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Abstract –Our goal in this study is to investigate the dynamical complexity of the electron
density profiles in the topside ionosphere as measured by the Swarm mission, employing the use
of symbolic information-theoretic techniques. We perform a Block entropy analysis for a time
interval associated with the most intense magnetic storm of solar cycle 24, which occurred on
17 March 2015. We produce entropy maps for varying degrees of magnetospheric disturbance,
resolving the different effects that the various geomagnetic activity levels have in the dynamics of
the complex magnetosphere-ionosphere coupling system. Understanding the impact of these effects
on the ionospheric plasma constitutes a crucial factor for the functionality of modern technological
infrastructure operating around the Earth and, thus, human welfare.

Introduction. – Since the birth of modern Informa-1

tion Theory in the late 1940s [1], an ever expanding tool-2

box of methods and techniques for analyzing signals of3

natural or man-made origin has been applied to a wide4

variety of cases, in an attempt to capture different as-5

pects of the dynamics of the underlying systems. The6

obvious interdisciplinary character of this approach offers7

refreshingly new insights into the analysis of data and can8

thus help illuminate aspects of the involved physical pro-9

cesses that have up to now remained untouched, but also10

poses significant challenges and issues, as the application11

of these methods cannot be thoughtlessly transferred from12

the field of Telecommunications (from which most of these13

ideas have emerged) to another scientific discipline.14

The plasma density in the ionosphere is characterized15

by multi-scale irregularities that range from a few meters16

up to thousands of kilometers and which are related to17

atmospheric as well as magnetospheric conditions [2, 3].18

These irregularities can have a wide range of implications,19

affecting everything from communications between satel- 20

lites and ground stations, the accuracy of Global Naviga- 21

tion Satellite Systems (GNSS) positioning as well as the 22

propagation and/or reflection of radio signals [4, 5]. Due 23

to all these reasons, the study of ionospheric turbulence 24

and the mechanisms responsible for its generation, as well 25

as its dynamics, is of great importance. 26

Geospace magnetic storms occur when the accumulated 27

input power from the solar wind exceeds a certain thresh- 28

old. They are extreme events producing a number of dis- 29

tinct physical effects in the near-Earth electromagnetic en- 30

vironment, including intensification of electric currents in 31

space and on the ground, impressive aurora displays, and 32

global magnetic disturbances on the Earth’s surface [6,7]. 33

Here, we propose to apply a Block entropy analysis 34

based on symbolic dynamics techniques to the time series 35

of the electron density measured on board the low-Earth 36

orbit (LEO) satellites of European Space Agency’s (ESA) 37

Swarm mission. We present a successful application of an 38
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information theory approach at capturing the dynamical39

complexity of the in situ observations of ionospheric dis-40

turbances during the most intense magnetic storm of the41

last solar cycle, that occurred on 17 March 2015 with a42

minimum value of the Disturbance storm time (Dst) in-43

dex of -223 nT. So far, only magnetic field data from the44

mission were analyzed using entropy measures and this45

was done only once and only very recently [8]. Therefore,46

the herein presented results shed light on aspects of the47

ionospheric response during an extreme episode of space48

weather from a quite different perspective, that of the elec-49

tric field experiment on board the Swarm mission.50

Method. – In the paper that marked the birth of51

Information Theory, Shannon [1] described all the math-52

ematical properties that an Entropy-like measure (H)53

should possess and suggested a formula inspired by Ludwig54

Boltzmann’s [9] entropy definition for statistical physics,55

given by56

H = −
∑

pi · log pi (1)

where pi denotes the probability of the system being in a57

cell i of its phase space.58

One of the many implications of this formalism is that59

it can be applied in any case where a probability can be60

defined and thus have a much wider range of applications.61

Especially in telecommunications, where a digital signal62

can be considered as a series of discrete states, the ap-63

plication of such a formula becomes simple and intuitive.64

Unfortunately, signals from natural systems rarely possess65

such a simple and discrete behavior; instead experimental66

observatories measure a small subset of continuous param-67

eters, from which scientists attempt to draw conclusions68

on the state and dynamics of a system. Luckily, Shan-69

non’s formula can still be applied to data series from such70

cases, by introducing a “digitization” step, where the val-71

ues of the observed parameter are mapped to a discrete72

set of states, which can be considered as a different cell73

of the system’s phase space. Thus, the probabilities pi74

can easily be computed from the frequency of occurrences75

of each such state. The manner in which this digitiza-76

tion is performed is critical for the type of information77

that will be captured from the signal and hence, for the78

analysis that will be performed. A series of thresholds, at79

equal distances from the minimum to the maximum val-80

ues, can be easily employed for such a task, or alternatively81

a series of equally-spaced percentiles, although this second82

approach will automatically yield the maximum Shannon83

entropy value [10], as in this case all states will have equal84

probabilities. Since this is essentially the same as85

constructing the histogram of the occurrence fre-86

quency of the various states, this type of analysis87

will be referred to as Histogram Entropy.88

Such a digitization of course maps many nearby values89

to the same state and thus results in a much more coarse90

view of the system and as such, less information. At the91

same time though, this provides the opportunity to ex- 92

amine sequences of such states with much better statistics 93

and not only focus on the instantaneous values, allowing 94

more information on the dynamics and the temporal evolu- 95

tion of the system. In a sense, information on the precision 96

of the observed parameter is being exchanged for informa- 97

tion on properties such as its periodicities, symmetries or 98

its chaotic nature in general [11]. Now the probabilities pi 99

will not refer to the probability of occurrence of any state, 100

but to the combinations for all the possible successions of 101

states and thus to the dynamics of the system [12]. 102

The easiest example of this process is a binary digi- 103

tization, where all values below a certain threshold are 104

replaced by a symbol, e.g. 0, while all values above it 105

with e.g. 1, thus creating a “symbolic sequence” of 0s and 106

1s, such as the 0110101100... This sequence can be read 107

in terms of distinct consecutive blocks of length n, so for 108

n = 2, one could read the series as the sequence of non- 109

overlapping patterns 01, 10, 10, 11, 00 etc. in a parsing 110

procedure that is called “lumping”, or alternatively read 111

the series as a sequence of patterns that overlap by all but 112

one element, hence producing the sequence 01, 11, 10, 01, 113

10, 01, 11 10, 00 and so on, in a procedure called “gliding”. 114

Regardless of the approach used, in the end the number 115

of occurrences of each possible n-block are counted and 116

the probabilities of each calculated. Successively, they are 117

used in the Shannon formula to produce the value of the 118

Block Entropy H(n) for block length n. Typically, gliding 119

is more often used, as it produces more instances of blocks 120

and thus a better statistics, while lumping is important for 121

the detection of automaticity, in series that have been gen- 122

erated by finite automata or algorithmic processes [13]. 123

H(n)/n can be interpreted as the mean uncertainty per 124

symbol [14, 15] and should converge for n → ∞ to some 125

stationary value if the underlying dynamics is determin- 126

istic. From a practical perspective however, one is often 127

interested in quantifying the mean information gain when 128

increasing the block length, measured by the conditional 129

(or differential) block entropies: 130

h(n) = H(n + 1)−H(n) for n ≥ 1;h(0) = H(1) (2)

For stationary and ergodic processes, the limit of h(n) 131

for n→∞ provides an estimator of the Kolmogorov-Sinai 132

entropy or source entropy h of the dynamical system under 133

study [16, 17]. Alternatively, one can compute H(n) for 134

various n values and if they exhibit a reasonably linear 135

scaling vs n, estimate their gradient as another proxy for 136

the limit of h(n). This is what is being done in the present 137

study. 138

Many real-world processes, like meteorological, hydro- 139

logical, biological, medical, economic data etc., are intrin- 140

sically non-stationary since their probability density func- 141

tion (PDF) deforms when time evolves [18]. For these 142

processes, the stationarity of the signal is often argued 143

to be valid when considering small chunks of data span- 144
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Fig. 1: SYM-H time series for March 2015.

ning short enough time range [19, 20], so that slow evo-145

lutions of higher order moments can be neglected. The146

non-stationary character of most space physics data sets147

requires methods that can appropriately treat such non-148

stationarities. In practice, the condition of stationarity149

for non-stationary signals can be satisfied by dividing the150

signal into blocks of short, pseudo-stationary segments151

[21]. In our case, the Swarm electron density time series152

were divided upon segments of 300 points, thus, satisfying153

the condition of non-stationarity for the purposes of the154

symbolic dynamics analysis. Furthermore, entropy mea-155

sures constitute a versatile tool of analysis when dealing156

with non-stationary signals of dynamical systems like the157

signals originated from the magnetosphere, ionosphere or158

their coupling [22].159

Data. – Launched on 22 November 2013, Swarm is160

the fourth in a series of pioneering Earth Explorer re-161

search missions and also ESA’s first constellation of satel-162

lites to advance our understanding of Earth’s magnetic163

field [23]. The Langmuir probes of the Electric Field In-164

strument (EFI) [24] on board the three satellites of Swarm165

provide electron density data in the form of time series, as166

the satellites fly through the topside ionosphere (Swarm167

A and C satellites fly side by side at an altitude of ∼460168

km while Swarm B satellite flies slightly above the lower169

pair of satellites at ∼510 km). For this study, we have170

selected Level 1b 1 Hz electron density data for Swarm A171

(downloaded from the ESA ftp repository: https://swarm-172

diss.eo.esa.int/), covering a time window of one month,173

i.e., from 1 to 31 March 2015.174

The hourly Dst index represents the average change175

of the horizontal component of the Earth’s magnetic176

field recorded at four mid-latitude magnetic observatories,177

which is caused by intensifications of the magnetospheric178

ring current that encircles the Earth and, thus, serves as179

a proxy of magnetic storm intensity. The SYMmetric dis-180

turbance field in H-component (SYM-H) index is essen-181

tially the 1-minute version of Dst, recorded at different182

sets of six mid-latitude observatories. On 17 March 2015183

the strongest geomagnetic storm of solar cycle 24 took184

place. The SYM-H index captured that event, by reach-185

ing a minimum of -234 nT at the time, as is shown in186

Figure 1.187

Results. – Attempting to capture the turbulent na-188

ture of the electron density series by means of entropic189

measures is a very complex task that requires a lot of ex- 190

perimentation and fine-tuning of the parameters of the 191

analysis, as the nature of the analysed signal is far differ- 192

ent than the ones examined in previous studies [22,25–30]. 193

Special care should be taken, since the temporal and spa- 194

tial scale of these features can be significantly smaller than 195

those encountered in similar studies using e.g. the Dst in- 196

dex, where the scale of the phenomenon spans hundreds 197

to thousands of kilometers and lasts for several days. 198

Due to this, the analysis must be performed in signifi- 199

cantly smaller time windows than the ones that have been 200

employed in the previous studies, e.g. in the scale of a 201

few minutes. With a cadence of 1 Hz, a time window of 5 202

minutes is enough to provide 300 measurements, i.e., data 203

points, which can be used for processing. The full entropy 204

analysis is being performed and then the window is moved 205

forward in time by a 60-second step, which produces se- 206

quential windows that although overlap by 80% are able 207

to capture even the very fast and small scale changes in 208

the ion density series. Unfortunately, repeating ad-hoc 209

the methods that were used in past in the case of the Dst 210

Index or magnetic field data, is not enough to give mean- 211

ingful results, as it can be shown in Figure 2. In this 212

example, a couple of hours of electron density data from 213

Swarm A, one of the two from the lower pair of satellites, 214

during 15 March 2015 have been processed with various 215

entropy methods, yielding discouraging results. The ion 216

density series is shown with the blue line at the top panel 217

of Figure 2 (as well as 3 and 4, which follow the same 218

pattern), while the satellite’s position is indicated by the 219

orange line, which depicts the Magnetic Latitude. In this 220

case, both the histogram entropy, as well as the Block 221

Entropy approach, with a binary symbolic representation 222

(segmented at the window median) for both lumping and 223

gliding parsing, all failed to capture any meaningful be- 224

havior. Similarly incomprehensible results were obtained 225

for multi-symbol representations (up to 4 symbols) and for 226

various other types of entropies (not shown here). 227

In order to fix these issues a new strategy was formu- 228

lated performing the binary symbolic representation us- 229

ing as a threshold a constant value, that is not window- 230

dependent. This approach provides a simple and intuitive 231

way to distinguish between low latitudinal passes, where 232

the ion density exhibits high values, and higher latitudes, 233

where the ion densities are significantly lower. Thus, by 234

using a high threshold, the binarization will work produce 235

non-trivial sequences on the near-equatorial parts of the 236

series, while a low threshold will focus on the low valued 237

variations and hence on the middle and high latitudes. 238

The result of the application of this method is reported 239

in Figure 3. Although the histogram entropy fails to pro- 240

duce any meaningful result, the Block Entropies are ca- 241

pable of successfully capturing both the turbulent nature 242

of the plasma by exhibiting near-zero values at windows 243

where the satellite only measures smooth electron density 244

profiles, and high entropy values at the times when the 245

satellite flies through disturbances, as they are the ones 246
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Fig. 2: Ad-hoc application of entropy methods on electron den-
sity time series from Swarm A.

associated with the polar passes and the equator (high-247

lighted by the orange line that shows the satellite’s Mag-248

netic Latitude). Both Block Entropies are calculated on249

windows of binary symbolic sequences with length of 300250

points, which are moved forward in time by 60 points. For251

each such window, the Entropies are calculated for block252

lengths n from 1 to 4, producing the corresponding H(n)253

values. A simple least squares fitting then, produces the254

gradient of the H(n) vs n line, which is the final entropy255

value. Since the maximum theoretical value for a binary256

representation is log(2), values are normalized by it to257

yield the final normalized entropy of each window.258

As it is always happens in methods involving symbolic259

dynamics, or in general the digitization of a continuous260

signal to discrete “states”, the particular way with which261

this conversion takes place plays a critical role in capturing262

a specific portion of the information that is carried by the263

signal. In this case, the binarization has been performed264

by a constant threshold value and as it can be seen in Fig-265

ure 3 the entropies of the windows encountered at high266

latitudes exhibit higher values. The increase of thresh-267

old value can invert this behavior and produce a different268

image, with the low-latitude entropies taking the lead as269

shown in Figure 4. Thus, by changing the threshold of the270

binarization one can switch the emphasis from low latitude271

signals that are usually related to plasma bubbles [31] to272

high latitudes signals related to field aligned currents [32].273
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Fig. 3: Application of the new strategy of entropy methods on
electron density time series from Swarm A (emphasizing high
latitudes).

The analysis can be performed (for simplicity only for 274

the gliding Block entropy) for the entire time span of the 275

2015 St. Patrick’s storm. Since the satellite continuously 276

moves in space, we save the position of the satellite for 277

each entropy calculation (by considering the median value 278

of the magnetic longitude and magnetic latitude for each 279

window) and produce maps of the average entropy values 280

of the electron density for the entire duration of the event, 281

i.e. from 15 March to 23 March. Values are mapped on a 282

36 by 30 grid, in magnetic coordinates, which amounts to 283

a precision of 10 degrees in Magn. Long. and 6 degrees in 284

Magn. Lat. Again, changing the threshold can produce 285

two different versions of those maps, one emphasizing the 286

low and another for the high latitudes. These results are 287

shown in Figure 5. At the lower panel of Figure 5, 288

the largest red “blob” (presumably long lasting 289

or extremely large during the storm) is centred 290

around the equatorial region close to the South 291

Atlantic Anomaly (SAA). The SSA is an unusually 292

weak spot in the Earth’s magnetic field over South 293

America and the southern Atlantic Ocean, allow- 294

ing charged particles from the Sun to dip closer 295

to the surface than normal. These particles may 296

cause damage to satellites orbiting the Earth and 297

crossing that area. 298

Figure 6 shows entropy maps between pre-storm time ( 299
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Fig. 4: Application of the new strategy of entropy methods on
electron density time series from Swarm A (emphasizing low
latitudes).

1-15 March 2015) and storm-time along with post-storm300

time (16-31 March 2015) for high-threshold (low lati-301

tudes).302

Figure 7 shows entropy maps between pre-storm time303

(March 1 to 15 of 2015) and storm-time along with post-304

storm time (March 16 to 31 of 2015) for low-threshold305

(high latitudes).306

In both Figures 6 and 7, we can see the drop in the307

entropy values as we move from the pre-storm period to308

the main phase and recovery phase of the storm (axes and309

color maps are identical in the two plots). Furthermore,310

the signature of the magnetic storm appears more promi-311

nent at low and mid latitudes, which are more closely re-312

lated to the footprint of the magnetospheric ring current313

intensifications, than at high latitudes which are more se-314

riously affected by magnetospheric substorms, presumably315

accompanying the intense magnetic storm.316

A possible interpretation of the results presented317

in these maps could be the following: it is likely318

that the observed differences in the entropy values in pe-319

riods before the storm against periods during and after320

the storm may be associated with the existence of dif-321

ferent turbulence levels and not entirely with the pres-322

ence of ionospheric plasma irregularities either at low and323

mid- latitudes [e.g. Equatorial Spread-F (ESF) signatures324

[33]] or at high latitudes [e.g. auroral plasma instabilities325
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Fig. 5: Maps of the average entropy for Swarm A from 15
to 23 March 2015 [emphasizing (top) high and (bottom) low
latitudes].

[34–36]]. We note that generally in the polar cap, the tur- 326

bulence levels are much lower than those on auroral field 327

lines [37]. Furthermore, the varying turbulence levels at 328

high latitudes could also be attributed to wave-particle 329

interactions triggered by the storm. 330

Conclusions. – In this study, we explore the use of 331

Block entropy as a dynamics classifier for Swarm electron 332

density observations, that were collected in the topside 333

ionosphere over a period associated with the most intense 334

magnetic storm of solar cycle 24. Similar information the- 335

ory approaches have been previously used with success to 336

investigate the dynamics of meteorological data [38]. 337

We find that the entropy values of the Swarm electron 338

density time series are higher in the time interval before 339

the storm than during its main and recovery phase. There- 340

fore, our findings clearly indicate a transition from a state 341

with higher complexity or less order before the storm to a 342

state with less complexity or more order during the storm 343

and its recovery phase. These results are in agreement 344

with earlier studies on the entropy analysis of geomag- 345

netic activity indices [22, 26] and more recent studies on 346

the entropy analysis of Swarm magnetic field data [8]. 347

Information theory provides powerful tools for quanti- 348
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fying the information content of complex systems like the349

complex magnetosphere-ionosphere coupling system. Our350

results advocate the capability of symbolic information-351

theoretic techniques to form a versatile diagnostic tool for352

a space weather related time series’ dynamics.353

The nature of the presently analyzed data from Swarm354

(electron density) is very different from the previously an-355

alyzed data from the mission (magnetic field), following356

a different behavior and exhibiting different characteris-357

tics. Figures 2–4 emphasize these differences and the ne-358

cessity of taking a more sophisticated and computation-359

ally demanding approach in analyzing the electron den-360

sity data using entropy measures than previously studies,361

when more straightforward entropy analyses were applied362

to magnetic field data. The fact that our present anal-363

ysis leaded us to similar, qualitatively, information con-364

tent for the Swarm electron density time series in com-365

parison to the Swarm magnetic field time series is a step366

forward in the study of the dynamical complexity in the367

magnetosphere-ionosphere coupling system.368

Furthermore, this science discovery based on informa-369

tion theory techniques could offer the possibility of an ad-370

ditional or alternative dataset (i.e., electron density) to the371

standard datasets (i.e., magnetic field) for applying future372

space weather prediction schemes. The latter is very use-373

ful, for instance, when considering the use of satellite data,374

which instrument failures are likely to unexpectedly occur375

due to various artificial and natural-environment reasons,376

since the electron density measurements can replace the377

magnetic field measurements as complexity indicators and378

vice versa.379
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