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Online detection of offsets in GPS time series
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Abstract
This paper deals with the online offset detection in GPS time series recorded in volcanic areas. The interest for this problem
lies in the fact that an offset can indicate the opening of eruptive fissures. A Change Point Detection algorithm is applied to
carry out, in an online framework, the offset detection. Experimental results show that the algorithm is able to recognize the
offset generated by theMount Etna eruption, occurred on December 24, 2018, with a delay of about 4 samples, corresponding
to 40 min, compared to the best offline detection. Furthermore, analysis of the trade-off between success and false alarms is
carried out and discussed.

Keywords Volcano monitoring · Eruptive fissures · Offsets in GPS time-series

Introduction

The Global Positioning System (GPS) has become an
essential tool for ground deformation monitoring in
environments subject to the risks of natural disasters,
such as active volcanic and tectonic areas. Fast detection
of potentially hazardous events (such as earthquakes and
volcanic eruptions), can be decisive for safeguarding human
lives and infrastructures. However, data available in real
time by GPS monitoring networks are not themselves
enough for a reliable evaluation of the phenomena in
progress, unless appropriate analysis tools be available
too. One of the problems that prevent an effective use
of GPS sub-daily solutions for real time applications, is
that they are usually affected by a significant amount
of noise due to different sources of uncertainty (e.g.
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non-precise ephemerides). In particular, the shorter the
processed period, the higher the level of noise affecting
the GPS solutions. Thus, the algorithms for detecting true
displacement transients must be as robust as the sampling
time is lower. Due to the large number of noise sources,
often not well known, GPS noise is generically modeled as a
mixture of white noise, flicker noise and random walk noise
(Mao et al. 1999).

Offsets are one of the components of GPS time series,
sometimes considered as a source of noise, which could
contribute to degrade the accuracy of GPS time series. They
can be due to the equipment problems, such as antenna or
receiver changes, but also to natural phenomena, such as
post seismic effects of earthquakes and, in volcanic areas,
to the opening of eruptive fissures. Offsets can have various
sizes, from very small, which are very difficult to detect in
presence of noise, to quite large, which, on the contrary,
can be easily detected. In Gazeaux et al. (2013) results
of a competition, launched to various research teams, with
the purpose of assessing the effectiveness of methods to
detect and remove offsets, are reported. In the competition,
the data set, consisting of simulated GPS time series, was
made available to the GPS analysis community without
revealing the offsets, and several groups conducted blind
tests with a range of detection approaches. The results
of this experiment showed that almost always manual
methods, where offsets are hand-picked, gave better results
than automated or semi-automated methods. However,
while hand-picked methods can be considered for offline
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applications, they have no utility for monitoring purposes,
where automatic approaches are mandatory.

This paper deals with the problem of online detection of
offset in high rate (sub-daily) GPS time series, reporting
a case study concerning a data set recorded in the Mount
Etna volcanic area. The task was tackled by using the
Change Point Detection (CPD) approach, already widely
described in literature. A recent survey of methods for
CPD can be found in Aminikhanghahi and Cook (2017).
This paper is organized as follows: in “A general model
of GPS time series” a general model of GPS time
series is described, while in “Change point detection” the
mathematical background about change point detection
algorithms is reported. In “Online detection of offsets: a
case study”, the results of a case study concerning online
transient detection in sub-daily GPS time series at Mount
Etna is reported. Finally, the conclusions are drawn in
“Conclusions”.

A general model of GPS time series

In order to describe more precisely what is referred to as
offset in GPS time series, it can be useful to know that GPS
time series can be modeled as described in Eq. 1

x(ti) = x0 + bti +
l∑

j=1

ajH(ti − Tj )

+
m∑

n=1

Ansin(ωnti + ϕn) + η(ti) (1)

where, for the epoch ti :

– the first term x0 is the site coordinate,
– the second term bti is the linear rate,
– the third term, consists of a sum of l Heaviside step

functions H(ti − Tj ), each having amplitude aj .
– the fourth term consists of m periodic components,

mainly the annual and semiannual signals.
– the final term, η(ti), is the noise component of the GPS

times series.

The first four terms of this model, which represent the
deterministic part, are easy to understand. As an example,
consider the GPS daily solutions reported in Fig. 1, recorded
on Mount Etna by the station referred to as ECPN, from
January 2011 to November 2018.

Such a station belongs to the GPS monitoring network
installed on Mount Etna, whose current configuration is
shown in Fig. 2.

In particular, the Heaviside step functions ajH(ti − Tj )

attempt to model what are referred in this paper as offsets. A
clear example of Heaviside step can be appreciated looking
at the horizontal component in Fig. 2, which was due to the
opening of the eruptive fissure occurred at Mount Etna on
28-Dec-2014 (Gambino et al. 2016).

While offsets are usually evident in the horizontal GPS
components, periodic fluctuations, mainly due to mass
loading, are particularly evident on the Up component,
i.e. in direction of the gravity field (Liu et al. 2017).
Thus, it is a common practice to analyze separately the
horizontal and the vertical components. The noise term,
which is the stochastic term, attempts to model the effects

Fig. 1 Horizontal and Up daily
GPS components recorded at
station ECPN
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Fig. 2 The GPS measuring
network managed by INGV. The
eruptive fissure and the lava
flow refers to the 24-Dec-2018
eruptive event, considered in
this paper as case study

of several phenomena, such as propagation effects of GPS
signals, multi-path etc. Several papers have been devoted
in literature to characterize the noise term, based on the
approaches described in Mao et al. (1999) and Williams
et al. (2004). These methods, applied also recently (Birhanu
et al. 2018), characterize the term η(ti) as a combination
of white noise, flicker noise, with a spectral density
proportional to 1/f , and random walk noise, with a spectral
density proportional to 1/f 2, being f the frequency.

Change point detection

A change point represents a transition between different
states in a process that generates the time series. Change
point detection can be defined as the problem of choosing
between two alternatives: no change occurred and the
alternative hypothesis, a change occurred. CPD algorithms
are traditionally classified as online or offline. Offline
algorithms consider the whole data set at once and try to
recognize where the change occurred. Thus, the objective,
in this case is to identify all the sequence change points
in batch mode. In contrast, online, or real time, algorithms
run concurrently with the process they are monitoring,
processing each data point as it becomes available, with the
goal of detecting a change point as soon as possible, after it

occurs, ideally before the next data point arrives. In practice,
no CPD algorithm operates in perfect real time because
it must wait for new data before determining if a change
point occurred. However, different online algorithms require
different amounts of new data before a change point can
be detected. Based on this observation an online algorithm,
which needs at least ε samples in the new batch of data to
be able to find a change, is usually denoted as ε-real time.
Therefore, offline algorithms can then be viewed as ∞-real
time while the best online algorithm is 1-real time, because
for every data point, it can predict whether or not a change
point occurs before the new data point. Smaller ε values
may lead to stronger, more prompt change point detection
algorithms.

To find a change point in a time series, a global
optimization approach can be employed with the following
basic algorithm:

1. Choose a point and divide the signal into two sections.
2. Compute an empirical estimate of the desired statistical

property for each section.
3. At each point within a section, measure how much the

property deviates from the empirical estimate and at the
end, add the deviation for all points.

4. Add the deviations section-to-section to find the total
residual error.
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5. Vary the location of the division point until the total
residual error attains a minimum.

As mentioned above, the search for a change point k can
be formulated as an optimization problem where the cost
function J (k) to minimize can be written, in the general case
as

J (k) =
k−1∑

i=1

�(xi; χ([x1, . . . , xk−1]))

+
N∑

i=k

�(xi; χ([xk, . . . , xN ])) (2)

where {x1, x2, . . . , xN } is the time series, χ is the chosen
statistic and � is the deviation measurement. In particular,
when χ is the mean, the cost function assumes the following
form:

J (k) =
k−1∑

i=1

(xi − 〈x〉k−1
1 )2 +

N∑

i=k

(xi − 〈x〉Nk )2 (3)

where the symbol 〈·〉 indicates the mean operator.
Another aspect to be considered, when formulating the

optimization problem, is that signals of practical interest
have more than one change point. Furthermore, the number
of change points K is often not known a priori. To handle
these features, the cost function can be generalized as

J (K) =
K−1∑

r=0

kr+1−1∑

i=kr

�(xi; χ([xkr , . . . , xkr+1−1])) + βK (4)

where k0 and kK are respectively the indexes of the first
and the last sample of the signal. In expression (4) the term
βK is a penalty term, linearly increasing with the number
of change points K , which avoid the problem of overfitting.
Indeed, in the extreme case (i.e. β = 0), J (K) reaches the
minimum value (i.e. 0) when every point becomes a change
point (i.e. K = N).

The algorithm described above for a univariate time-
series, can be easily extended to the case of multivariate time
series, which is the case, for instance, of a data set recorded

by a GPS network. In this case the cost function is evaluated,
of course, over the whole set of available time series. Recent
developments concerning algorithms for CPD can be found
in Soh and Chandrasekaran (2017) and Celisse et al. (2018).

The software considered in this work was implemented
in MATLAB based on the CPD algorithms described in
Killick et al. (2012) and Lavielle (2015). It can operate
both by fixing the maximum number of change points to be
detected (K), or the maximum acceptable residual error (i.e.
fixing a threshold on J (K)). The first choice is appropriate
when operating offline, since one can estimate the number
of offsets, for instance by visual inspection of the time
series. If this choice is performed, the indicated number
of offsets will be detected and ordered by amplitude from
larger to smallest. The choice of operating by threshold is
instead more appropriate when an estimation of the number
of offsets in the GPS time series cannot be easily performed.

As an example, we have performed the offline detection
of the offset shown in Fig. 1, by considering the daily
horizontal component recorded at five stations from January
2011 to November 2018. To this purpose, we have set to
1 the maximum number of change points, thus obtaining
the result shown in Fig. 3. It can be interesting to observe
that the time stamp associated with this offset was 29-Dec-
2014, which corresponds to one sample after the starting of
the eruptive event, occurred at Mount Etna on 28-Dec-2014
(Gambino et al. 2016).

Therefore, the offline CPD algorithm was able to
correctly detect the offset due to the eruption event.

Online detection of offsets: a case study

To implement a warning system based on offset detection,
the daily GPS time series, considered in the previous
section, are not appropriate since 1 day is quite a long time
for detecting very fast phenomena such as the opening of
an eruptive fissure, which may onset in times of the order
of a few tens of minutes or some hours. For this purpose,
we have taken into account the time series obtained from

Fig. 3 Offline detection of the
largest offset in the GPS
displacement strength daily
component
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10-min kinematic GPS solutions to detect possible offsets,
recorded in a time interval which include the eruption
occurred on Mount Etna in December, 2018. Such event
took place about 10 years after the last flank eruption,
from 13 May 2008 to 6 July 2009. Between these two
flank eruptions, only summit eruptions occurred, some of
which were extremely explosive (see the Etna Eruption that
occurred on 28 December 2014, mentioned in “Change
point detection”) and leading to the birth of a new summit
cone, the New South-East Crater (NSEC).

This eruptive event has been studied in Bonforte et al.
(2019) and Novellis et al. (2019) by using DinSAR
(Differential Interferometric Synthetic Aperture Radar)
data, and in Cannavó et al. (2019) from an integrate
geophysical perspective. A description of such events can be
summarized as follows (AA.VV 2018). Shortly after 11:00
(hereinafter all the times are expressed in GMT), an eruptive
fissure opened up at the southeastern base of the New
Southeast Crater, from which a violent Strombolian activity
emerged, which rapidly formed a gaseous plume, rich in
dark ash. A second small eruptive fissure simultaneously
opened slightly more to the North, between the New
Southeast Crater and the Northeast Crater, which produced
only a weak Strombolian activity, lasting a few tens of
minutes. At the same time, also the Northeast Crater and the
Bocca Nuova produced a continuous Strombolian activity
of variable intensity. In the following two hours the eruptive
fissure spread south-eastwards, exceeded the edge of the
western wall of the Valle del Bove, until it reached a
minimum altitude of about 2400 m above sea level (see
Fig. 2).

Dealing with outliers

One of the main problems dealing with sub-daily GPS
time series is the pervasive presence of outliers due to the
quite poor geodetic quality of real time GPS positioning.
As an example, the presence of outliers can be appreciated
in Fig. 4, which shows the horizontal GPS components
measured at one of the summit stations referred to as ECPN.

In our application, the risk, when finding outliers, is that
offsets produced by the opening of eruptive fissures could
be erroneously confused with outliers, thus loosing useful
information.

Outliers detection can be performed by using various
approaches, but the most popular are based on evaluating
the distance between measured samples and some statistical
feature of the time series. The most popular features
are:

– The median (Hampel filter (Hancong et al. 2004)).
Outliers are defined as elements more than a prefixed
number of times (usually three) the scaled Mean
Absolute Deviation (MAD) from the median. In
statistics, the MAD is a robust measure of the variability
of a univariate sample of quantitative data.

– The mean. Outliers are defined as elements more than
a prefixed number of times (usually 1.5) the standard
deviations from the mean.

– The quartiles. Outliers are defined as elements more
than 1.5 interquartile ranges above the upper quartile
(75%) or below the lower quartile (25%). This method
is useful when the data is not normally distributed.

Fig. 4 10 min sampling GPS
time series recorded a the ECPN
station with indication of the
offset due to the 24 December
2018 Etna Eruption
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Fig. 5 Finding outliers with
various approaches (median,
mean, quartiles, grubbs) and
filling by clipping

Furthermore, outlier detection can be performed by
appropriate test, such as:

– The Grubbs test, which removes one outlier per
iteration based on hypothesis testing. This method
assumes that the data is normally distributed (Grubbs
1950).

– The extremes Student test, an iterative method similar
to the Grubbs test, but can perform better when there
are multiple outliers masking each other (Rosner 1983).

As concerning the criterion for filling outliers, we have
chosen to use the clip method, which replaces the higher
outliers with the upper threshold value. Indeed, this criterion
is easy to implement for online applications and reduces
the risk of losing useful information, i.e confusing offsets
related to the eruptive activity with outliers. By using
this approach the lower outliers are filled with the lower
threshold value.

Results obtained in detecting and filling outliers from the
horizontal GPS time series, recorded at the ECPN station,
by using four of the above mentioned approaches, namely
computing the distance from the median, from the mean,
from the quartiles and performing the Grubbs test, are
shown in Fig. 5.

It can be seen that among the inter-compared approaches,
the only method that preserves the offsets recorded during
the 24-Dec-2018 eruption, is computing the distance from
the mean and was thus adopted in this paper.

A comparison between the true time series and the one
obtained by using the adopted approaches is shown in Fig. 6.

Offline detection of the offset produced by the 24
Dec, 2018 eruption

The effects of the 24 December 2018 Etna Eruption on the
GPS signal, after processing for outliers, can be recognized
looking at the horizonal GPS component, mainly at seven
out the nineteen available recording stations, as shown in
Fig. 7.

The figure shows that among the nineteen available
GPS recording stations, the first and most intense offset is

Fig. 6 True and filled horizontal GPS component at the ECPN station.
The clipping method was considered for filling outliers. For clarity
reasons the displacement was reported log scale
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Fig. 7 Horizontal displacement
strength and up components at
seven stations, immediately
before and after the starting of
the eruptive event occurred on
December 24, 2018

recorded by the ECPN station. Of the remaining stations,
only six others recorded the ground breaking phenomenon
in various ways, and in any case with some delay, compared
to the ECPN station. It could be interesting to know that
there are no appreciable evidences of the occurring of the
eruptive event in the Up components (see Fig. 7, at the
bottom).

In order to compare the performance of the online CPD
algorithm, which will be discussed later, we carried out the
detection of the offset produced by the December 24, 2018
Etna eruption on the horizontal component, by using data
recorded from August 1 up to December 31, 2018, thus
operating offline. Results obtained after this trial are shown
in Fig. 8.

It is possible to see that the CPD algorithm gives the time
of detection at 24-Dec-2018 10:59, which also agrees with
the data tips reported in Fig. 9.

Indeed, the figure shows that the visible displacement
phenomenon started at about 10:39 of December 24 and has
its maximum extension at about 11:19.

Online detection of the offset produced by the 24
Dec, 2018 eruption

For online detection it is important to evaluate the
promptness of the CPD algorithm, compared to the offline
detection.

To this end, we have set up the following procedure,
which is based on the use of the offline algorithm, but in an
online framework.

1. Consider the largest batch of data ending with the
sample before the hand-picking and verify that the CPD
algorithm does not detect any offset.

Fig. 8 Offline detection of the
offset produced by the 24
December 2018 Etna eruption
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Fig. 9 Horizontal displacement strengths at 17 stations, with data tips

2. Add to the batch of data one sample at a time until the
offset is detected.

3. The number of samples supplied is assumed as the ε

index, here also referred to as the delay, and associated
with the batch length.

4. Repeat the procedure from step 2, after reducing the
length w of the data batch by 1000 samples, subtracted
from the left side (i.e. the oldest recorded data), until
w < 1000.

Results obtained by this algorithm for the batch of data from
1000 to 16000 are shown in Fig. 10.

It is possible to see that for w ≤ 11000 samples, we
obtain ε ≤ 4, while for larger w the delay significantly
increases.

Fig. 10 Detection delay versus the batch data length

Fig. 11 Comparison between the delay of the online CPD algorithm
when searching on no-filled or filled outliers data-set

In order to evaluate the benefit of removing the outliers
before searching for the change points, we applied the
algorithm described above, directly to the original time
series, i.e. without replacing the outliers. Results are shown
in Fig. 11, in comparison with the delay computed after
filling outliers.

It is possible to see that even by using batch of data
with length w = 1000 samples, we get ε = 12 samples.
Moreover, Fig. 11 shows that the ε index sharply increases
for batch length w > 3000. We have also experimentally
observed that for w > 10000 the algorithm which operates
on true data, i.e., without replacing outliers, is not able to
report for any change point, when required to search for a
maximum number of change points set to 1.

Fig. 12 Number of false alarms and delay versus the batch length
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Robustness analysis

From results described above, one might be led to think that
for the online detection of change points the advantage is
to work with relatively small batch of data, for instance for
w ≤ 2000. Unfortunately, this is not really true. Indeed,
as it will be shown below, small data batch is not a good
representative of the process, as it may lead to an increase
of false alarms (FAs). Here, with the term FA we mean
the detection of any change point that is not related to
the opening of the 24-Dec-2018 eruptive fissure, which
is the only significant ground displacement event in the
considered time period (Aug-Dec 2018).

The number of false alarms and the detection delay,
versus the batch length are shown in Fig. 12.

It is possible to see that, while FA decreases for
increasing w, the detection delay ε increases. Thus, the
best w can be obtained as the trade-off between these two
quantities. The figure suggests choosing w between 7000
and 8000 samples, which lead ε ≤ 4 samples, with a rate of
FA = 4. Since the explored data set covers a time interval
of about 153 days, a level of FA equal to 4, correspond
to a frequency of 4/153 = 0.026 days−1, which could be
considered acceptable for practical applications.

Conclusions

In this paper, we have explored, on an experimental basis
only, given a GPS data set made available by the INGV sez.
di Catania, the possibility of performing the online detection
of the opening of eruptive fissures on Mount Etna. To
this end, after several attempts, we decided to perform this
task by using a Change Point Detection (CPD) algorithm.
Starting from a CPD algorithm implemented in the Matlab
library for offline detection, we have implemented an online
CPD algorithm, through which we obtained the results
reported in this paper. We have also evaluated the frequency
of false alarms that can be occur, using the described
algorithm for practical applications. One of the weak points
of the work carried out up to now, is that the performance
was evaluated based on an individual case study, as high
frequency GPS data sets for similar kinds of events are not
available. Therefore, one of the future developments of this
work could be to apply the framework to other similar case
studies, in order to improve the confidence of results and
generalize the approach.

Further, since false alarms are heavily affected by the
presence of outliers, margins for improvements may derive
from the use of more appropriate online data filtering

algorithms, that take into account the spatial correlation of
GPS time series recorded in the same area. To this end work
is in progress.
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