., 2016]. Geothermometric estimates, made using both the gas and the water chemistry, 
gave equilibrium temperature between 100 and 150 °C [Chiodini et al., 1996]. In this area the temporal variations 
in the flux of magmatic gases as well as in the temperature of water and mud would be caused by changes in the 
gas/magma pressure at depth beneath Mt. Etna volcano, which often precede long-standing periods of volcanic 
activity at Mt. Etna [Pecoraino and Giammanco, 2005; Giammanco and Bonfanti, 2009; Paonita, 2010]. The latest 
intense mud eruption occurred from January to June 2016. It was particularly strong, as new mud vents opened 
inside the courtyard of a private house located on the southern edge of the main Salinelle area and impressive 
mud flows invaded the surrounding streets for several hundreds of meters around. In that occasion, the regional 
civil protection worked to divert the mud flows into the Salinelle area in order to avoid the mud invasion in 
urbanized zones of the town of Paternò. Although this area has already been studied either from geochemical 
or from a geophysical point of view [Chiodini et al., 1986; Pecoraino and Giammanco, 2005; Giammanco et al., 
2007; Panzera et al., 2016], until now no combined study was performed. Each geophysical or geochemical 
method has clearly different accuracy and reliability for defining different structural properties in diverse 
conditions and the interpretation of the phenomena includes an inherent degree of ambiguity due to the limit 
of each discipline. However, the ambiguity can be reduced when data are analyzed jointly. Multidisciplinary 
approaches of combined gas studies and geophysical surveys are well suited in the research of diffuse degassing 
structures [Chiodini et al., 2001; Nickschick, et al., 2015] like those of the Salinelle di Paternò, as they help 
defining both the mechanism of gas/fluids transport from depth to the surface, both at regional and at local 
scale, and the geometry of the pathways used by fluids to move through the shallow crust. Geophysical methods 
have greatly contributed to a better understanding of the internal structure of volcanic systems [Napoli et al 
2007; Schiavone and Loddo, 2007; Blaikie et al., 2014; Maucourant et al., 2014; Napoli and Currenti, 2016] and 
therefore may help in the detection and investigation of the main structures (dykes, shallow fractures, cavities) 
that at different scales drive deep fluids in their rise towards the surface [Mauri et al., 2012]. On the other hand, 
both discrete and continuous geochemical measurements can provide important perspective on the dynamic 
state of the fluid circulation in a hydrothermal system and are well suited to monitor its spatial/temporal 
evolution [Pecoraino and Giammanco, 2005; Maucourant et al., 2014; Inguaggiato et al., 2018].  
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Figure 1. a) Sketch map of Etna [modified after Branca and Ferrari, 2012] showing location of the investigated area; 

b) simplified geological map [modified after Carveni et al 2001]; the red dots represent the measurements of 

soil CO2 efflux, heat flux, gravity and SP; the dashed ellipse indicates the area of the main eruptive vents. 

The green lines indicate magnetic measurements. FS and CC indicate the old football stadium and Conetto dei 

Cappuccini, respectively.
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The studied area is characterized by localized density and magnetization contrasts due to the presence of 
sedimentary formations in contact with the Mt. Etna volcanics, and by fluids circulation through the shallow 
crust. Considering this context, we have chosen, among the geophysical methods, gravimetry and magnetic 
prospectings, since they are appropriate to characterize the main structural features, and the self–potential (SP) 
approach that is particularly suitable to monitor subsurface fluid movement [Hashimoto and Tanaka, 1995]. 
Therefore, geochemical, gravimetry, self-potential (SP) and magnetic surveys were simultaneously carried out in 
2015 for the first time at the Salinelle di Paternò. Detailed soil CO2 flux and heat flux maps were integrated with 
gravimetry, SP, magnetic and geological maps, revealing the main structural features of the area and providing 
an overall picture of the fluid flow processes in the shallow part of the local hydrothermal system. The results 
encourage the design of multidisciplinary geophysical networks with high spatial/temporal resolution, in order 
to provide the opportunity to obtain much better comprehensive understanding of the phenomena under study 
and to follow their evolution with the necessary frequency of data acquisition. 
 
 
2. Geological and morphological settings 
 

The Salinelle mud volcanoes lay on the lower southwest flank of Mt. Etna (Figure 1), about 30 km away from the 
volcano summit craters and within the urbanized areas of Paternò village. The area rests on volcanic products of 
old Etnean eruptive centers (350-15 ka), in proximity of the Comiso-Messina regional fault system, that is one of 
the main Sicilian structural features that plays a major role in driving the Etnean magmas from the deepest 
reservoirs to the shallowest levels of crust [Etiope et al., 2002]. In this area, the Apennines front composed of 
Pleistocene sedimentary formations is in contact with the Mt. Etna volcanics [Giammanco et al., 2007]. Here, 
structural traps in the shallow sedimentary rocks allow for the formation of pockets of pressurized natural gas 
[Caracausi et al., 2003]. The gas phase is mostly composed of deep CO2 of magmatic origin, with a minor contribution 
of shallow hydrocarbon gases, chiefly methane [Chiodini et al., 1996; Aiuppa et al., 2004; Pecoraino and Giammanco, 
2005]. The aquifer that supplies water to the mud volcanoes is part of the larger hydrogeological system of the 
southern flank of Mt. Etna [Aiuppa et al., 2004; Ferrara and Pappalardo 2008], where the shallow impermeable 
sedimentary basement prevents groundwater from reaching a considerable depth. Thinning of the impermeable 
Pleistocene sediments underlying Etna’s volcanic rocks, as consequence of the intense local tectonics, induces 
upward motion of gases, with consequent mixing with mud and warm hypersaline water until reaching the surface 
[Aiuppa et al., 2004]. Surface emission of gas takes place from a relatively small area, located on the northern slope 
of a hill named Conetto dei Cappuccini (Figure 1), an old eruptive cone with associated outcrops of lava flows 
previously ascribed to the Ellittico Eruptive Centers [Romano et al., 1979], but recently attributed to the Piano 
Provenzana Formation of Ellittico Volcano, dated to about 42.1±10.4 to 28.7±12.6 ka [Branca et al., 2011a, 2011b]. 
In this area the main vents from which water, gas and mud escape are concentrated on a small space at the northern 
edge of the lava outcrop. Here water often ponds and gases generally gurgle more or less vigorously in nearly round 
pools, whose diameter ranges from a few centimeters to some meters. The proportion of mud in the erupted water 
is highly variable, both in space and in time. Where and when mud is the only fluid erupted together with the gas 
phase, conic edifices form, whose height can reach a few meters, with more or less inclined slopes and whose base 
diameter can be up to 10 m [Giammanco et al., 2007]. Especially during the summer period, the erupted mud quickly 
dries up and it appears completely covered by a thin layer of salt deposited through evaporation. The main eruptive 
vents are located in the central part of the study area and they are relatively stable both in time and in space. This 
area, laying on the volcanic formations, is more or less north west-south east elongated and is bounded to the north 
by clays and to the south by the Conetto dei Cappuccini. The main vents show only minor displacements over a very 
small surface (a few hundred meters, Figure 1) and fairly small changes in their shape [Federico et al., 2019], and 
they are characterized by a constant emission of gas and muddy water, though with variable intensity. Conversely, 
minor vents, especially outside of the main central eruptive area, are normally ephemeral and very unstable and they 
undergo marked changes over short time periods due to strong variations in the erupted gas flow. Typically, the 
opening of new minor vents causes extinction of older ones, with consequent formation of new mud cones and 
deposits, whereas erosion can strongly modify mud edifices during periods of weak or no emission of fluids. 
Paroxysmal phases of activity chiefly affect the main vents, although they may accompany the opening of new 
peripheral vents, and they may last from several days to several months.  



The emitted waters show fairly uniform and constant chemical compositions, with sodium and chlorides dominant 
over the other dissolved ions [Chiodini et al., 1996; D’Alessandro et al., 1996; Aiuppa et al., 2004]. They generally 
have an electrical conductivity of about 88 mS/cm, thus higher than that of sea-water, and their pH is about 6.0. 
Water temperature at outlet generally ranges between 10 and 20° C, but during paroxysmal phase, it may increase 
up to about 50° C. Periods with higher water temperature values generally precede and/or accompany Etna eruptive 
activity [Giammanco et al., 1995; Giammanco and Bonfanti, 2009; Paonita, 2010]. During those anomalous periods, 
both the magmatic gas efflux [Giammanco et al., 2007] and the CO2/CH4 ratio in the emitted gas phase [Giammanco 
et al., 1998; Greco et al., 2016] increase as well. Geothermometric estimates indicate that the temperature of fluids, 
at a depth of about 1000 m, is in the range 100-150° C [Chiodini et al., 1996]. 
 
 
3. Geochemical surveys  
 

3.1 Soil heat flux  
 
In order to assess both the spatial distribution and the magnitude of the heat flux in the Salinelle area, we carried 

out a survey for the measurement of shallow thermal conductivity and thermal gradient in soil in the same sites of 
the measurements of soil CO2 effluxes (Figure 1). The thermal gradient (Tz) that is the soil temperature gradient 
along the vertical direction z (ΔT/Δz), was calculated measuring the temperature difference between air and soil at 
each site and dividing it by the depth where soil temperature measurements were carried out (in our case, 6 cm). Soil 
thermal conductivity was measured using the non-steady-state method [Bristow et al., 1994; Bruijn et al., 1983; van 
Haneghem et al., 1983; van Loon et al., 1989]. For the scopes of our investigation, we used a probe (Thermal Properties 
Analyzer, mod. KD2, Decagon Devices, Inc., USA) consisting of a hand-held readout device and a 6-cm-long needle-
shaped sensor. Each measurement cycle lasts 90 sec, at the end of which a controller computes the thermal 
conductivity of soil based on the data acquisition during the heating and cooling periods of the probe. Based on the 
above input, the one-dimensional heat flux (in W m-2) at each site was computed following the basic Fourier’s law 
 

              Q = - kTz (1) 
 

where k is the thermal conductivity of soil. The resulting heat flux values in the studied area were in the range from 32.44 
to 473.09 W m-2, with average of 163.23 W m-2 and standard deviation of 131.27 W m-2 (Figure 3a). Not surprisingly, 
the distribution of soil heat fluxes shows the highest values in the central part of the study area around the main 
eruptive vents. Other high values were measured in the SW part of the study area around the Conetto dei Cappuccini 
hill, therefore close to the place where some months later the strong 2016 mud eruption occurred. No anomalies were 
instead observed in the northern and eastern parts of the study area, in correspondence of the marly clays outcrops. 
 
 

3.2 Soil CO2 efflux  
 

Gas emissions in the Salinelle area are mostly focused at the many degassing vents, but a significant part of 
total degassing occurs also in diffuse form through soil principally in the areas surrounding the main vents, though 
with a lesser magnitude. Soil CO2 effluxes were measured in 40 sites distributed along two NNE-SSW parallel profiles 
over an area of ~ 0.12 km2 (Figure 1). The proximity of the survey to inhabited or cultivated areas prevented the 
extension of the survey to the south-east and north-west areas, so we could not have a regularly spaced grid of 
measurement points. Anyway, the profiles were chosen so as to intersect the area affected by the main emission 
vents, whose location can be considered fairly stable over time [Federico et al., 2019]. The method used was that of 
the accumulation chamber [Parkinson, 1981; Tonani and Miele, 1991; Chiodini et al., 1998]. Details on the 
instrumental setup used in the studied area can be found in Greco et al. [2016].  

Measured CO2 effluxes ranged from 0.3 to 299.3 g m-2 d-1 (Table 1), with average value of 37.5 g m-2 d-1 and 
standard deviation of 55.9 g m-2 d-1 (Figure 3b). Due to the nature of this parameter, whose spatial dispersion 
follows a lognormal distribution [Ahrens, 1954], all CO2 data were transformed into their corresponding log10 
values before being processed and mapped. The distribution map of the CO2 efflux values shows some similarities 
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to that of soil heat fluxes, because the highest degassing values were found near the main eruptive vents in the 
central part of the study area and in some points of its SW portion. However, some other points located just south 
of the main vents and at the NE corner of the area showed high CO2 effluxes but, conversely, very low heat fluxes. 
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Table 1. Results of the 2015 survey; n.m. = not measured.

Name Latitude N (m) Longitute E (m) SP (mV) CO2 efflux 
(gm-2 d-1)

Heat Flux 
(W m-2)

P1 4158787 490425 0.73 17.52 49.02
P2 4158760 490465 -25.1 15.12 42.02
P3 4158739 490517 -8.35 5.04 59.52
P4 4158722 490560 12.75 9.6 70.33
P5 4158701 490599 5.4 112.32 103.99
P6 4158667 490586 10.5 49.872 139.85
P7 4158624 490554 12.7 29.76 46.82
P8 4158559 490525 6.57 23.28 67.22
P9 4158495 490485 24.6 3.552 65.36

P11 4158437 490464 2.08 1.656 43.35
P12 4158394 490441 22.8 39.744 113.57
P13 4158332 490422 -1.085 18.96 40.96
P14 4158313 490378 13.8 16.704 78.43
Pd2 4158347 490387 0.32 n.m. n.m.
P24 4158074 490107 -3.77 0.312 32.45
P26 4158118 490088 -5.9 21.6 359.86
P27 4158165 490105 1.8 77.016 243.19
P28 4158215 490118 14 10.992 40.81
P29 4158269 490120 -9.1 7.68 252.59

P29b 4158273 490143 14.5 22.32 150.99
P30 4158355 490189 -1.03 10.992 293.36
P31 4158356 490180 -7.3 4.44 137.13
P32 4158398 490212 -8.8 17.04 275.82
P33 4158438 490234 -2.075 3 369.38
P34 4158482 490262 0.15 10.992 326.72

P34b 4158482 490262 2.6 n.m. n.m.
P35 4158523 490287 40.54 7.776 63.99
P36 4158579 490312 -17.93 39 130.7
P37 4158625 490329 -27.07 3.552 39.01
P39 4158723 490411 11.08 20.88 36.81
P40 4158757 490419 -3.45 17.112 34.48
P41 4158790 490427 -5.1 n.m. n.m.
P52 4158408 490338 -11.48 141.072 473.09
P53 4158361 490322 -10.81 29.208 452.5
P54 4158325 490291 -14.23 7.68 47.47

P54b 4158338 490293 -11.97 299.28 369.88
P55 4158285 490271 -20.26 40.32 351.68
P56 4158245 490254 -18.1 86.16 308.31
P57 4158209 490230 1.9 163.44 97.57
P58 4158180 490190 0.1 29.664 70.03
P59 415813 490185 12.5 75.12 127.45
P60 4158091 490170 16.3 26.88 229.58
P61 4158042 490151 9 16.2 186.97



4. Geophysical surveys 
 

4.1 Gravity  
 
Gravity data were simultaneously gathered with the measurements of soil CO2 effluxes and heat flux in the 

same sites (Figure 1). The instrument used was a portable Scintrex CG5 gravimeter. We also established a 
reference station in the investigated area, linked with the absolute gravity station in Catania, located about 20 
km away, where the FG5#238 absolute gravimeter is routinely used [Pistorio et al., 2011; Greco et al., 2012]. In 
order to achieve a reliable daily instrumental drift, we performed measurements at the reference station every 2 
hours, so that we could get at least four readings during a working day. Measurements started from the reference 
station and at least three readings were taken and averaged at each measurement point of the surveyed area, 
obtaining an accuracy of 10 μGal. Spatial coordinates of each gravity points were determined using traditional 
terrestrial measurements and data analysis. The precision achieved for both horizontal and vertical coordinates 
is in the order of few centimeters. Consequently, due to the uncertainty in the elevation data, the maximum error 
in gravity determinations is lower than 0.5 mGal. 

Gravity readings were corrected for instrumental drift and adjusted for tidal effects using the Eterna 3.4 
software [Wenzel, 1996]. Subsequently, the corrected data were processed to eliminate the latitude effect using 
the International Gravity Formula [GRS, 1980]:  
 

              gt = 978032.677 (1+0.005302224 sin2 φ - 0.000005824 sin2 2φ) (2) 
 
where φ is the latitude and gt is in mGal.  

In order to obtain both the free air (fa) and the Bouguer (B) anomalies we used the standard formulas: 
 

 Δgfa [mGal] = 0.3086 h (3) 
 

               ΔgB [mGal] = 0.04191 ρ h (4) 
 

where h is the station’s elevation in meters and ρ is the density of the layer above the reference datum, in kg/m3. Using 
the method of Nettleton [1976], we found an average medium density of 2300 kg/m3 for the Bouguer density reduction. 
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Figure 2. Image of the 2016 mud eruption at the Salinelle. The picture shows a detail of the private house invaded by the mud 

with a small channel dug by the Civil Protection in order to drain the mud out of the property.
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Figure 3. Shallow soil heat fluxes a) and soil CO2 effluxes b) in 40 sites distributed along two parallel profiles. Soil CO2 effluxes 

measurements gathered near our study area in July 2005 c) and in June 2006 d). 



Data were also corrected for the local topography using a digital elevation model with horizontal and vertical 
resolution of 30 and 5 m, respectively. The correction was carried out following the procedure developed by 
Hammer [1939]. 

The Bouguer gravity anomaly values (Figure 4) in this small area vary within 2.0 mGal (from 48 to 49.5 mGal). 
The lower gravity values are observed at the Conetto dei Cappuccini, where a well-defined, though small, anomaly 
is evident, while higher gravity values characterize the largest gas exhalation zone and the water/mud vents. 
No other significant anomalies were observed.  
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Figure 4. Bouguer anomaly map (density 2.30 g/cm3). The free air correction was performed using the theoretical values of 

0.3086 mGal/m. Contour interval of 0.05 mGal. Measurement points are the same as soil CO2 efflux and soil heat flux 

surveys.



4.2 Magnetic survey 
 
The magnetic survey was performed by a GSM19 Overhauser Effect magnetometer with a resolution of 0.01 nT, 

whose sensor was set vertically on an aluminum pole, 2 m above the ground surface to reduce noise. More than 
2,300 measurements were gathered and georeferenced, by GPS data simultaneously collected, on a surface of about 
0.45 km2 (Figure 1). To remove the time variations of external origin we used magnetic data continuously recorded 
by a reference station temporarily installed near the investigated region, in an area of low magnetic gradient. It is 
worth noting that the magnetic survey was executed during quiet days (K index values were less than 2). This allowed 
for a sufficient removal of transient variations from external sources, so that a suitable accuracy could be achieved. 
The observed magnetic field was not reduced with respect to the IGRF reference field, because of the limited extent 
of the investigated area. In fact, in a relatively small survey area the removal of IGRF is not significant because of 
its low resolution and spatial uniformity [Kearey and Brooks, 1991]. The total-intensity anomaly field, obtained 
after data reduction, is characterized by anomalies with variable intensity and spatial extension. In particular, small 
magnetic anomalies are detected within the area affected by mud volcanoes, but wider and more intense anomalies 
are located in the southeast and northeast parts of the investigated area. Taking advantage of the very short 
sampling step adopted (2 m) with respect to the real resolution of the survey, a low-pass filter with a cutoff 
wavelength of 70 m was applied to reduce the high frequency noise and to enhance the effects either of deep-seated 
bodies or of broad shallow sources. The resulting filtered magnetic map (Figure 5) reveals a manifold distribution 
of local magnetization. The area affected by mud volcanoes is characterized by a magnetic high surrounded by 
negative anomalies of smaller scale. A magnetic low is observed in the central part of the map, close to the old 
football stadium (Figure 1) and coincident with an old emissive area no longer active. An intense minimum, North-
South elongated, is observed in the southeastern part of the map, where no emissive activity has been observed so 
far. This magnetic signature could be related to the low magnetization of sedimentary rocks outcropping in the 
study area (Figure1), as reported in the geological scheme proposed by Carveni et al. [2001]. The sharp contact 
between high- and low-magnetized rocks (i.e., lavas and clays, respectively) could be related to the presence of a 
non-outcropping subsurface tectonic structure with North-South direction. Other zones of magnetic low, likely 
related to the presence of sedimentary rocks at shallow depth [Carveni et al., 2001], spread along the western and 
northern edges of the study area, but they are not completely defined since they continue where no measurements 
were carried out.  
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Figure 5. a) Total field magnetic anomaly map of the Salinelle area. b) Map of the local residual anomalies produced by filtering 

total field. The red dots indicate the measurements of soil CO2 efflux, soil heat flux and gravity surveys. The yellow 

lines represent magnetic measurements.



4.3 Self-Potential measurements  
 

Self-potential (SP) measurements were acquired at the same sites as the CO2 efflux, heat flux and gravity 
measurements (Figure 1) using a pair of Cu/CuSO4 non-polarizing electrodes and an insulated electric cable. The 
SP method consists of measuring the difference of electrical potential between a reference electrode (arbitrarily 
placed at the beginning of the profile, several tens of meters away from the mud volcanoes) and a mobile electrode, 
using a high-impedance voltmeter (sensitivity of 0.1 mV, internal impedance of 100 MW). In order to improve the 
electrical contact between the electrode and the ground, a small hole, generally 10 cm deep, was dug at each site 
and the electrode inserted in it. Closures of the profiles were made as frequently as possible to warrant an error lower 
than 10 mV. The Kirchoff law is used to remove the drift of electrodes inside a loop of measurements [e.g., Revil and 
Jardani, 2013]. Considering the low temperature of the soil when SP measurements were gathered, we rule out that 
drops due to a Rapid Fluid Disruption effect [Johnston et al., 2001] affected the measurements, which, indeed, 
appeared stable. Finally, SP measurements in the survey area were not affected by the elevation effect because 
differences in the elevations among the benchmarks is negligible. 
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Figure 6. Spatial distribution of self‐potential values in the Salinelle area. Measurement points are the same as those of soil CO2 

efflux, soil heat flux and gravity surveys.



The SP anomaly map (Figure 6) was obtained by automatic interpolation using a kriging method and a 5-m 
square mesh for gridding. The SP amplitudes range from ‒45 mV to +35 mV (Table 1) with an average of ‒10.2 mV 
and standard deviation of 0.6 mV. The generally low values likely reflect the low eruptive activity of the Salinelle 
at the time of surveys. The SP anomaly map shows the highest negative values (down to ‒45 mV) in the north-west 
part of the investigated area and the highest positive values south of the negative anomaly. Such distribution 
describes a clear electrical dipole extending over a distance of some tens of meters, very close to the active emissive 
area at the base of the Conetto dei Cappuccini. On moving southward, a larger negative anomaly is observed. Similar 
dipole patterns were observed in other studies focused on SP anomalies in volcanic areas [Zlotnicki et al., 2003; 
Lenat, 2007; Maucourant et al., 2014] and were interpreted as due to convective cells of hot fluids [Michel and 
Zlotnicki, 1998]. Positive anomalies of smaller magnitude characterize the eastern area, near the old football 
stadium, in correspondence with the old emissive area. 

 
 

5. Discussion and Conclusions 
 

Comparison of the results from geochemical and geophysical surveys in the Salinelle area, although quite complex, 
allowed us to infer the overall spatial pattern of the fluid flow processes that are acting in the study area. As a general 
remark, an interesting spatial correspondence was evident among soil CO2 efflux, heat flux and gravity variations. 
Actually, all three parameters show no significant anomaly in the northern half of the study area, whereas a greater 
variability with marked anomalies occurred in the central and southern half. Some of the highest values both of soil 
CO2 efflux and heat flux were measured at the southwestern edge of the main active mud vents area, in 
correspondence of the northwest slope of the Conetto dei Cappuccini. A similar pattern is evident also from the 
gravity anomaly map, showing the lowest gravity values in correspondence of the Conetto dei Cappuccini. These 
most likely are related to the presence of mass deficit or decreased rock density due to a high percentage of 
porosities/voids in the outcropped lava flows. Furthermore, this area corresponds remarkably well with the largest 
negative SP anomaly. Generally, in volcanic areas, negative SP values indicate downward motion of fluids, whereas 
positive values indicate areas of preferential up-rise of fluids [Jackson and Kauahikaua, 1987]. Considering the 
correspondence between anomalous low gravity and negative SP values, we suppose that this area marks the position 
of a preferential pathway for meteoric water infiltration, which contributes to the local circulation of underground 
fluids. In this sense, the geologic structure of the Conetto dei Cappuccini may constitute a high permeability crustal 
zone acting as preferential shallow pathway for the circulation of fluids.  

Conversely, the zone corresponding with the main vents of gas and mud/water emission is characterized by higher 
gravity values, which seems in contrast to what it is normally expected. Actually, in such a context the gas emission 
would enlarge the pores in soft near-surface sediments, as well as contribute to widening of the gas channeling 
fractures. Therefore, these phenomena should produce zones with lower density values within the sediment rock 
and hence low gravity values at the surface. On the basis of the high gravity values, which could be ascribable to the 
presence of local higher density subsurface bodies (e.g., compact mudstones with low porosity), we exclude the 
occurrence of such phenomena and suppose the gas rises from deep through channeling fractures in the shallow 
impermeable layers. This is supported also by the spatial distribution of soil CO2 efflux and soil heat flux. Their 
similar patterns, indeed, strengthen the role of high-enthalpy fluids in carrying both mass and heat up to the surface 
in the Salinelle area. However, in some points, like P57 to P59 in Figure 3, high CO2 flux correspond to low heat flux. 
This discrepancy is likely the result of the low permeability of the soil at relatively shallow depth. The shallowest layer 
of soil is mostly made of low-permeability clays that are locally affected by desiccation cracking. Therefore, the 
hydrothermal fluid rich in CO2 propagates toward the surface following all possible high-permeability paths formed 
by cracks and/or other discontinuities. During this process, the fluid cools down, possibly condensate and reaches 
the surface as “dry” CO2-rich gas at places that sometimes can be quite far from the main deeper pathways. This 
“dispersion effect” of soil gas was already observed on Mt. Etna and discussed as regards soil CO2 emissions across 
and along the Pernicana fault system on the northeast flank of Mt. Etna [Giammanco et al., 1997; Azzaro et al., 1998]. 

Considering the spatial distribution of the geophysical anomalies, the investigated area appears divided into 
two main sectors, whose sharp contact may delineate a geologic or tectonic structure with an approximately North 
West-South East direction, that could justify the elongation in the same direction of the area affected by the main 
eruptive vents (Figure 1). This could be related to the actively growing anticline, rooted at shallow depth, that uplifts 
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at a rate of about 10 mm/yr producing ground deformation evident in the whole southern periphery of the volcano, 
including the Salinelle area and that is related to the gravitational spreading of the east and southeast flanks of the 
volcano [Bonforte et al., 2011]. 
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Figure 7. Dipole occurrence probability tomography of the self‐potential sources along the AA’ and BB’ profile (shown in inset 

box on top right).



It is reasonable to suppose, therefore, that the active local tectonics may play a major role in governing the 
circulation of fluids in the study area and in particular favoring the escape of deep fluids toward the surface. 
Probably, those tectonic structures are the same deep faults that allowed magma to erupt at the surface at the 
time of the formation of the volcanic centers of the Conetto dei Cappuccini, Cono di Paternò (outside the 
investigated area) and the Ellittico Eruptive Centers lava flows. In the eastern part of the investigated area, 
although no temperature and gravity anomalies were detected, several small positive SP anomalies appear, 
corresponding to upward-migrating fluids, and overlap quite well with magnetic lows. Since the spatial 
distribution of these anomalies is coincident with the old area of emissive vents close to the old football stadium, 
the reduced magnetization zone can be ascribable to strong hydrothermal alteration of the host rocks. This is 
supported by the lower gravity values observed in the same area in correspondence of P9 and P11 benchmarks, 
probably related to clay minerals and leaching produced by hydrothermal alteration. The magnetic anomaly map 
does not reveal other magnetic lows in the area of the active mud volcano. In agreement with the relatively low 
temperature values (100-150° C) calculated for the equilibration of the fluids emitted at the Salinelle, based on 
gas and liquid geothermometry at depth of about 1000 m [Chiodini et al., 1996], and measured at water outlet (40-
50° C), this result seems to rule out demagnetization of local rocks induced by high temperature, because this 
process requires temperature values higher than 500° C. On the other hand, the observed magnetic highs can be 
related to the presence of lava flows of the Ellittico Eruptive Centers erupted from the Conetto dei Cappuccini 
[Romano et al., 1979].  

Despite the presence of hot fluids in the study area, the amplitudes of the SP anomalies are remarkably low. 
Amplitudes ranged between ‒45 and +40 mV, whereas generally in volcanic environments SP anomalies show 
amplitude greater than several hundreds of mV [Maucourant et al., 2014]. In the case of Salinelle area, the low 
SP values could be reasonably due either to the weak eruptive activity of the mud volcanoes when surveys were 
performed or to the own characteristics of the hydrothermal system related to the local properties of medium 
and fluids. Considering the small size of SP dipoles depicted at the surface in the studied area, the depth of the 
corresponding hydrothermal system is probably very shallow [Revil et al., 1999; Zlotnicki and Nishida, 2003]. 

In order to better identify the depth location of SP sources, a dipolar tomography [Patella, 1997; Revil et al., 
2014] was applied to the SP profiles AA’ and BB’. The concept of probability of charge occurrence is generally 
used for the tomographic imaging of the charge distribution responsible for the electric current circulation in 
conductive rocks [Patella, 1997]. In our case, this concept allowed us to recover the dipolar occurrence 
probability of the source of the dipole responsible for the observed anomalies (Figure 7). The most evident 
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Figure 8. Schematic interpretative model of the Salinelle feeder system during normal periods of activity (a), during 

periods of pressure build‐up in the deep reservoir of hydrothermal‐hydrocarbon fluids (b) and during peripheral 

paroxysmal eruptions (c). Geologic section based on data form Carveni et al (2001) and Panzera et al. (2016).



effect is the well-defined separation between zones with negative and positive charge occurrence probability, 
which appears in profile AA’ at depth of about 100 m below the ground surface. The shallow negative source 
would outline the position of a main path for meteoric water infiltration, located just north of the active emissive 
vents. The positive source would instead indicate the sites of thermal fluids up-rise. The remarkable wide and 
deep positive anomaly along the BB’ profile would correspond closely to the area of old emissive vents. No other 
occurrence probability zones are evident at depth greater than 200 m.  

The geophysical features outlined by our surveys might thus represent the signature of a very shallow 
convective hydrothermal system located just a few tens of meters below the ground surface. Geophysical surveys 
did not reveal a clear preferential pathway through which gases composed of deep CO2 of magmatic origin, 
revealed by geochemical surveys, can rise toward the surface. Therefore, it is likely that the hydrothermal up-
rise system, which regulates the activity of the Salinelle mud volcanoes, is not composed of a single feeding 
conduit but rather of a combination of several interconnected channels that branch at different depths, 
according to the stratigraphic sequence described by Panzera et al. [2016]. This interpretation is supported by 
the observed frequent migration of the emission vents over time, especially during paroxysmal events, although 
within the geological limits of the Ancient alkaline centers lavas. In fact, the main degassing vents are usually 
located on the northern slope of the Conetto dei Cappuccini, but emissions may occasionally migrate some 
hundred meters away. For example, in the past, the emission vents moved toward the old football stadium, 
which was damaged because of corrosion and weakening of concrete in its structure and it was consequently 
abandoned. More recently, in early 2016 new vents opened beneath and around a private house located at the 
southwest corner of the study area, producing a violent and long-standing mud eruption (Figure 2). In a similar 
way, in early 1990 a strong paroxysmal eruption built the largest mud cone in the area, located close to the 2016 
vents [S. Giammanco, unpublished data]. In these occasions, normally the activity in the main degassing vents 
is strongly reduced, thus supporting the hypothesis of a change in the pathways of fluids coming from the deep 
feeding system. In support of this observation, soil CO2 efflux measurements previously carried out in or near 
our study area both in July 2005 [Giammanco et al., 2007] and in June 2006 (Messina, 2006) indicate a 
distribution of anomalous values mostly concentrated in the central and north part of the area (Figures 3c-d), 
close to the geological limit between lavas and clays (Figure 1). The different distribution of CO2 efflux values 
in time, therefore, suggests that in the summer of 2015 the diffuse degassing activity shifted towards the 
southern part of the area, very close to the sites where the new mud vents opened in early 2016.  

Linking together the results from the different disciplines involved in this study, a conceptual model can be 
produced, which highlights the important role of local geology (Figure 8). We infer that the clay layers, 
outcropping in the northern part of the investigated area, represent an impermeable barrier that forces the 
deep fluids to rise to the surface either along the limit with the more permeable Ancient alkaline centers lavas 
or south of it, in any case within the lava formation. Based on the distribution of diffuse CO2 emissions, it seems 
that in periods of relatively mild degassing the emission of fluids is mostly concentrated in the zone where the 
main mud vents are usually located, which clearly represent pathways of easier uprise of fluids (Figure 8a). In 
periods of increased activity, supposedly related with overpressure of gas at depth, emission of fluids mostly 
moves towards the Conetto dei Cappuccini, thus probably forcing open pathways that are normally not used by 
deeper fluids to reach the surface (Figures 8b-c), though being high-permeability zones as interpreted from the 
geophysical surveys. 

Both geochemical and geophysical mapping concurrently highlighted surficial areas of outflow and inflow 
of fluids, although no information can be obtained from our methods on the deep feeding hydrothermal system, 
due to the low spatial resolution and small extent of our measurements.  

Careful definition of in situ properties of rocks and fluids, repetition of all surveys carried out during this 
study, especially under different “eruptive” conditions (both lower and higher emissivity at vents), enlargement 
of the survey area and improvement in the spatial resolution of measurements will help to improve our 
understanding of the hydrothermal system feeding the Salinelle mud volcanoes, especially at deeper levels.  

This multidisciplinary method, obtained from high-speed and low-cost surveys, could represent a meaningful 
approach to monitor the spatial/temporal evolution of a hydrothermal system. In particular, in areas where 
hydrothermal fluids rich in mud occur in the close proximity of populated areas (such as the case of the 
Salinelle), our approach is intended to provide helpful and timely information on the potential migration of 
the fluids towards high-risk areas. Furthermore, it can be applied to other mud volcanoes where the carrier gas 
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is mostly methane and hence where the chance of gas explosions is higher (e.g., the Macalube of Aragona in 
southern Sicily, where two kids were recently killed by an explosion of methane and mud). This type of study 
contributes to the assessment and possibly mitigation of the hazard posed by this type of natural gas emissions. 
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