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Abstract

It has been recently proposed DeVito (2019) that a minimal number of con-

tacts with alien radio-communicative civilizations could be justified by their

logarithmically slow rate of growth in the Galaxy. Here we further develop this

approach to the Fermi paradox, with the purpose of expanding the ensemble of

the possible styles of growth that are consistent with the hypothesis of a mini-

mal number of contacts. Generalizing the approach in DeVito (2019), we show

that a logarithmic style of growth is still found. We also find that a style of

growth following a power law would be admissible, however characterized by an

exponent less than one, hence describing a sublinear increase in the number of

communicative civilizations, still qualitatively in agreement with DeVito (2019).

No solutions are found indicating a superlinear increase in the number of com-

municative civilizations, following for example an exponentially diverging law,

which would cause, in the long run, an unsustainable proliferation. Although

largely speculative, our findings corroborate the idea that a sublinear rate of

increase in the number of communicative civilizations in the Galaxy could con-

stitute a further resolution of Fermi paradox, implying a constant and minimal

- but not zero - number of contacts.
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1. Introduction1

DeVito DeVito (2019) has recently considered some new aspects of the2

“Fermi paradox”, i.e., the apparent contradiction between the lack of evidence3

for extraterrestrial civilizations existing in the Galaxy and their high probabil-4

ity Hart (1975); Webb (2002); DeVito (2013), suggested by the Drake equa-5

tion Drake (2014); Forgan (2009). Assuming that the Galaxy is explored with6

the only purpose of detecting signals from alien radio-communicative civiliza-7

tions, DeVito has argued that the rate R at which they are detected should de-8

pend on their number n(t) but also on their rate of increase (or decrease), ṅ(t).9

Note that here n(t) represents the left-hand side of Drake’s equation Burchell10

(2006); Sandberg et al. (2018), denoted by N and customarily assumed to be11

constant. A functional dependency like R = R(n, ṅ) appears to be justified,12

assuming an ideal scenario in which the Galaxy has been continuously explored13

during a significantly long period of time, taking note of the contacts with alien14

societies and continuing the search. Apart such idealized experiment, it seems15

clear that an explicit mathematical expression for the rate of detection can16

hardly be conjectured, although it seems reasonable to assume that R would be17

increasing with n(t) and ṅ(t). In general, the rate of successful detections shall18

depend upon the SETI strategy adopted, on the resources deployed, as well as19

on a number of other factors - also involving socio-political aspects - that can20

be hardly quantified lacking observational constraints.21

Following DeVito, we make the hypothesis that n is large enough to be22

effectively treated as a continuous variable and that its time derivative ṅ(t)23

can be evaluated for all values of t. Furthermore, assuming the functional24

dependency R = R(n, ṅ), the quantity25

Nd =

∫ T

0

R(n, ṅ) dt (1)26

represents the number of societies effectively detected over the exploration time27

interval 0 ≤ t ≤ T . The argument in DeVito (2019) is that Nd cannot be a28
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large number, otherwise some contact would have occurred by now. Since in the29

environment we have still not found evidence for such contacts (though search30

strategies for alien footprints have been suggested, see (Davies, 2012)), the De-31

Vito’s hypothesis is that Nd is small and minimal. This essential - although not32

verifiable - assumption, is the requisite for a quantitative approach to the prob-33

lem, which otherwise would not be possible. Indeed, from functional analysis34

Kot (2014), for Nd being an extremum, R(n, ṅ) must obey the Euler-Lagrange35

(E-L) partial differential equation36

∂R

∂n
− d

dt

∂R

∂ṅ
= 0 , (2)37

where henceforth we can assume R ≥ 0 since R represents a rate of detection.38

Furthermore, a necessary condition for R being a minimum is39

∂2R

∂ṅ2
≥ 0 , (3)40

where ṅ(t) is the time-derivative of the solution of Eq. (2). We note however41

that this constraint, known as “Legendre condition” in the calculus of variations42

(see e.g., Gelfand and Fomin (1963)), has not been exploited in DeVito (2019).43

It is noteworthy that in the context of classical population dynamics, the in-44

troduction of variational principles dates back to the work of Volterra Volterra45

(1939), who considered the problem of minimizing an appropriate functional,46

leading to an E-L equation that is satisfied by the Verhlust (logistic) equation.47

The idea of Volterra proved to be fecund, being later reevaluated in Leitmann48

(1972) and Gatto et al. (1988).49

Searching for a particular solution of the E-L equation (2) in the factorized50

form51

R(n, ṅ) = G(n)H(ṅ) , (4)52

where Lagrangian R is not explicitly time-dependent and the unknown functions53

G(n) and H(ṅ) depend upon n(t) and ṅ(t) separately, DeVito DeVito (2019) has54

determined a simple solution of the problem, in which H(ṅ) ≈ ṅ2 (henceforth55
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≈ is used to denote proportionality). With this choice, the minimum rate of56

detection turns out to be a constant, i.e.,57

Ṙ(n, ṅ) = 0 , (5)58

a condition that, by Occam’s razor, appears to be reasonable and valid for any59

other acceptable solution of the E-L equation. According to DeVito, the solution60

n(t) slowly increases with time following an unbounded logarithmic growth1
61

(details shall be given in Section 2 below). Intriguingly, from this result DeVito62

has suggested a further possible resolution of Fermi paradox Webb (2002), i.e.,63

that the lack of contacts with alien communicative civilizations is hampered by64

their limited rate of growth in the Galaxy.65

As emphasized in DeVito (2019), the solution of the E-L equation is, from a66

mathematical standpoint, highly non-unique. Furthermore, any solution could67

be hardly tested against experimental observations, at least until SETI shall68

succeed. Nevertheless, we think that searching and classifying other possible and69

yet unknown solutions of the DeVito’s problem may constitute an interesting70

intellectual exercise. Indeed, their nature could provide new resolutions of Fermi71

paradox, either supporting or challenging that proposed in DeVito (2019). For72

instance, solutions characterized by a marked growth in time like ∼ et or ∼ tα73

(α > 1) would undermine DeVito’s argument; vice versa, weakly increasing74

(∼ tα, α < 1) or decaying solutions (as ∼ e−t or t−α with α > 0) would75

strengthen it. In this work we explore such possibilities, conventionally defining76

as viable solutions those for which Eqs. (2), (3) and (5) are simultaneously77

valid, as they are valid for DeVito’s original logarithmic solution. Obviously, of78

particular interest are those viable solutions that can be expressed in terms of79

elementary functions, thus having a value similar to the simple solution sought80

(and found) in DeVito (2019). As far as we know, such alternatives have not81

been systematically explored so far. It is certain, however, that assuming for82

1To avoid confusion, it is worth to remark that in population ecology the term logarithmic

growth is used to indicate the phase of population growth during which the number of cells

increases exponentially, in conditions of unlimited resources (see e.g., Berryman (2003)).
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H(ṅ) a degree three polynomial is not leading to viable solutions (see Appendix83

of DeVito (2019)).84

This brief communication is organized as follows. In Section 2 we review85

and complement the DeVito’s solution. In Section 3, we extend DeVito’s solu-86

tion scheme, obtaining a class of viable solutions characterized by logarithmic87

growth. Section 4 proposes a further viable and simple solution exhibiting a88

power law style of growth. Section 5 discusses the various styles of growth sug-89

gested by our results, which are compared with basic styles of growth known in90

the literature of population dynamics. Our conclusions are drawn in Section 6.91

2. Extending DeVito’s solution92

DeVito DeVito (2019) relied upon the factorized form (4), in which H(ṅ)93

is the lowest-degree monomial expression for which a “simple” solution can be94

easily determined. Note that with respect to DeVito (2019), here we use a95

slightly different notation. Assuming96

H(ṅ) = (cṅ)2, (6)97

where c is a constant, and solving the E-L equation (2) by separating the vari-98

ables we obtain99

−2
n̈

ṅ2
=
G′(n)

G(n)
= k2, (7)100

where we have definedG′(n) = dG
dn and k2 is a dimensionless separation constant.101

Henceforth we assume, without loss of generality, that functions G and H are102

positive. The second of the two equalities in Eq. (7) gives G(n) = G0ek
2(n−n0),103

where G0 > 0 is a constant and n0 = n(0) is the initial number of communica-104

tive civilizations, while from the first we obtain the following linear ordinary105

differential equation106

ṅ =
ṅ0

1 +
ṅ0k

2

2
t

, (8)107

where ṅ0 is the initial rate of change of n(t). Here we depart slightly from DeVito108

(2019), since we consider separately two cases that differ for the sign of the initial109
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rate ṅ0. Of course, according to (8), in the particular case ṅ0 = 0, n(t) would110

remain constant to n0 during the whole observation period. By integrating (8)111

for ṅ0 6= 0, and defining a time constant τ such that τ−1 = |ṅ0|k2, we obtain112

the time evolution of communicative civilizations that ensures an extremum for113

Nd, namely114

n±(t) = n0 + 2τ |ṅ0| log

∣∣∣∣ t2τ ± 1

∣∣∣∣ , (9)115

where n+(t) and n−(t) correspond to the two mutually excluding conditions116

ṅ0 > 0 and ṅ0 < 0, respectively.117

In Figure 1, solutions (9) are qualitatively depicted for some particular values F1118

of the free parameters; details are given in the caption. We note that solution119

n+(t) (red curve) corresponds to the one found in DeVito (2019). It is charac-120

terized by a slow unbounded growth and by a rate of change decreasing like t−1,121

hence approaching zero for t 7→ ∞. Although n−(t) (blue curve) is matching122

n+(t) for sufficiently long times (t � τ), it appears that the sign of ṅ0 has a123

significant role in shaping the solution for times t ≈ τ . Remarkably, Figure 1124

shows that the condition of minimum for Nd (see Eq. 1) could be compatible125

with an initial decline and a subsequent recovery of the number of communica-126

tive civilizations, as indicated by solution n−(t). It should be observed, however,127

that according to our assumptions, n(t) should be enough large to be consid-128

ered as a real (and differentiable) variable, so that close to the singularity of129

Figure 1 the solution found has merely a formal character. It is straightforward130

to verify that the Legendre condition (3) is met for both n+(t) and n−(t), in-131

dicating that they could effectively correspond to a minimum of Nd. Note that132

the constraints represented by the Legendre condition has not been taken into133

consideration in DeVito (2019). In addition, the minimum rate of detection,134

i.e., the value of R(n, ṅ) evaluated using for n(t) the expressions of n±(t), is135

a constant (see 5). Hence, according to our definition of viable solution given136

above, the DeVito’s solution and its extension (9) are both viable, being at the137

same time mathematically simple.138
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3. Generalizing DeVito’s scheme139

To better explore the range of possibilities existing, with the aid of the140

algebraic manipulator Mathematica R© Research (2010), we have been searching141

for other viable and mathematically simple solutions of the E-L equation. In this142

section, we consider a few examples in which a factorized form (4) for R(n, ṅ)143

is preserved.144

First, we have found that a straightforward generalization of DeVito’s solu-145

tion (9) is possible by making the particular choice146

H(ṅ) = (cṅ)p , (10)147

where c is an inessential constant and p ≥ 2 is an integer (for p = 2, Eq. 10148

reduces to 6). In this case, imposing the validity of the E-L equation (2), after149

some algebra we still find a logarithmic law150

n±(t) = n0 + pτ |ṅ0| log

∣∣∣∣ tpτ ± 1

∣∣∣∣ , (11)151

where constant τ and the meaning of n±(t) are the same of Eq. (9). It is easily152

verified that for even values of p the Legendre condition is satisfied, hence Nd
153

could effectively have minimum for n(t) = n±(t). Conversely, for odd values of154

p, the Legendre condition only holds for ṅ > 0, hence, for ṅ < 0 the solution155

certainly does not correspond to a minimum. Note that similar to DeVito’s156

solution, for n = n±(t) the rate of detection R(n, ṅ) is a constant. Hence, for157

even values of p, solution (11) is viable and characterized by the same level of158

mathematical complexity of (9). Figure 2 shows n+(t) for some even values F2159

of p, using log-log axes. All the curves are similar to curve n+(t) in Figure160

(1), and regardless the p vale adopted their trends become distinguishable only161

for t ≥ τ . This example clearly supports the DeVito’s argument about the162

logarithmic nature of the growth of n(t). For p 7→ ∞, it is easily verified that163

n+(t) approaches asymptotically the linear growth model n(t) = n0+(ṅ0τ)(t/τ),164

which is plotted by the purple curve in Figure 2.165

By algebraic manipulation, we have found other interesting analytical so-166

lutions of the E-L equation. To provide a few examples, here we consider the167
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three characterized by the simplest structure, namely H(ṅ)=(c1ṅ) log(c2ṅ),168

H(ṅ)=c1ṅ+ (c2ṅ)−1 and H(ṅ)= ecṅ, where c1, c2 and c are positive constants.169

In the first case, for the time evolution of the number of communicative civi-170

lization we find171

n±(t) = n0 + |ṅ0|τ log

∣∣∣∣ tτ ± 1

∣∣∣∣ , (12)172

where constant τ and the meaning of n±(t) are the same as in Eq. (9). In the173

second case, after some algebra, we still find a solution that varies logarithmi-174

cally with time, namely175

n±(t) = n0 − |ṅ0|τ log

∣∣∣∣ tτ ∓ 1

∣∣∣∣ , (13)176

whereas in the third case, we obtain177

n(t) = n0 +
t

τ1
+ τ2

(
ṅ0 −

1

τ1

)(
1− e−t/τ2

)
, (14)178

where τ1 > 0 and τ2 > 0 are two independent time constants. We note that (12)179

and (13) confirm qualitatively the character of the original DeVito’s solution (9).180

However, a qualitatively different style of growth is implied by (14), which shows,181

for sufficiently long times (t � τ2), a constant rate of increase, with ṅ(t) ≈182

τ1
−1. It is easy to establish, however, that all the three solutions considered183

above imply a time-varying minimum rate of detection (Ṙ 6= 0), contrary to the184

original DeVito’s solution (9) and to its extension (11). Hence, according to our185

conventions, they cannot be considered viable solutions.186

4. More solutions187

From the results so far, it appears that DeVito’s hypothesis of a minimal188

number of detected civilizations suggests a logarithmic evolution for n(t). As189

pointed out in DeVito (2019), it is of course impossible to scrutinize all the190

possible particular solutions of the E-L equation. However, either using an al-191

gebraic manipulator or by trial and error, we have made efforts to determine192

viable alternatives to the logarithmic growth that we have often encountered,193

hoping that in this way the zoo of possible solutions can be better explored.194
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Since the style growth (or decline) of a time-dependent function are commonly195

expressed terms of logarithms (log t), exponentials (eαt) and powers (tα), we196

have first searched for exponential solutions, but we have not been success-197

ful. Indeed, finding a solution characterized by a diverging exponential increase198

could be important, since this would challenge the results achieved in DeVito199

(2019) about the slowly growing number of radio-communicative civilizations in200

the Galaxy, assuming that the rate of detection is minimal. Similarly, for the201

same reason, the existence of a solution that grows according to a power law like202

tα with α > 1 would be engrossing, since it would influence the interpretation of203

Fermi paradox. We have not found viable solutions having a periodic character.204

In our exploration, an interesting and surprisingly simple power-law solution205

for n(t) has been found by trial and error assuming a rate of detection206

R(n, ṅ) ≈ np ṅq , (15)207

where p ≥ 2 and q ≥ 2 are free parameters. The form (15) appears meaningful,208

since it predicts a rate of detection that, for a given value of the number of209

societies n(t), increases with their rate of change ṅ(t), and viceversa; the values210

of p and q determine which of the two functional dependencies is stronger. We211

note, however, that Eq. (15) implies R = 0 if n(t) is constant. Of course, p212

and q are a priori unconstrained, since we do not dispose of any experimental213

observation of R yet. Imposing the validity of the E-L equation (2), after some214

algebra we obtain a non-linear, autonomous ordinary differential equation in the215

unknown n(t) that reads216

p ṅ2 + q n n̈ = 0. (16)217

By direct substitution, it can be verified that (16) has a particular solution in218

the form of a power law219

n(t) ≈
(
t

τ

)β
, (17)220

consistent with the initial condition n0 = 0, where τ is a time constant, and221

where the exponent is222

β =
q

p+ q
. (18)223
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We note that since β < 1 for any value of p and q, the growth of n(t) is relatively224

slow and its rate is decreasing with time, never exceeding a linear trend. We225

remark that, based on our criteria, solution (17) is viable since i) it obeys the226

Legendre condition (3), and ii) the minimum rate of detection corresponding to227

the solution in Eq. (17) is a constant, according to (5).228

5. Discussion229

The existence of viable alternatives to the logarithmic model of growth,230

suggested by result (17), justifies a short discussion, in a broad perspective,231

about the significance of styles of growth encountered or simply mentioned in232

this work. It is convenient to classify them into two families, i.e., superlinear and233

sublinear, according to the trend that they show in the long run, in comparison234

to a linear growth.235

Some examples of superlinear styles of growth are shown in the plot of Fig- F3236

ure 3, where they are compared to the linear growth nlin(t) = t/τ depicted by237

the dashed line. They are the exponential growth e+
t
τ (i, black curve), which238

exemplifies the Malthusian law of uninhibited growth known in population dy-239

namics (Berryman, 2003), and two power laws with exponent α > 1, i.e., the240

quadratic (ii, α = 2) and the cubic (iii, α = 3) displayed in orange and red,241

respectively. In our exploration of the possible solutions of the E-L equation242

obeying the DeVito’s hypothesis of a minimal number of detected civilizations,243

we have never encountered superlinear growth models like those considered in244

Figure 3. Of course, since our search cannot be exhaustive, the existence of245

admissible superlinear models is not ruled out. However, it seems unlikely that246

an exponentially diverging number of communicative civilizations may be com-247

patible with the minimum (and constant) detection rate hypothesized in DeVito248

(2019). A common tenet in population dynamics is that an exponentially di-249

verging growth would eventually become unsustainable and cause a collapse,250

analogous to the well known Malthusian catastrophe Malthus (1872). Along251

these lines, it is interesting to note that a “sustainability solution” to the Fermi252
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paradox has been proposed in Haqq-Misra and Baum (2009), in which the ab-253

sence of contacts is explained by the possible non sustainability of exponential254

(or faster) growth patterns of hypothetical intelligent civilizations.255

As possible examples of sublinear styles of growth, in Figure 4 we have F4256

considered the (shifted) logarithm log(1+t/τ) (i, green curve), and two samples257

of power laws with exponent 0 < β < 1, namely (t/τ)
0.2

(ii, orange) and (t/τ)
0.5

258

(iii, red). The dashed line still indicates the linear growth nlin(t) = t/τ . In259

Section 2, logarithmic solutions like (i), qualitatively similar to the one originally260

proposed by DeVito (DeVito, 2019) and encountered in this study, have been261

found to be in agreement with the E-L equation. Comparing the dashed curve262

with the green one, the sublinear character of the logarithmic growth is apparent263

although for times t � τ the two curves are matching. Similarly, in Section 3,264

we have shown that power-like styles of growth similar to those exemplified by265

(ii) and (iii) are admissible solution of the E-L equation (see, in particular,266

Eq. 17). We note that depending upon the value of exponent β, power-like267

sublinear growths can exceed the logarithmic one, as it is indeed the case in268

Figure 4 for β = 0.5 (iii). Both, however, remain strictly sublinear for t ≥ τ269

and, a fortiori, sub-exponential.270

It is worth to remark that, in our search of possible solutions to the DeVito’s271

problem, we have not found examples of self-limiting patterns of growth that272

would eventually evolve to a constant value of n(t), hence ultimately turning273

to sublinear and bounded styles of growth. This is characteristic of the very274

well known law in population ecology expressed by the logistic function first275

found by Verhulst (Berryman, 2003), and of other qualitatively similar models276

encountered in various fields like those of Gompertz (Zwietering et al., 1990),277

von Bertalanffy (Fabens et al., 1965), Beverton-Holt (Beverton and Holt, 2012)278

or Liquori and Tripiciano Liquori and Tripiciano (1980). All these sigmoidal279

growth models are characterized by a horizontal asymptote for long times, hence280

they are bounded (for a review, see Buis (2017)). As far as we now, a purely281

logarithmic unbounded growth like the one consistent with the DeVito’s hypoth-282

esis of a minimal number of contacts, has never been proposed in the framework283
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of population dynamics. Indeed, this could be partly due to the limited time284

period covered by the observations available (see e.g., Bre), which hinders a285

precise assessment of a possible long-term asymptote. However, we note that286

Tanaka Tanaka (1982) has proposed a complex growth law of logarithmic nature287

to explain the life-lasting development of the size of certain mollusks (see also288

Ebert et al. (1999)). Similarly, we are not aware of the existence of theoretical289

growth models based on unbounded power laws with exponent less than one,290

which according to our results may constitute a solution of the DeVito’s prob-291

lem as well. It should be noted, however, that an unlimited growth resembling292

a power law has been observed in nature for certain secular trees Buis (2017).293

6. Conclusions294

Following DeVito’s DeVito (2019) hypothesis of a constant and minimal rate295

of detection of communicative societies in the Galaxy, we have studied the gen-296

eral style of growth of such societies. Our results confirm that the logarithmic297

style of growth already proposed by DeVito (2019) would constitute a viable298

solution of the E-L equations. However, in this work, we have shown that a log-299

arithmic solution would be also viable starting from more general Lagrangians300

DeVito (2019). Furthermore, by exploring the range of possible “simple” so-301

lutions of the E-L equations, we have found that styles of growth following a302

power law could be also compatible with DeVito’s hypothesis, but only if char-303

acterized by an exponent less than one, hence by a decreasing rate of variation.304

Such possibility was not previously considered in DeVito (2019). No periodic,305

sigmoidal (i.e., logistic) or exponentially diverging solutions seem to be compat-306

ible with DeVito’s hypothesis. As proposed in Haqq-Misra and Baum (2009) in307

the context of Fermi paradox, these latter would be not sustainable in the long308

run.309

Expanding the main result in DeVito (2019), our work suggests that a pos-310

sible resolution of Fermi paradox is the slow, sublinear growth of the number of311

communicative civilizations in the Galaxy.312
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Figure 1: Solutions of the DeVito’s problem, given by Eq. (9), for n0 = 100 and ṅ0τ = 1, as

a function of the non-dimensional time t/τ , in a log-log plot. Red and blue curves correspond

to solutions n+(t) and n−(t), respectively.
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Figure 2: Plots of n+(t) according to Eq. (11), for n0 = 100 and ṅ0τ = 100, as a function of

t/τ , in a log-log plot. Green, red, blue, and purple curves correspond to values p = 2, 4, 6,

and p 7→ ∞, respectively.
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Figure 3: Number of communicative civilizations n(t) according to a few hypothetical super-

linear growth models. These include the positive exponential (i, black) and two samples of

power-laws (t/τ)α with exponent α > 1, α = 2 (ii, orange) and α = 3 (iii, red). The blue

dashed curve shows, for reference, the linear growth. Since we are adopting a log-log scale,

the power laws appear as lines with slopes increasing with α.
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Figure 4: Number of communicative civilizations n(t) according to various sublinear growth

models of interest in this work. These include the logarithmic law (i, green), the power-laws

(t/τ)β with exponents β = 0.2 (ii, orange) and β = 0.5 (iii, red). The linear model is shown

for reference by a dashed curve. Power laws appear as linear trends in this log-log plot.
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