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Chapter 1

Introduction

1.1 General synopsis

Volcanic eruptions are the surface discharges of gas and magma (e.g. [129], [30]), which is a
mixture of molten rock, suspended crystals and dissolved gas; it sometimes includes also gas bub-
bles and rock fragments (see Figure 1). Magma has complex properties that reflect the changing
proportions of its components and chemistry, and it is capable of intrusion into adjacent rocks
forming dikes and sills, extrusion onto the surface as lava, and explosive ejection as tephra to form
pyroclastic rock (see [73], [83], [84]). The widely accepted qualitative model for a volcanic system
assumes the presence of one or more magma reservoirs below the surface (e.g. [103]), that may
become over-pressurized because of the injection of new high temperature magma or because of a
structural weakening of the surrounding rock, hence overcoming the critical pressure required for
the propagation of magma to the surface, opening a vent (or fissure) and erupting (e.g. [146], [102],
[149]). A volcano is any geographical feature built by volcanic eruptions (e.g. [144], [52]).

The hazards are all the processes that produce danger to human life and infrastructures while
the risk is the potential or possibility that something bad will happen because of the hazards. Vol-
canic eruptions can produce huge risks, in terms of human losses, environmental consequences, and
economic costs: any effective volcanic risk mitigation strategy requires a scientific assessment of the
future evolution of the volcanic system and its eruptive behaviour (e.g. [91], [158], [159]). Com-
pared with other natural hazards as earthquakes and severe weather phenomena, volcanic hazards
are characterized by long duration (weeks-months), large areas of impact (national-international),
different types of hazards during a single event, recognizable precursors like ground deformation,
seismicity, temperature changes, anomalous discharge of gas and geothermal fluids (see [74]).

Volcanic hazards are numerous and showing diverse duration, force and range: tephra fallout
from umbrella clouds (e.g. [147], [29], [19], [157]) can mantle vast areas with layers of pumice and
ash, causing roof collapses, the shutdown of road traffic and lifelines, destroying crops, damaging
high voltage lines, and affecting human and animal health; pyroclastic flows, also called pyroclastic
density currents (PDCs), which are fast-moving and highly destructive gravity currents of hot gas
and rocks with up to more than 200 km/h speed (see [61], [116], [36], [23]), can raze and bury the
most of the buildings and trees in their path, killing even sheltered people almost instantaneously
and potentially generating large fires; lahars, which are mud flows composed of a slurry of pyroclastic
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CHAPTER 1. INTRODUCTION 6

material, rocky debris, and water forming from the mobilization of rapidly accumulated ash by rain
or from the quick melting of volcanic glaciers (jökulhaups), can be as much devastating as PDCs
(see [152], [112], [76]). Other volcanic hazards include lava flows capable of burning and burying
roads, properties, trees and even buildings in their path and potentially killing people if the flow
is fast enough (e.g. [82], [93]); large ballistics even weighting thousands of kilograms which can
reach kilometers of distance from the erupting vent; toxic gasses and aerosols emissions which the
volcano can rapidly release in huge amounts and which can then be transported even thousands
of kilometers by the wind (see [156], [140]); fine ash pollution injected into the high atmosphere,
which is capable of damaging critical components of airframes and may reach huge distances (e.g.
[127], [78]); highly destructive tsunamis caused by partial or total collapse of the volcano edifice
(even caused by underwater eruptions; see [155], [47]) and which may travel even across oceans.
Such a variety of hazardous phenomena, the potentially global impact of volcanic eruptions, and
the consideration that hundreds of millions of people in all continents live close enough to active
volcanoes to be substantially affected by their activity, put volcanic risks among the most relevant
natural risks on Earth.

Figure 1. Small explosive eruptions at Sakurajima volcano - July 19 (left) and 22 (right), 2013, Japan.

Personal photos of A. Bevilacqua.

Estimating the probability of an eruption event, its size, location, time and type is a very
difficult issue because of the lack of detailed information on the deeper portions of the volcanic
system and because of the high number of degrees of freedom, often nonlinearly coupled, that
characterize the physical processes controlling it. Uncertainty is a key issue in volcanology because



CHAPTER 1. INTRODUCTION 7

the exact form of future eruptions is not predictable: there is not an easy way to estimate the size
of an event from the characteristics of its precursor symptoms, nor is there a simple rule to forecast
a time interval between the onset and the climax of explosive activity (sometimes shorter than
one day). In contrast to deterministic predictions, probabilistic approaches attempt to quantify the
inherent uncertainties instead of trying to remove them, utilizing all the available information, but
paying the cost of obtaining only probability distributions instead of precise forecasts (e.g. [40]).
Probabilistic eruption assessment is currently the primary scientific basis for planning rational risk
mitigation actions as well as for land use and emergency planning (e.g. [9], [11]).

It is important to distinguish between two classes of probability forecasts in volcanology: one
contains the short-term assessments (e.g. [142]), which are typically of interest in managing evolv-
ing episodes of volcanic unrest and are mostly driven by the information provided by monitoring
anomalies, like the occurrence of one or more signals outside a background range (see [125], [137]).
The second class includes the long-term assessments (sometimes called background or base-rate),
which are mostly required for land use and evacuation planning, but constitute also the necessary
background for implementing a robust short-term probability model (see also [107]). They are pri-
marily based on the available past eruption data and on the structural features of the system: such
geological data can go back millennia and they typically come from distal tephra records, proximal
volcanic products datation, and exposed faults or fractures measurements. Moreover, the geologic
record often incompletely preserves evidence of smaller eruptions, and burial of older deposits is
common. In general long-term assessments should reasonably be assumed more relevant than short-
term assessments for producing probability forecasts on a longer time interval in the future, until
the information on which they are based will considerably change. In this thesis we will focus on
this second type of assessments.

Caldera volcanoes form during the largest and most powerful explosive eruptions: they are
depressions left as a consequence of structural collapses following the ejection of colossal masses
of magma in a short time (e.g. [21]). Between these large and infrequent events the calderas often
present smaller explosive and dome-forming eruptions, possibly coming from shallow reservoirs
and influenced by a very complex network of geologic structures under the surface, often associated
with relevant hydrothermal systems. Vast areas around the calderas are covered by erupted ash and
pumice, and the volcanoes themselves have the form of large craters. Probability hazard assessment
is particularly complex for calderas due to the potentially sparse pattern of eruptions and the
large variability of eruptions sizes and types. In addition, caldera volcanoes may persist in unrest
conditions for decades, periodically showing precursor signals that would almost certainly lead to
an eruption if observed at more typical central volcanoes. On the contrary, some observations show
that calderas can originate a new eruption following a phase characterized by signals much less
relevant than those observed in other periods not followed by any eruption. These reasons increase
the importance of having a robust hazard model based on all the information about past behaviour
of the volcano even during a crisis.

1.1.1 The Campi Flegrei caldera

Campi Flegrei is a volcanic caldera with a diameter of about 12 km and the town of Pozzuoli at its
center (Figure 2; [128], [133], [122]). The northern and western parts of the caldera are above sea
level and characterized by the presence of many dispersed cones and craters, whereas the southern
part is principally submarine and extends into Golfo di Pozzuoli. Its name comes from the Greek
φλϵγω, meaning ‘to burn’, indeed it is the most active caldera in Europe having had more than



CHAPTER 1. INTRODUCTION 8

70 eruptions within the last 15 ka (see [132], [57], [122], [97], [145]). Activity started more than
80 ka BP (e.g. [138], [153]) and includes the generation of the large caldera-collapse Campanian
Ignimbrite eruption (CI, ∼40 ka BP; [55], [71]) and the second major caldera-collapse eruption of the
Neapolitan Yellow Tuff (NYT, ∼15 ka BP; [121], [48]). In the last 15 ka, intense and mostly explosive
volcanism and deformation has occurred within the NYT caldera, along its structural boundaries
as well as along faults within (e.g. [57] [122], [97], [145]). Eruptions were closely spaced in time, over
periods from a few centuries to a few millennia, with periods of quiescence lasting several millennia.
As a consequence, activity has been generally subdivided into three distinct epochs, i.e. Epoch I,
15 - 10.6 ka; Epoch II, 9.6 - 9.1 ka, and Epoch III, 5.5 - 3.8 ka BP (e.g. [122], [145]). Simultaneous
eruptions from different sectors of the caldera have also occurred at least during the Epoch III (see
[97]). The most recent eruption was that of Monte Nuovo in 1538 AD, 477 years BP (e.g. [56], [58],
[79]). Volcanism was also generally preceded by broadly distributed ground deformation phenomena
leading to remarkable uplift of the central part of the caldera, e.g. larger than 100 meters in the
last 10.5 ka (see [57], [97]) and several meters before the Monte Nuovo eruption (see [63], [79]).

Figure 2. Mosaic of orthophotos of Campi Flegrei caldera and surrounding areas (including part of the

city of Naples on the east) showing the large urbanization inside and around this active volcano, modified

from [17].

In recent decades, Campi Flegrei has exhibited significant deformation phenomena in the central
part of the caldera that produced a dome-like structure having a base diameter of about 6-7 km
with an uplift of several tens of meters from the sea bottom, centered on the town of Pozzuoli (e.g.
[16], [50]). For instance, in 1982-1984, there was rapid uplift of the center of the caldera of about
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1.8 m. Since then, the caldera surface has been slowly subsiding, but punctuated by significant
uplift episodes. Changes in the gas composition of fumaroles were measured in 2006 and again in
2011-2012 (see [34]). Based on the above information, and with more than three hundred thousand
people living within the caldera, the volcanic risk at Campi Flegrei is considered to be substantial.
Indeed Campi Flegrei is a densely populated and active caldera characterized by predominantly
explosive eruptive activity (e.g. [132], [122], [145]). Key features of this activity have been eruptions
from different vents scattered within the caldera, with individual events spanning a large range of
eruptive scales. The products of the explosive activity can be found over most of the Campanian
region in conspicuous pyroclastic deposits generated by tephra fallout and pyroclastic flows. PDCs
represent the main hazard of this volcanic system (e.g. [132], [57], [122]): due to their velocity,
temperature and particle concentrations, they can produce heavy damage to urban structures and
lethal conditions for human beings (see [13], [116]). Given the very high urbanization of the caldera
itself and its proximity to the city of Naples, it is of prime importance that areas which may
potentially be affected by pyroclastic flows are identified and ranked in terms of exposure likelihood
in order that civil authorities can prepare suitable mitigation measures (e.g. [14], [115]).

1.1.2 Doubly stochastic modelling

This thesis includes three main chapters, each one dedicated to a different part of a broad study
aimed at the volcanic hazard probability assessment at Campi Flegrei caldera, with particular atten-
tion to the uncertainty quantification. A large effort is dedicated to the mathematical formalization
of many geological assumptions and practical method implemented. We reached the objective of
constructing:

• a map of probability for the location of the next eruptive vent (see also [17]);

• a probability distribution for the size of the next PDC, and a map of probability for the PDC
invasion hazard (see also [118]);

• a time-space probability model for the time of the next eruption, focused on the vents clus-
tering.

In particular, Campi Flegrei volcano is assumed as a complex random system that must be assessed
with incomplete and uncertain information. In all the chapters we cope with problems affected by a
very large uncertainty and for this reason the models constructed are, implicitly, doubly stochastic.
The meaning of this assumption is that the location of the next eruptive vent or the size of the
next PDC phenomenon (just to give the two main examples) cannot be easily forecast using a
simple probability distribution. There are some sources of epistemic uncertainty even affecting the
definition of the probability distribution itself, so we will follow the approach to assume a double
structure below the sample space.

The basic idea of a doubly stochastic model is that an observed random variable is modelled in
two steps: in one stage, the distribution of the observed outcome is represented using one or more
parameters; at a second stage, some of these parameters are treated as being themselves random
variables. This raises the definition of a double probability space with two different probability
frameworks: one is expected to describe the physical variability of the system (sometimes called
aleatoric uncertainty), the other assesses the epistemic uncertainty due to the imperfect knowledge
of the system under study. This distinction is not always easy to do in practice because the two
frameworks are correlated and convolved in producing the available observations, but it is very
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important because it corresponds to the distinction between an intrinsic randomness of the system
and the additional uncertainty that affects its representation, originating from the incomplete in-
formation about past behaviour and expressing the degree of belief about alternative assumptions.
In summary, the probability measures representing epistemic uncertainty and physical randomness
are supported on two separated spaces, the first influencing the second (see Figure 3).

Figure 3. General scheme for a doubly stochastic model. The random variables ξ and χ respectively

sample the epistemic assumptions and the physical observables (see Definition 1). With each measurable

space we report also its σ-algebra; we include also the probability measure P on which the samples rely.

In this study the space (W,W) could be thought as the space containing all the possible sequences
of observables of the phenomena of interest, i.e. the future volcanic eruptions at Campi Flegrei. In
particular we will assume it contains at least the spatial location of the next event (a variable X
in R2, Chapter 2 and 3), the areal size invaded by the next PDC (a variable Y in R+, Chapter
3), the time-space pattern of the next eruptive activity (a point process Z, Chapter 4). Instead the
space (E, E) could be thought as a space of parameters which rule the model that we develop for
representing the phenomena of interest: for example it will include the n-uples of possible responses
to the expert judgement questions (Chapters 2 and 3) and the possible time sequences for the
uncertain past eruption record (Chapter 4). The sample space (Ω,F , P ) has the motivation of
putting together the physical and the epistemic spaces in a global framework. In general, all the
random samples assessed are defined on it: for the purpose of numerical simulation it could be
thought as containing all the seeds of the pseudo-random values generator inside the computer
and it permits to develop a logical structure that is most natural to formalize all the Monte Carlo
simulations that we implemented.

Definition 1 (The structure of uncertainty) Let ξ be a random variable from the sample space
(Ω,F , P ) to the measurable space (E, E) representing the epistemic variability of the sources of
uncertainty considered, and let η be its probability law. Let χ be a random variable from (E×Ω, E ⊗
F , η⊗P ) to the measurable space (W,W) representing the physical variability of the volcanic system
for each occurrence of the sources of uncertainty. For each e ∈ E, we define on (W,W) the image
measure M(e) = χ(e, ·)♯(P ).
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It is easy to see that M is a well defined random measure parameterized on E and supported on
(W,W), that represents the possible probability distributions of all the volcanic variables of interest,
such as the next vent location or the size of the next PDC. Our purpose is to separately model the
epistemic uncertainty affecting our knowledge and the physical variability of the problem. We will
take into account several random variables on (Ω,F , P ) affected by a large uncertainty, but very
important for hazard assessment: the random measure M permits us to define random versions of
them, and we will rely on the probability η for convolving such versions and for assessing their
uncertainty.

Various statistical approaches either non-parametric, semi-parametric or completely parametric
will be adopted for the geologic data representation and the available observations implementation,
and in addition, also the degree of belief of the scientific community about alternative assumptions
will be quantified. Any procedure that permits the formalization of the opinion of a group of
experts is called expert judgment (or elicitation) technique, and these are capable of evaluating
even the epistemic uncertainties: heterogeneous groups of experts, performance based scores and
structured procedures for combining the different responses will be aimed at decreasing the degree
of subjectivity affecting the estimates. For these reason the adoption of such methods is of the main
importance in this thesis ([41], [7], [68] and Chapter 5).

1.2 Vent opening probability maps

In this chapter we produce new background (sometimes also referred to as long-term or base-rate)
probability maps of vent opening of the Campi Flegrei caldera by incorporating information from
some of the most recent studies, specifically focusing on some of the key epistemic uncertainties of
the volcanic system. In particular, the maps express the probability of vent opening conditional on
the occurrence of a new eruption in the foreseeable future. This is done by considering the eruptive
record of Campi Flegrei in the last 15 ka as well as the distribution of key structural features,
such as faults and fractures, within the caldera. The probability model that we assumed is doubly
stochastic, in the sense that the probability values representing the spatial physical variability
affecting the vent opening process are themselves affected by epistemic uncertainty. The sources of
epistemic uncertainty considered relate to the uncertain locations of past vents, the incompleteness
of the eruptive record, and the uncertain weights given to the different volcanic system variables
under consideration. We followed a structured elicitation with alternative pooling procedures, thus
creating percentile maps associated with the sources of epistemic uncertainty considered, in addition
to a map of mean probability. This product is of critical importance since it is the starting point for
making probabilistic maps for the main hazardous phenomena that could be related to this caldera,
including pyroclastic flows and ash fallout; it also provides, together with the collected monitoring
data, the framework for mapping short-term vent openings.

1.2.1 Formal definition of the vent opening probability maps

The following is the general definition of the vent opening map whose explicit construction, esti-
mating epistemic uncertainties and their influence on the physical variability, is the purpose of this
chapter.

Definition 2 (The vent opening probability map) Let A ⊆ R2 be a domain representing the
area of the volcanic system, considered with its Borel sigma algebra B(A). Let X be a random
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variable from the sample space (Ω,F , P ) to (A,B(A)), representing the location of the next eruptive
vent at Campi Flegrei. Let µX be the probability measure that is the law of X on (A,B(A)); it is
called a vent opening probability map.

We assess an estimation for the unknown measure µX and quantify its epistemic uncertainty
defining a random measure. We follow the nontrivial probability structure of Definition 1, just
projecting the space (W,W,M) on (A,B(A)).

Definition 3 (Conditional vent opening probability map) Let π1 be a measurable function
from (W,W,M) to (A,B(A)), representing the projection of the physical space onto the space of the
vent opening location. We assume that

X(ω) = π1 (χ(ξ(ω), ω)) , for almost every ω ∈ Ω,

and we define the random variable X̌ from (E × Ω, E ⊗ F , η ⊗ P ) to (A,B(A)) as

X̌(e, ω) := π1 (χ(e, ω)) .

For each e ∈ E the random variable X̌(e, ·) on (Ω,F , P ) represents the location of the next eruptive
vent at Campi Flegrei once adopted the epistemic assumption e. Its law µX̌(e) is called vent opening
probability map conditional on the epistemic assumption e.

In particular µX̌ = π1
♯ (M): a well defined random measure on (A,B(A)), parameterized on E.

1.2.2 Description of the achievements

The vent opening probability map is constructed as a weighted mixture of several probability
distributions related to the different volcanological features available. Experts judgment outcomes
indicate that past vent locations are the most informative factors governing the estimates of the
probabilities of vent opening, followed by the locations of faults and fractures; also a uniform spatial
density distribution for vent opening over the whole caldera is implemented in order to account for
a possible lack of correlation with the variables considered. In addition to the mean probability
map EE [µX̌(·)] representative of the aleatoric variability of the process (see Figure 4), the study
produces a set of maps, presented here as upper and lower uncertainty bounds (typically 5th and
95th percentiles) of the vent opening probability at each location. These probability distribution
maps are substantially robust with respect to different density estimation methods and expert
aggregation models. Given the approach we have followed, our present results could be modified by
eliciting the views of a group of experts composed of those who may hold different views from those
who participated in this study, but we would be surprised if their findings diverged greatly from
ours when the common basis is the same data, knowledge and process understanding. Of course, our
own judgments could be modulated by any substantial new dataset, information or interpretation
of the Campi Flegrei history and dynamics that might become available in the future.

Our results show evidence for a principal high probability region in the central-eastern portion
of the caldera characterized by mean probability values of vent opening per km2 that are about
six times greater than the baseline value for the caldera. Significantly lower secondary maxima are
found to exist in both the eastern and western parts of the caldera, with probabilities up to about
2-3 times larger than baseline. Nevertheless, the underlying spatial distribution of vent opening
position probability is widely dispersed over the whole NYT caldera, including the offshore portion.



CHAPTER 1. INTRODUCTION 13

Most importantly, we accompany our probabilities with quantified epistemic uncertainty estimates
which are indicative, typically, of relative spreads ±30% of the local mean value, but with variations
between approximately ±10% and ±50%, depending on the location. Notwithstanding the several
assumptions and limitations of the analysis described above, the maps represent crucial input
information for the development of quantitative hazard and risk maps of eruptive phenomena in
the Campi Flegrei and can also be the basis for the generation of up-dated short-term vent opening
probability maps, once monitoring information in an impending eruption becomes available.

Figure 4. Mean probability map EE [µX̌(·)] of vent opening location conditional on the occurrence of an

eruption, modified from [17]. Reported values indicate the percentage probability of vent opening per km2.

1.3 Pyroclastic density current invasion maps

This chapter will focus on the definition of quantitative probabilistic PDC invasion hazard maps
for the Campi Flegrei area conditional on the occurrence of an explosive eruption, encompassing
the probabilistic assessment of potential vent opening locations derived in the previous chapter.

Pyroclastic density currents (PDCs) are probably the least predictable and the most dan-
gerous of all volcanic hazards. As a consequence they have been responsible for most deaths in
volcanic eruptions in recent times and they present the most important challenge of all volcanic
hazards for disaster planners at volcanoes in densely inhabited regions. PDCs are laterally mov-
ing, buoyantly expanding mixtures of hot gases and fragmental particles (ash, lapilli, blocks, and
boulders); indeed the word pyroclast is derived from the Greek πυρ, meaning ‘fire’, and κλαστoς,
meaning ‘broken in pieces’.
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Plinio il Giovane was the first to describe the phenomenon as ‘flames of fire’ that destroyed
Pompeii and Herculaneum in the famous eruption of Mount Vesuvius in AD 79. The first direct
scientific observations and descriptions of a pyroclastic flow, at that time called ‘nuée ardente’
(glowing cloud), occurred with the eruption of Montagne Pelée (Martinique) in 1902, when the town
of St. Pierre was completely razed causing about 28,000 fatalities. An accelerated interest followed
to the extensive observations of a large explosive eruption at Mount St Helens (USA) in 1980 (see
Figure 5). This event led to a new understanding of highly mobile and intensively destructive PDC
produced by a lateral volcanic blast, in addition to the documentation of the currents generated
by column collapses. An even closer observation of dangerous pyroclastic flows occurred during
the dome-forming and sporadically explosive eruptive activity of the Soufrière Hills volcano on the
small island of Montserrat (UK) in the Caribbean sea (see Figure 6); it began in 1995 and has
continued through 2010, producing currents of variable types and scales. Several villages including
the island capital town Plymouth, were destroyed by these flows, thus allowing a first modern
observation and measurement of the impacts produced by these currents on urbanized areas and
people engulfed outdoors. The eruptions of El Chichon (Mexico) in 1982, Unzen volcano (Japan)
in 1991-1995 and Mt. Pinatubo in 1991, as well as the recent eruptions of Merapi (Indonesia) of
1990s, 2006 and 2010 offer other well documented examples of hazardous PDCs with remarkable
impacts on nearby territory and populations. See [61], [116], [36] and [23] for more detailed hazard
scenarios and additional information also concerning the following paragraphs.

Figure 5. Initial explosion produced by the opening blast of May 18, 1980 eruption of Mt. St. Helens;

from [116].
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PDC invasion hazard represents an extreme danger for the regions exposed to them: preven-
tive evacuation of territory threatened by this hazard in generally required when the risk is high.
In addition to the obvious threat represented by the capability of voluminous currents to bury the
areas invaded under thick layers of pyroclastic deposits, the main hazards on land are represented by
their dynamic pressure (average kinetic energy per unit volume), lethal temperature, fine ash-in-air
concentrations, and the capacity to incorporate and transport loose rocks, trees and construction
material that contribute added impact forces. These sources of hazard act in concert, e.g. with
building damage exposing inhabitants to hot ash. The heat combined with the high density of ma-
terial within pyroclastic flows obliterates objects in their paths, making them the most destructive
of the volcanic hazards: the property damage is severe for even small dilute currents and there are
very few survivors amongst those caught in their path. In addition there are no clear precursors
to the production of a PDC, and multiple currents can be produced with flow directions that are
completely random.

High uncertainty in the hazard leads to difficulties in the decision making process and forces
emergency managers to make conservative judgements in terms of exclusion zones and evacuations.
Populations must be evacuated from hazard zones prior to the onset of a PDC, infrastructure
damage cannot be avoided, and currently no prevention measures are capable of protecting buildings
and lifelines. In addition, the large amounts of hot ash deposited onto the landscape and particularly
into channels extending from the volcanoes increases the risk of landslides and lahars: the ash-rich
nature of such material means that it can be re-mobilized easily for decades after an eruption
and then extend into jurisdictions that were unaffected by the actual eruption. Finally, additional
complex hazards are associated with PDCs generated in the proximity of the sea or a lake (as
may happen in Campi Flegrei). The denser component of the flow submerges and transforms to a
long run-out submarine debris flow, while the more dilute part of the flow moves as a hot sandy
cloud over water, sometimes for great distances. Moreover, the explosive interaction of seawater
with blocky hot flows may cause an inland-directed base surge, and the impact of the PDC into
the water body may generate a tsunami hazard affecting even distant islands and shorelines.

The generation of PDCs can be caused by several volcanic processes verified by different
types of eruption, but the most common are:

• the gravitational collapse of a portion of the volcanic column due to reduction of efficiency of
air entrainment into the hot, ash laden plume;

• the gravitational collapse and disintegration of a gas-enriched crystallized lava dome (i.e. a
mound-shaped protrusions of viscous lava, see [26]) or flow front;

• the sudden explosion of a gas-enriched dome or cryptodome (lateral blast).

Depending on the scale of the explosive events, these mechanisms can produce PDCs with
volumes ranging from a less than a cubic kilometer up to tens or hundreds. The larger ones can
travel more than one hundred kilometers, although none on that scale have occurred for several
thousand years. The density, velocity and temperature of the current are governed by the complex
interactions between pyroclastic particles and the highly turbulent gaseous flow.
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Figure 6. PDC during the final minutes of the small dome collapse of June 25, 1997 at Soufrière Hills

Volcano, Montserrat; from [36].

The pyroclastic particles are generated by the fragmentation of the bubbly magma or hot
vesicular dome rock during its decompression, and by erosion; their distribution within the current
can change drastically as a function of eruption mechanisms. During the gravity-influenced flow
propagation, pyroclastic particles tend to segregate accordingly to their size, shape, and density:
a steep density stratification is produced with solid concentrations ranging from dense packing at
the base to very dilute near the top flow boundary. Particles are mostly suspended by turbulence
in the more diluted part of the current, whereas in the basal layer they are mainly supported by
fluid pressure and collisions. This view includes the two end-members of the traditional field-based
classification of pyroclastic deposits: pyroclastic surges are dilute, thick and energetic currents that
can decouple from a more concentrated underlying current and are able to traverse topographical
obstacles at high speed and temperatures, possibly traveling beyond the limits of the basal pyro-
clastic flow; PDCs sensu stricto are the denser, thinner and concentrated currents that typically
move below the dilute surge and are more strongly influenced by topography.

The PDC hazard assessment and zonation have been traditionally defined on the basis
of the recognized extent of pyroclastic deposits of flows and surges of historical age, and the re-
construction of prehistoric deposits. The technique is limited in that deposit preservation is often
poor, particularly for surges, and differences in vent location, edifice height and channel topography
at the time of prior eruptions may be unknown, but could greatly affect the potential extent of a
future current. Thus computer models based on current topography were first recognized as useful
to check deposit based hazard boundaries, and with more sophisticated advancement became a
primary approach for hazard mapping. In parallel, theoretical and experimental investigations have
made significant progress with the development of a variety of physical and numerical models of
PDCs. Simplified 1D/2D flow models and statistically based representations of the flows neglect
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several physical processes as well as 3D and transient effects of their dynamics. Nevertheless, once
tuned with available field data sets, they enable helpful modelling during crises. They also could
be adapted to Monte Carlo simulations to investigate model sensitivity to input parameters, such
as flow volume and vent location, and to produce probabilistic hazard maps as we will show in
the sequel. Alternatively, multidimensional and multi-phase flow models are becoming increasingly
effective in representing the complex behaviour of such phenomena and enable simulations that
include remarkable details of the scenario conditions. However currently they cannot yet be readily
adapted to Monte Carlo simulations due to the excessive computing time required.

Despite significant progress, assessments of PDC hazard are still influenced by a remarkable
amount of uncertainty: the quantification and communication of the diverse uncertainty sources
appear to be the main challenge. The physical formulation of the process dynamics is currently
not well constrained, furthermore initial and boundary conditions are subject to large epistemic
and aleatoric variabilities that are just partially constrained by direct observations; the scale and
precise source locations for potential threatening currents are generally poorly determined, and
even the digital elevation map (DEM) representation of topography may only crudely approximate
the topography at the time of a future hazardous event (e.g. [114], [66], [32], [33]). In Campi
Flegrei caldera settings, the study of the PDC invasion hazard is additionally complicated by the
remarkable variability of potential vent locations and eruption scales as well as by the complex
dynamics of flows over a strongly heterogeneous topography (see [150]). Current efforts of the
scientific community are aimed at estimating PDC hazards on a fully probabilistic basis, taking into
account the aleatoric physical variabilities as well as the relevant epistemic uncertainties affecting
the process: this would represent an important step toward the long-term goal of developing an
interdisciplinary and integrated approach to risk reduction.

1.3.1 Formal definition of the PDC invasion maps

We characterized the hazard in terms of area invaded (or inundated) by the next PDC phenomenon.
The definition of the probability measure representing such area and its explicit construction sepa-
rating epistemic uncertainty from physical variability as we did for the map of vent opening, is one
of the purposes of this chapter.

Definition 4 (The distribution of PDC invaded areas) Let Y be a random variable from the
sample space (Ω,F , P ) to (R+,B(R+)), representing the area invaded by PDCs during the next
explosive eruption at Campi Flegrei. Let νY be the probability measure that is the law of Y on
(R+,B(R+)); it is called a distribution of PDC invaded areas.

To construct a doubly stochastic model for this variable, we follow again the nontrivial proba-
bility structure of Definition 1, projecting the space (W,W,M) on (R+,B(R+)).

Definition 5 (Conditional distribution of PDC invaded areas) Let π2 be a measurable func-
tion from (W,W,M) to (R+,B(R+)), representing the projection of the physical space onto the
eruptive scale space. We assume that

Y (ω) = π2 (χ(ξ(ω), ω)) , for almost every ω ∈ Ω,

and we define the random variable Y̌ from (E × Ω, E ⊗ F , η ⊗ P ) to (A,B(A)) as

Y̌ (e, ω) := π2 (χ(e, ω)) .
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For each e ∈ E the random variable Y̌ (e, ·) on (Ω,F , P ) represents the area invaded by the next
PDC phenomenon at Campi Flegrei once adopted the epistemic assumption e. Its law νY̌ (e) is called
probability distribution of PDC invaded area conditional on the epistemic assumption e.

In particular νY̌ = π2
♯ (M): similarly to Definition 3 it is a well defined random measure on

(A,B(A)), parameterized on E. In principle we assume the independence of X and Y , and, for
each e ∈ E, the independence of X̌(e, ·) and Y̌ (e, ·): anyways a possible correlation between the
location of the next vent and the area invaded by a PDC originating from it is debated. Of the
main importance in this chapter is the definition of a simple model representing the propagation of
a PDC of a particular scale, once assumed its eruptive vent location.

Definition 6 (The simplified flow model) Let B ⊆ R2 be a domain such that B ⊇ A, repre-
senting an enlarged zone possibly affected by PDC hazard, considered with its Borel sigma algebra
B(B). Let F be a functional from A × R+ to the Borel subsets of B, such that F (x, y) represents
the set invaded by a PDC propagating from a vent x with a scale y.

Combining the map of vent opening µX with the distribution of PDC invaded areas νY and by
using the simplified propagation model F , it is possible to produce probabilistic hazard maps of
PDC invasion, estimating the effects of the considered sources of epistemic uncertainty.

Definition 7 (The maps of PDC invasion probability) Let p be a measurable function from
(B,B(B)) to ([0, 1],B([0, 1])), that is defined as

p := E[1F (X,Y )]

and represents the probability of each point of B to be reached by the next PDC. For each z ∈ B we
also define a random variable p̌ from (E, E , η) to ([0, 1],B([0, 1])) as

[p̌(z)](e) := E[1F (X̌(e,·),Y̌ (e,·))](z).

It expresses the probability of each point of B to be reached by the next PDC, conditional on the
epistemic assumption e.

With p̌ we estimate the random probability of each point of B to be reached by the next PDC as
a function of e ∈ E. This is calculated by a double Monte Carlo simulation with a nested structure.

1.3.2 Description of the achievements

Through the application of the doubly stochastic model we produce the first quantitative back-
ground (or long-term/base-rate, i.e. in conditions of no unrest) probabilistic maps of PDC invasion
hazard able to incorporate some of the main sources of epistemic uncertainty that influence the
models for aleatoric (physical) variability (see Figure 7). In particular, by a Monte Carlo simulation
approach the new method developed combines the spatial probability distribution of vent open-
ing locations, inferences about the spatial density distribution of PDC invasion areas informed by
reconstruction of deposits from eruptions in the last 15 ka, and a simplified PDC model able to
describe the pyroclastic flow kinematics and to account for the main effects of topography on flow
propagation. In Chapter 5 we include a digression about the physical details of such model and
its implementation (see also [85], [86], [80], [81]). In addition our mapping attempts to quantify,
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relying again on the formal structured expert judgement approach, some other relevant sources of
epistemic uncertainty in addition to the location of future vent opening: like the reconstruction of
the dispersal of PDC deposits, or the possibility that a future eruption could be characterized by
the opening of two simultaneous vents located perhaps several kilometers apart, as highlighted by
[97] for the Averno 2 and Solfatara eruptions.

Figure 7.Mean probability map p(z) = EE [[p̌(z)](·)] of PDC invasion hazard conditional on the occurrence

of an explosive eruption, modified from [118]. The map assumes that PDCs originate from a single vent per

eruption, and that the vent is located in the on-land part of the caldera.

Our results clearly suggest that the entire caldera has potential to be affected, with a mean
probability of flow invasion higher than about 5% and the central-eastern area of the caldera (i.e.
Agnano-Astroni-Solfatara) having invasion probabilities above 30% (with local peaks at or above
50% in Agnano). Significant mean probabilities (up to values of about 10%) are also computed in
some areas outside the caldera border (i.e. over Collina di Posillipo and in some neighborhoods of
Naples). Our findings are robust against different assumptions about several of the main physical
and numerical parameters adopted in the study. In addition to mean values of probability of PDC
invasion, this study provides the first estimates of the credible uncertainty ranges associated with
such probability estimates in relation to some key sources of epistemic uncertainty. From our anal-
ysis, the typical uncertainty ranges affecting invasion probabilities inside the caldera lay between
±15 and ±35% of the local mean value, with an average of about ±25%; wider uncertainties are
found outside the caldera, with an average above ±50% and a significantly larger variability from
place to place. Despite the several assumptions and limitations of this study, including the partial
subjectivity of the approach followed, such first estimates of epistemic uncertainty provide crucial
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information that needs to be carefully accounted for quantifying the likelihood of PDC hazards,
and risks, associated with a future eruption occurring at Campi Flegrei. A scientific report about
this study have been presented to Dipartimento della Protezione Civile and Commissione Nazionale
Grandi Rischi (see [117]) to provide additional information for the re-definition of the Red Zone at
Campi Flegrei, the area considered highly at risk from pyroclastic flows and which would need to
be evacuated before an eruption.

1.4 Time-space model for the next eruption

Temporal scale estimation has been deliberately left out from the previous analyses because of
its complexity: the maps provided represent exclusively spatial distributions conditional on the
occurrence of a new (explosive) vent opening. This chapter will cope with the construction of a
robust temporal model capable of producing a background (long-term) probability distribution for
the time of the next explosive eruption at Campi Flegrei.

Figure 8. Cumulative event number as a function of time during the entire eruptive record of the last 15

ka. The bold line is the mean value, the narrow line is the 50th percentile and the dashed lines are 5th and

95th percentiles of the epistemic uncertainty.
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The known sequence of eruptive events is remarkably non-homogeneous, both in time and space
(e.g. [133], [96]). Indeed activity has been subdivided into three distinct epochs (i.e. Epoch I, 15 -
10.6 ka, Epoch II, 9.6 - 9.1 ka, and Epoch III, 5.5 - 3.8 ka BP, estimates from [145]), alternated by
long periods of quiescence (see Figure 8), and the stratigraphic record shows the presence of clusters
of eruptions in time-space inside the single epochs of activity. The record of past eruption times is
affected by a large epistemic uncertainty: only for a few of them datation ranges have been estimated,
while for the most only the stratigraphic order has been assessed; even the times and durations of
the eruptive epochs and of the periods of quiescence are very uncertain. It is fundamental that the
opening of a vent in a particular location and at a specific time seems to increase the probability of
another vent opening in the nearby area and in the next decades-centuries (self-exciting effect): for
this reason the time-space mathematical model that has been developed takes into account both
the quantification of the significant uncertainty affecting the eruptive record and the possible self-
exciting behaviour of the system. This kind of study is crucial also to understand the likelihood and
the consequences of Monte Nuovo in AD 1538. The meaning of this event is indeed controversial
because it is separated by 2.7-3.7 ka from the last event of epoch III and followed by 477 years
without explosive activity. In particular it could represent, adopting the past behaviour of the
volcano as valid, the first eruption of an incoming new eruptive epoch.

1.4.1 Formal definition of the time-space model

The available temporal information about past eruptive events consists of their ordered stratigraphic
sequence (unsure or even unknown in a few cases) and some large datation windows for a subfamily
of them. We follow again Definition 1 for assessing the epistemic uncertainty.

Definition 8 (Time-space record with uncertainty) Let (wi)i=1,...,n be the set of all the erup-
tive events considered. Assume that τ is a random variable from (E, E , η) to the space S(n) of the
permutations of {1, . . . , n} such that (vj)j=1,...,n, where

vj := wτ(j), ∀j,

represents a random sample for the ordered family of eruptive events. Let (tj)j=1,...,n be a vector
of real random variables from (E, E , η) to Rn

+, each tj representing the time of eruptive event vj,
consistent with the datation bounds available. For each j = 1, . . . , n let Vj be a random variable
from (E, E , η) to (A,B(A)) representing the location of the eruption vj. We define the random set
of random variables

Θl := {tj : Vj ∈ Al}

representing the times of each eruption vj that occurred in the zone Al. We adopt the notation
Θl = (tlj)j=1,...,nl

.

Based on this, we define a family of counting processes representing the number of vents opening
in each zone of the caldera as a function of time. The model adopted relies on a ‘Cox-Hawkes
process’, i.e. a doubly stochastic Hawkes process (see [44], [46], [49]), including a spatial localization
in the different sectors of the caldera. The Hawkes processes are non-homogeneous Poisson processes
(NHPP) in which the intensity rate increases with a jump whenever an event occurs and instead
decreases (often following exponential or sigmoid decay curves) as time passes without any event
occurring; see [15] for an example of Hawkes process adoption in volcanic hazard assessment. The
Cox processes are simply the doubly stochastic version of the NHPP, in which the model parameters
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are assumed affected by uncertainty; see [88], [89], [90] for some applications of Cox processes
in volcanology. The innovative model developed presents both these properties; in particular we
explored the case of an exclusively local self-excitement, i.e. without interaction between different
zones.

Definition 9 (The Cox-Hawkes process) Let Z = (Zl)l=1,...,N be a doubly stochastic multi-
variate Hawkes process on (Ω,F , P ), adopting the nontrivial structure of Definition 1. Let φ be an
application from E to the functional space of continuous decreasing functions on R+, representing
the diminishing of self interaction for the process Z. For each l = 1, . . . , N , let λl

0 be a random vari-
able on (E, E) representing the base rate of the process Zl. The intensity function of the component
Zl is then expressed by

λl(t, ω) = λl
0(e) +

∑
tli(w)<t

[φ(e)](t− tli(ω)) = λl
0(e) +

∫ t

0

[φ(e)](t− u)dZl
u(ω), ∀l = 1, . . . , N,

where we assume e = ξ(ω) of Definition 1.

The main problem is to cope with the assessment of the function φ, also depending of epistemic
uncertainty: indeed we developed a mathematical procedure based on maximizing the likelihoods
of random sampled past records inside a Monte Carlo simulation. This is aimed at finding an
uncertainty distribution for the physical parameters of the model: the base rate λ0, the time scale
of excitement decay T and the mean number of offspring events µ; each of them represented as a
random variable on the space (E, E , η).

Definition 10 (Conditional Cox-Hawkes processes) Let π3 be a measurable function from
(W,W,M) to the space of l-dimensional counting measures, representing the projection of the phys-
ical space onto the set of next eruptions times in each of the caldera zones. We assume that

Z(ω) = π3 (χ(ξ(ω), ω)) , for almost every ω ∈ Ω,

and we define the point process Ž from (E × Ω, E ⊗ F , η ⊗ P ) to (A,B(A)) as

Ž(e, ω) := π3 (χ(e, ω)) .

For each e ∈ E the point process Ž(e, ·) on (Ω,F , P ) represents the set of next eruptions times at
Campi Flegrei once adopted the epistemic assumption e.

But the main purpose of this chapter is the time scale assessment for the next future eruption
at Campi Flegrei. In the following definition, with the minimum of a real point process we will
indicate its minimum jump time.

Definition 11 (The next eruption time distribution) Let Zmn be a multivariate Cox-Hawkes
process representing eruptions in each of the caldera zones, and starting from a situation without
excitement except for the residual additional intensity from an event occurred t0 = 477 years before
time 0, in zone 3 (Averno-Monte Nuovo). Then define on (Ω,F , P ) the real positive random variable

Z∗ := min
l

Zl
mn,

representing the remaining time before the next eruption at Campi Flegrei. Let ϱZ∗ be the probability
measure that is the law of Z∗ on (R+,B(R+)); it is called a distribution of next eruption time.



CHAPTER 1. INTRODUCTION 23

In particular it is possible to use the doubly stochastic structure of Zmn and define a conditional
version of this variable.

Definition 12 (Conditional next eruption time distribution) For each e ∈ E let Žmn(e, ·)
be a conditional multivariate Cox-Hawkes process representing eruptions in each of the caldera zones,
and starting from a situation without excitement except that from an event occurred t0 = 477 years
before time 0, in zone 3. Then define on (E × Ω, E ⊗ F , η ⊗ P ) the real positive random variable

Ž∗(e, ω) := min
l

Žl
mn(e, ω),

and let ϱŽ∗ be its law on R+. For each e ∈ E the random variable Ž∗(e, ·) on (Ω,F , P ) represents
the remaining time before the next eruption at Campi Flegrei once adopted the epistemic assumption
e. Its law ϱŽ∗(e) is called probability distribution of next eruption time conditional on the epistemic
assumption e.

The random variable Ž∗ is assessed through a double Monte Carlo simulation with a nested
structure, similarly to the previous cases. It will be represented trough the values of its density
function on R+.

1.4.2 Description of the achievements

Relying on the past behaviour of the volcano, the doubly stochastic time-space model adopted allows
to simulate sequences of future eruptions as well as to better understand the spatial and temporal
behaviour of the system. Results confirm qualitative appreciations of time-space clustering in the
Campi Flegrei with some differences between the different epochs of activity, in particular the Epoch
I record produces a mean rate of generation for the new clusters of one on 148 years; Epoch II record
produces a mean rate of one on 63 years, Epoch III of one on 106 years; these values are affected by
a relevant epistemic uncertainty. The duration of the self-excitement from an event appears quite
different between the epochs, with an average estimate of 658 years for Epoch I, 101 years for Epoch
II and 96 years for Epoch III.

It is confirmed that the eruption of Monte Nuovo is an anomaly compared to the prevalent
pattern of previous epochs, if we do not pose other assumptions. In particular assuming Monte
Nuovo as the opening event of a new epoch, the likelihood of having observed 477 years without
explosive activity is below 5% in average, but it increases above 30% if we consider separately the
record of the western part of the caldera. We remark that the probability for each new eruption of
developing a cluster of subsequent events is around 35% in average if we consider the whole record,
but drops around 15% for the western sub-record: the clustering behavior is much weaker in that
case.

There are several volcanological assumptions that could be made: each of them corresponds to
a different forecast obtained with Monte Carlo simulations for the timing of the next eruption at
Campi Flegrei. In Figure 9 are shown the mean probability distributions associated with different
volcanological assumptions. Considering the three eruptive epochs as independent samples and
assuming Monte Nuovo as the first event of a new epoch of activity, we obtain a mean estimate
of 103 years from the present time (year 2015), with a physical variability 5th and 95th percentiles
of 5 and 318 years respectively. Each of these values is affected by epistemic uncertainty, which
have been estimated as ±30% and slightly skewed towards the positive side. Optionally considering
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only the starting phases of the epochs before climactic events as Agnano Monte Spina or Pomici
Principali slightly increases these estimates.

Relying on separate records for eastern and western sectors activity of the Campi Flegrei caldera,
we obtain that the eastern sector dataset is still quite consistent with the previous estimates, but
the western instead rises them of almost five times to 470 years in mean from the present time,
with physical variability percentiles of 25 to 1467 years, with an epistemic uncertainty estimated as
±35% again skewed towards the positive side. Also assuming a unique sequence of events including
also the periods of quiescence between the eruptive epochs produces much larger time estimates
than considering only the eruptive epochs; however the probability model in this case seems too
simple for re-producing both the long periods of quiescence and the more frequent activity inside
eruptive epochs.

Figure 9. Mean probability distributions EE [ϱŽ∗(·)] for the remaining time before the next eruption, as-

suming maximum likelihood exponential distributions. The curves indicate the probability density function

per year. The values reported are the mean with respect to epistemic uncertainty of the 5th and 95th per-

centiles and the mean value of the physical variability. Different colours correspond to alternative geological

assumptions.
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Further geological studies aimed at the reduction of the number of events without datation
bounds during Epoch I and Epoch II could improve the cluster recognition, with the possibility of
obtaining an eruption pattern similar to one of Epoch III also during the previous epochs. Moreover,
additional research for better understanding the mechanisms of reactivation of calderas after long
periods of quiescence confirms to be of the main importance, together with the exploration of the
dissimilarities between the western and eastern sectors of the Campi Flegrei caldera, also confirmed
by the remarkably different erupted volumes and geological structures involved.

Notation 13 In the following chapters we will recall the most of the definitions of this introduction,
without changing their reference number.



Chapter 2

Vent opening probability maps

2.1 Summary

Campi Flegrei is an active volcanic area situated in the Campanian Plain (Italy) and dominated
by a resurgent caldera. The great majority of past eruptions have been explosive, variable in mag-
nitude, intensity and in their vent locations. In this chapter we present a probabilistic analysis
using a variety of volcanological datasets to map the background spatial probability of vent open-
ing conditional on the occurrence of an event in the foreseeable future. The analysis focuses on the
reconstruction of the location of past eruptive vents in the last 15 ka, including the distribution
of faults and surface fractures as being representative of areas of crustal weakness (see Figure 10).
One of the key objectives is to incorporate some of the main sources of epistemic uncertainty about
the volcanic system through a structured expert elicitation, thereby quantifying uncertainties for
certain important model parameters and allowing outcomes from different expert weighting models
to be evaluated.

Results indicate that past vent locations are the most informative factors governing the prob-
abilities of vent opening, followed by the locations of faults and then fractures. The vent opening
probability maps highlight the presence of a sizeable region in the central-eastern part of the caldera
where the likelihood of new vent opening per km2 is about six times higher than the baseline value
for the whole caldera. While these probability values have substantial uncertainties associated with
them, findings provide a rational basis for hazard mapping of the next eruption at Campi Flegrei
caldera. The definition of a vent opening probability map and its explicit construction, estimating
epistemic uncertainties and their influence on the physical variability, is the purpose of this chapter.
We based our probability model on the abstract definition of the vent opening location as a random
variable X, associated with a probability measure µX on the domain of Campi Flegrei.

Definition 2 (The vent opening probability map) Let A ⊆ R2 be a domain representing the
area of the volcanic system, considered with its Borel sigma algebra B(A). Let X be a random
variable from the sample space (Ω,F , P ) to (A,B(A)), representing the location of the next eruptive
vent at Campi Flegrei. Let µX be the probability measure that is the law of X on (A,B(A)); it is
called a map of vent opening.

For assessing an estimation of the unknown measure µX we quantified its epistemic uncertainty
defining a randommeasure. We adopted the doubly stochastic probability structure and the notation

26
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of Definition 1, just projecting the physical space (W,W,M) on the spatial domain (A,B(A)).

Definition 3 (Conditional vent opening probability map) Let π1 be a measurable function
from (W,W,M) to (A,B(A)), representing the projection of the physical space onto the space of the
vent opening location. We assume that

X(ω) = π1 (χ(ξ(ω), ω)) , for almost every ω ∈ Ω,

and we define the random variable X̌ from (E × Ω, E ⊗ F , η ⊗ P ) to (A,B(A)) as

X̌(e, ω) := π1 (χ(e, ω)) .

For each e ∈ E the random variable X̌(e, ·) on (Ω,F , P ) represents the location of the next eruptive
vent at Campi Flegrei once adopted the epistemic assumption e. Its law µX̌(e) is called vent opening
probability map conditional on the epistemic assumption e.

Figure 10. Simplified geological map of Campi Flegrei caldera showing regional fault traces and main

morphological structures such as caldera and crater rims and faults derived from sea seismic profiles; from

[17].
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Remark 14 Defining likely locations of future vents is a key scientific goal for hazard and risk
assessment, especially given the wide dispersion of past eruptive vents within the caldera. Alberico et
al. [3] presented a first quantitative analysis, based on seven geophysical, geological and geochemical
parameters, each one assumed to be representative of a degree of anomaly. These parameters were
combined to produce a spatial distribution of the probability of vent opening on a regular grid with
cells of side 1 km, covering the whole caldera. Their findings suggested that the inner portion of
the caldera (approximately a circular area with a diameter of about 6 km centered on the town
of Pozzuoli) had the highest probability of vent opening. In contrast, Orsi et al. [122] assumed,
mostly on structural considerations, that the chances of a new vent opening depended only on the
distribution of past vents of Epoch III. They qualitatively identified two distinct areas, one with
higher probability of vent opening (approximately located in the region of Astroni, Agnano and part
of San Vito) and the other with lower probability (approximately located in the area of Averno and
Monte Nuovo). More recently, Selva et al. [141] produced a probabilistic map, over a regular grid
with cells of sides 500 m, based on a Bayesian inference procedure and reporting uncertainty ranges
for probability values (see also Appendix B of this chapter). Their approach included information
on the location of past vents of Epoch III, starting from a prior distribution defined by assigning
scores to the presence of tectonic structures or eruptive vents of the last 15 ka in the NYT caldera.
This study highlighted how the probability of vent opening is widely distributed over the caldera,
with two areas of higher probability of vent opening located in the Agnano-Astroni-San Vito and the
Averno-Monte Nuovo areas.

2.2 Methodology

We followed a structured expert elicitation and judgment pooling approach (e.g. [41], [7], and Chap-
ter 5) to quantify epistemic uncertainties on evidence coming from different strands of volcanological
data and then merge these distributions to produce a doubly stochastic probabilistic vent opening
map that accommodates and expresses these different sources of uncertainty. Our method is based
on the assumption that the probability of new vent opening can be computed as a weighted linear
combination of the spatial distributions of key physical variables of the system that reflect, or can
influence, this volcanic process. Similar approaches, but involving different techniques, have been
applied in [141] and [12] for mapping vent opening at explosive volcanoes and in [104], [27] and [37]
for generating vent opening maps (also called susceptibility maps, e.g. [104]) at effusive volcanoes. A
similar approach has also been applied for the generation of ensemble maps of seismic and tectonic
hazards for planning geological areas suited for radioactive waste storage or disposal (e.g. [31]).
According to the notation of Definition 3, we focused on the assessment of the random probability
measure µX̌ representing vent opening spatial distribution as a function of epistemic uncertainty.

Definition 15 (Random mixture of simple maps) Let (Xi)i=1,...,d be a family of random vari-
ables from (Ω,F , P ) to (A,B(A)), and let (µi)i=1,...,d be the family of their laws. They represent
the spatial distributions of a number of different geological features supposed to be correlated to the
opening of a new eruptive vent. We assume that µX can be expressed as the convex combination
(with random coefficients) of such family. These d coefficients α = (αi)i=1,...,d are random variables
from (E, E , η) to ([0, 1],B(0, 1)) and the problem of assessing X̌ is reduced to find the distribution
of their block:

µX̌(e) =
d∑

i=1

αi(e)µi,
d∑
i

αi = 1.
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Figure 11. Reconstruction of the location of the eruptive vents and fissures for the events occurred in

(a) Epoch I and (b) Epoch II (from [17]). Numbered circles and ellipses indicate the assumed vent location

of the events listed on the right side of the maps. The name of the events follows [145]. The dashed line

indicates the likely location of the coast line between Epochs II and III (from [122]).
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We used data from literature and new data reported here. The variables considered in the
analysis were: the distribution of the eruptive vents opened during the three epochs in the last 15 ka
of activity of the volcano; the distribution of maximum fault dislocations, and the density of surface
fractures over the whole caldera. Based on the present understanding of caldera systems, these five
distributions, representative of the aleatoric variability of the vent opening process, appear to be the
ones most closely correlated with vent opening potential, with faults and fractures representative
of near-surface regions of crustal weakness in the caldera. We acknowledge that the probability of
new intra-caldera vent opening could be correlated with other system variables or processes that
we did not consider due to lack of knowledge about them. To account for any contribution from
these neglected factors and to represent missing information, we included a conservative spatial
uniform distribution inside the NYT caldera. The analysis focused on events from the last 15 ka
of activity of the volcano since these are by far the best known and, given the volcanological and
structural evolution of the caldera (see [132], [57], [122]), are also the most relevant for this study.
In fact we presumed that the caldera did not evolved significantly over this interval; moreover, some
differential weighting, from the elicitation findings, was applied which tested the effect of placing
more emphasis on the most recent data.

A key aspect of the study was the identification, and where possible the quantification, of
some of the main sources of epistemic uncertainty that are associated with the available data and
therefore need to be reflected in the final maps. In particular, in reconstruction from deposits the
attendant uncertainty on location of related eruptive vents was considered, as were the number
of past events which do not correspond to presently identified vents but which do exist in the
stratigraphic evidences (so-called ‘lost vents’) and the uncertainty of linear weights (αi)i=1,...,d to
be associated with the variables that contribute to the definition of the mapping. The construction
of the random vector α is a too difficult problem to be coped with a direct expert judgement
approach, and simple Monte Carlo simulation was implemented to calculate the distribution of α
from the distribution of the elicitation responses to simpler questions β, and then to obtain a sample
of µX̌ .

Definition 16 (The uncertainty on the linear weights) Let β = (βj)j=1,...,d′ be a family of
random variables defined on (E, E , η) and representing the uncertainty profiles associated to each an-
swer value of the elicitation’s target questionnaire. Let f be a measurable function from (Rd′

,B(Rd′
))

to (Rd,B(Rd)) such that
f(β(e)) = α(e)

for each e ∈ E.

In particular with regards to the uncertainty of the linear weights and the unknown values of
some other variables, we adopted a hierarchical logic tree of questions and different scoring rule
models for pooling group judgments, including performance-based (see Appendix A of this chapter;
[41], [7], [68], [31]) and equal-weight models. The procedure differs from previous studies where
the weights were directly and deterministically assigned by the authors to variables with unknown
values (e.g. [141], [12]).

2.3 The volcanological datasets

The construction of the probability measures (µi)i=1,...,d of Definition 15 from the incomplete ge-
ological information available has a main relevance: in the following we include a discussion about
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the details of the procedures followed, based on simple empirical rules shared with experts of the
field. Such inputs to the probabilistic maps consist of three different types of datasets: (1) the
spatial distribution of vent opening locations in the three epochs of the last 15 ka; (2) the spatial
distribution of maximum fault displacement and (3) the surface fracture density. Unless reported
otherwise, all three variables were mapped on a regular grid of 100x100 cells of side 250 m, covering
the whole caldera, with the lower left corner of the grid at (415000, 4510000) WGS84 UTM Zone
33 coordinates. As the outer boundary of the analysis we considered the rim of the CI caldera as
reconstructed in [153] since all vents of the last 15 ka were inside it and even faults and fractures
outside this area appear old and not correlated with the most recent volcanic activity.

2.3.1 Distributions of past vents

The location of past vents represents the principal information to consider when constructing a
vent opening probability map. Therefore this variable was investigated in depth trying to quantify
the different sources of uncertainty that affect it. In particular we focused on the uncertain location
of the vents which, in most cases, cannot be represented as precise points, and on the uncertain
number of vents that might have existed but now are not visible (lost vents). The locations of vents
for the eruptive events that occurred in Epochs I, II and III (Figures 11, 12) are indicated on the
maps by circles or ellipses representing the area where the eruptive vent (or fissure) was probably
located during the eruption. Inside these areas it was decided to avoid more detailed assumptions
as distributing more weight near the center of the ellipses or on their boundaries (as it could seem
reasonable in case of caldera collapse), and the uncertainty was in principle distributed uniformly.
Each eruption is geologically associated with an elliptic subset of the spatial domain A where it is
likely that the volcanic vent (or fissure) was located during it.

Definition 17 (The past vents locations) Let V be a discrete set which elements (wi)i=1,...,n

represent volcanic eruptions at Campi Flegrei and for each i = 1, . . . , n let Di ⊆ A be a set repre-
senting the enlarged location of the eruption wi. For each Di let ζi be a uniform probability measure
supported on that set.

In general small circles/ellipses indicate a good knowledge of the vent location, mostly based
on the existence of a crater, the presence of other surface morphological features, or a well-exposed
areal deposit distribution. Large circles/ellipses indicate large uncertainty in vent location due
to burial or destruction by subsequent eruptions, or by the action of seawater inundating the
caldera. Migration of a vent during the same eruptive event was also considered and, where this
was considered plausible, contributed to a large vent-location ellipse. We defined the vent location
dataset by assuming a one-to-one relationship between the eruptive event (assumed as deposit
erupted in a period of time representative of the eruption duration, i.e. of the order of days/months)
and the eruptive vent from which it originated. The possible occurrence of eruptions with two
simultaneously active vents in different sectors of the caldera was considered as two distinct events
for the aim of vent zonation (see Chapter 3, for further considerations about this possibility).
During Epoch I the recognized vents were mostly concentrated along the northern and eastern
border portions of the caldera (Figure 11) whereas during Epochs II and III volcanism was mostly
concentrated in the central-eastern part of the caldera (i.e. Agnano-Astroni-Solfatara; Figures 11,
12; [132], [57], [122], [97], [145]).
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Figure 12. (a) Reconstruction of the location of the eruptive vents and fissures for the events occurred

in Epoch III and of the Monte Nuovo eruption (from [17]). (b) The map represents an enlargement of the

area of Agnano-Astroni-Solfatara where many events occurred. Numbered circles and ellipses indicate the

assumed vent location of the events listed on the right side of the maps. The name of the events follows

[145].
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The three datasets of vent locations with respect to the three epochs of activity of the volcano
(Figures 11 and 12) were the starting point for producing a first spatial distribution of probability
of new vent opening, conditional on this information. We adopted two different approaches: a kernel
density estimation with Gaussian distributions (Figure 13a), and a simpler probability distribution
based on a partition of the caldera into finite zones (Figure 13b). It will be seen that the two
approaches are complementary and produce quite consistent results. Both Figures 13a and 13b refer
to the whole dataset of all vent locations from the three epochs, without discriminating between
them. By contrast, in the generation of the final vent opening probability maps vents of different
epochs are weighted differently, based on the outcomes of the elicitation.

The kernel density estimation is a non-parametric method for estimating the spatial density of
future volcanic events based on the locations of past vents (e.g. [37], [15], [110]). Two important parts
of the spatial density estimate are the kernel function and its bandwidth, or smoothing parameter.
The kernel function can be any positive function K that integrates to one. In general, given a finite
sample Xi, i = 1, . . . , N , a kernel density estimator can be defined as:

fh(x) =
1

N

N∑
i=1

K

(
x−Xi

h

)
where h is the bandwidth. K is assumed equal to a two-dimensional radially symmetric Gaussian
kernel, as with many kernel estimators used in geologic hazard assessments (e.g. [38], [27], [110]).
The bandwidth is typically selected using different theoretical and empirical methods developed
for optimizing consistency with data (e.g. [62], [110]). Here we took it independently of the spatial
location and equal to the mean minimum distance between the centers of the circles/ellipses for
each separate epoch since the bandwidth is, in principle and other things being equal, related to
the spatial spread of the observed past vents. A complication in our study is that the sample of
past vent locations does not comprise points, but areas of uncertainty, and each vent area covers
several cells of our grid, some of them completely, others only partially. Therefore for each cell
we took into account the fraction of each vent area that it contains and then we applied the
kernel convolution to this value. In addition, we also assumed that this kernel convolution does not
spread the probability outside the CI caldera boundary. An advantage of this approach is that the
spatial density estimate will be consistent with the spatial distribution of past volcanic events. A
disadvantage of a symmetrical kernel function is that it does not explicitly allow for geological and
structural boundaries and other directional volcanological information (see [37]). The areas with
the highest density of past vents are those of Astroni and Agnano (maximum probability per km2

respectively around 4.8% and 4.0%) followed by Soccavo, Solfatara and Pisani (Figure 13a).
The caldera partition approach was developed to take into account this last challenge and to

complement the kernel based approach described above. We subdivided the whole Campi Flegrei
caldera into 16 zones, each characterized by internally consistent geological and volcanological
features and therefore a quasi-homogeneous distribution of vent opening frequencies. Considering
also the geological information about caldera boundaries and time-space clustering of past eruptive
events (see also Chapter 4), we produced a partitioning of the caldera. The following is a formal
definition for it, for the sake of notation.

Definition 18 (The caldera partition) Let (Al)l=1,...,N be a finite partition of the spatial do-
main A of Campi Flegrei, separating zones that present different geological and morphological fea-
tures.
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This partition is very useful to set the problem in a discrete framework, and the freedom in
drawing the boundary of the zones allows an improved representation of the different geological and
morphological features, including those offshore, that characterize each zone as well as the shape
of the CI and NYT calderas that define the edge of the Campi Flegrei area and the spatial and
temporal clustering of past vents. Apart from the areas between the CI and NYT calderas and the
area offshore, where no past vents were located, the different zones had almost equivalent areal sizes
so to avoid bias in the analysis. The spatial vent density for each zone was obtained by counting the
number (or the fraction) of circles/ellipses of vent locations contained in the zone (Figure 13b). This
alternative density distribution is consistent with the density contours obtained by kernel estimation
and represents an a posteriori confirmation of the choice of the kernel bandwidth adopted. However,
as expected, the computed peak values in the zones are now lower than those obtained with the
kernel approach, because within each zone the spatial density is assumed uniform. Some of the main
ideas adopted for the representation of the location of past vents will be relevant in the assessment
of the model for vent clustering.

Figure 13. (a) Density distribution of the probability of vent opening obtained by using the vent location

data of the three epochs of activity reported in Figures 11 and 12 and a kernel density estimation. Contour

and colour values indicate the percentage probability of vent opening per km2 (conditional on the occurrence

of an eruption). (b) Density distribution of the probability of vent opening obtained by using the vent

location data of the three epochs of activity reported in Figures 3 and 4 and the partitioning of the caldera

in 16 homogeneous zones. Values reported in the different subareas indicate the percentage probability of

vent opening per km2 (conditional on the occurrence of an eruption). From [17].

The information on vent distribution was integrated with an estimate of the number of lost vents
in the three epochs. In several regions within the caldera and also outside it, several depositional
units that cannot be correlated with identified vents have been recognized (e.g. [145]). Most of these
deposits belong to events that occurred in Epoch I, which is why they are mostly buried below more
recent sequences. The lost vents were assumed to be uniformly distributed over the on-land portion
of the NYT caldera since no vent has been found outside this area, but alternative hypotheses about
the location of these vents were also entertained, and their effects on final results investigated.
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2.3.2 Distribution of faults and fractures

Faults and fractures represent the other two variables we used as input to the probability map of
vent opening potential. Faults and fractures zones are in fact often correlated with the opening of
new vents and typically represent a weakness element that may favor magma ascent and eruption.
(e.g. [39], [24], [111]). However, the relationships between cropping out faults and fractures and
localization of vent openings at Campi Flegrei and other volcanic settings is a complex issue still
matter of debate. Several studies of rift zones show a close relationship between extensional regime
on the Earth surface and ascending magma. Fields observations, geodetic and geophysical surveys,
mathematical models and analogue experiments (e.g. [126], [108], [136], [101]) indicate that magma
generally arises along vertical or steeply dipping dikes which produce subsidence on the Earth
surface accommodated by normal faults and fractures. Moreover, the upward magma migration
depends on several other features such as the dike-driving overpressure, density and viscosity of
magma and the physical properties of the hosting rocks. Usually most of the models assume an
isotropic and homogeneous upper crust, whereas anisotropic and non-homogeneous features, such
as stress barriers and pre-existing faults, can also control the pathway of the ascending magma. A
sharp change in the elastic properties of the crustal sub-horizontal layering and the occurrence of
weak layers can produce: (i) the arrest of the vertical dike propagation (e.g. [75]) or (ii) the lateral
magma migration (e.g. [105]). Similarly, the existence of moderately-dipping shallow inherited faults
and fractures can deviate the vertical dike propagation (e.g. [70], [99]), whereas, on the contrary,
major deeply rooted subvertical faults can be preferred paths (e.g. [105]).

In this study we took advantage of a recent investigation carried out by Vitale and Isaia [153],
which described and reconstructed the age, distribution and nature of the different type of faults
and fractures located in the Campi Flegrei caldera. As far as faults are concerned, for our purposes,
we focused on the map showing the maximum displacement of faults located in a given cell. In this
way we assigned a weight not only to the presence of faults but also to the degree of displacement
associated with them. In fact, according to [153] and [98], most of mesoscale faults hosted in the
caldera are almost vertical with displacements ranging from few centimeters to several meters.
Many faults are located close to volcanic vents both in the central portion and along the rims
of the caldera. The inversion of faults data in [153] indicates a prevalence of NNE-SSW/NE-SW
extensions in the central portion of the caldera, suggesting that an extensional stress field persists
since, at least, about 4.2 ka BP (Figure 14a).

Given the wide range of displacement observed in the field (see [153]), we assigned weights
using a (four level) logarithmic (base 10) scale ranging from sub-centimetric to metric lengths, thus
assuming that displacements less than few mm are negligible. There were additional assumptions
as follows. The value ascribed to each cell was the maximum displacement of the faults cutting
the cell. In a case where no faults were recognized in a given cell due to the presence of overlying
geological or anthropic structures, estimates were made using information from regional structures,
morphological structures and lineaments of gravity anomalies (see [69], [28], [153]). The resulting
map (Figure 14a) clearly shows that the larger values of displacement are inferred to be present
in the central part of the caldera (e.g. Pozzuoli, Solfatara, San Vito) and along the eastern and
western boarders of the NYT caldera (see also Figure 10). This distribution was then normalized
to obtain an integral sum equal to one, and the adjusted distribution was used in the definition of
the vent opening probability map (see Figure 14b). The resulting map is more homogeneous than
the probability maps based solely on the spatial distribution of known past vents, with maximum
probability of about 1.2% per km2 in the areas with greatest displacements, mentioned above.
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Figure 14. (a) Distribution of the maximum fault displacement in the caldera as derived from the dataset

of [153]. The four colour levels shown correspond to displacements of different orders of magnitude ranging

from sub-centimetric to metric scales. The figure also shows the extensional directions associated to the

main mesoscale faults of the caldera with specific indication of those active in the last 4.2 ka. (b) Density

distribution of the probability of vent opening obtained normalizing the values of maximum fault displace-

ment. (c) Distribution of the surface fracture density in the caldera as derived from the dataset of [153]. In

this case the four colours correspond to different values of density ranging between about 1 and 20 fractures

per meter (fr/m). Wide areas of the on-land caldera and the offshore part were not measured (dashed

areas). In these areas the average value of the total measured zone was assumed. (d) Density distribution

of the probability of vent opening obtained normalizing the values of surface fracture density. In Figures 6b

and 6d values indicate the percentage probability of vent opening per km2 (conditional on the occurrence

of an eruption). From [17].
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Fractures were also elements assumed representative of past and present deformation within
the caldera and therefore of potentially weakness areas likely exploited by magmatic fluids and
indicative of future vent opening (e.g. [131], [99], [111]). However, the definition of surface fracture
density is particularly challenging due to the sparse, diverse and incomplete nature of available
measurements. The value assigned to each cell was derived by the number of surface fractures
naked eye measured per meter of survey line length at each site (see [153] for the locations of the
sites). In case there was a single measurement site in a cell we simply took that as the measured
linear density value, whereas when there were multiple sites we conservatively assumed the highest
measured linear density value for caution. Being the fracture density dependent on many factors,
including the bed thickness, lithology and texture (e.g. [10], [77]), the maximum value of density
calculated for the lithotype most favorable to fracturing was assumed. In the case where a cell did
not contain any measurements, a bilinear interpolation on neighboring cells was assumed.

Nonetheless, the resulting map remained largely incomplete since sizeable areas of the caldera
were not close to any measurement. In those parts where measurements were available, weights were
assigned proportional to surface fracture density on a linear scale (Figure 14c). Values measured
ranged from less than 1 up to about 20 fractures per meter. For areas with no data, a uniform
value equal to the average value from the areas with measurements was assigned. The linear scale
assumption was based on the fact that fracture openings show small variations, normally <1 mm
and rarely larger than a few centimeters (see [153]). By assuming that fracture openings range
between 0.2 and 1 mm (where 0.2 mm is the lowest opening threshold for naked-eye measurements)
(e.g. [124], [77]), that fracture density ranges between 1 and 20 fractures per meter and that they
are subvertical, the horizontal displacement ranges from 0.2 to 20 mm per meter.

The highest values of surface fracture density are located in the Solfatara area and around the
town of Pozzuoli in the center of the caldera (Figure 14c). These areas correspond also to some
regions of intense degassing and hydrothermal activity (see [34]). Other highly fractured areas are
located at Averno, Bacoli-Capo Miseno, Nisida, Posillipo and part of the Agnano plain. As done
for faults, the spatial distribution of fracture density was normalized to sum one across the whole
caldera for using it as a component of the vent opening probability map (see Figure 14d): in this
way the probability density is defined as directly proportional to the fracture density. Based on
this assumption, the maximum percentage probability of vent opening per km2 reaches values of
about 4.3% in the very highly fractured zones, mentioned above, with peak values comparable to
the maxima of spatial vent density computed from past events (see Figure 13).

2.4 Results

Once the five spatial density maps described above were constructed, i.e. the three distributions of
vent location in the three epochs, the distribution of maximum fault dislocation and the distribution
of the surface fracture density, we applied the structured expert elicitation techniques described in
Appendix A of this chapter and in Chapter 5. As explained above, the maps related to faults and
fractures, assimilated here into vent opening probability maps (see Figure 14b, d), are strictly maps
of maximum fault dislocation and surface fracture density, respectively, this meaning that their
contributions to the probability of vent opening are greater where net dislocations and densities
are greater. An alternative uniform distribution over the whole caldera area was also adopted to
represent the possibility there may be no correlation between the vent opening distribution and the
five variables considered here.
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Table 1. Abbreviated target questions of the formal elicitation procedure, and probability percentages of

the 5th, 50th and 95th percentiles of the DMs obtained. The three values reported in each cell refer, from

top to bottom, to the CM, ERF and EW models. Because of the skewness of the probability distributions

combined, some of the median values of complementary questions do not sum exactly to 100%.
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Several elicitation sessions, involving about 8-10 experts with different volcanological back-
grounds, were carried out during the three-year long study through meetings and remote consul-
tations. The main goal was to achieve transparent, robust and shared estimates of the unknown
values of target variables. We carried out the expert calibration by using seed (or test) questions
on a mix of Campi Flegrei and Vesuvius volcanism and, more generally, on explosive volcanism (see
Chapter 6).

The elicitation was based upon target questions that followed a hierarchical logic tree structure
with various levels (see Appendix A of this chapter; Figure 17 and Table 1). First, the relevance
of the five considered spatial variables was compared to that of the homogeneous distribution.
At the next level, the contribution of past vent distributions was compared to those of structural
features (i.e. fault displacement and surface fracture density). Moving to the next level, the relative
importance of single vents in the three epochs was evaluated as well as the relative weight of the
faults and fracture distributions. Additional target questions were related to the number of lost
vents in each epoch, based on the stratigraphic evidence available.

Table 2. Probability percentages of the mean and 5th and 95th percentiles of the weight of the five variables

considered together with the weights of the lost vents and homogeneous map. The three values reported

in each cell refer to, from top to bottom, the CM, ERF and EW models. The median values (i.e. the 50th

percentile) are very similar to the mean values, within about 1%.

2.4.1 The weights of the variables

Table 2 and Figure 15 illustrate, respectively, the percentiles and the density distributions of the
weight of the five variables, derived from the elicitation procedure. The weights for lost vents and
for the homogeneous map are also included. The weight for lost vents comes from the sum of the
products of the number of lost vents in each epoch with the relative weight of a single vent (see
Table 1). Elicitation outcomes are reported for the three different models, i.e. (a) the Classical
Model (CM) of Cooke [41]; (b) the Expected Relative Frequency (ERF) model of Flandoli et al.
[68] and (c) the Equal Weight (EW) model. It appears from the results that the outcomes from the
three models are consistent with one another, overall, and do not show any gross differences. As
expected the EW model produced wider uncertainties relative to the performance-based CM and
the ERF model solutions. In the following we refer mostly to the CM model solutions since it is
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the most appropriate approach for capturing the uncertainty on unknown values of variables. Quite
similar and slightly narrower distributions are computed by the ERF model which, typically, is more
precise than the CM in estimating the central value of a distribution. Basic robustness tests show
that the CM results are stable when the responses of different sub-groups of experts, determined in
terms of specific expertise and background, are processed separately; this creates confidence that
the elicitation process has reliably and validly synthesized the group’s views on the scientific issues
involved.

Figure 15. Density distribution of the weights of the six variables considered and of the lost vents as a

function of the elicitation models assumed, i.e., (a) Cooke CM, (b) ERF model, and (c) EW model. Along

the x axis are also reported as coloured dots the estimates obtained by using just the best guess (central)

values provided by the experts. Modified from [17].

From Table 2 it emerges that the weight assigned to the distribution of the vents of Epoch III
is the largest with a value of about 20% (i.e. mean value) and a credible interval between about
10% and 33% (corresponding to the 5th and 95th percentiles, respectively). Weights of about 4.5%
and 16% were estimated for the mean of vent distributions of Epoch I and Epoch II, respectively,
reflecting to some extent the much larger numbers of vents that occurred in Epoch I. The mean
weight of lost vents was estimated at about 6%, with a credible interval between about 3% and 9%.
In fact, it was estimated that between 5 and 10 vents were lost from the first epoch set, between
0 and 2 from the second epoch and between 1 and 4 from the third epoch (see Table 1). The
distribution of fault displacement was weighted about 16.5% whereas that of fractures about 12%
(mean values). Weights of faults and fractures were also affected by significant uncertainty with



CHAPTER 2. VENT OPENING PROBABILITY MAPS 41

credible intervals ranging between about 8% and 27% for faults and between about 5% and 20%
for fractures. Finally, a mean weight of about 25% was assigned to the homogeneous whole-caldera
spatial distribution, with credible interval between about 6 and 42%.

Figure 15 represents the densities of the uncertainty spreads for the single weights as well as the
central value weights obtained directly from the elicitation, represented as coloured dots along the x
axis. Any discrepancies between these points and the mean values (reported in Table 2) depend on
the skewness of the uncertainty distributions. These distributions show again that the CM provides
marginally narrower probability density functions with respect to those from EW, and that ERF
model distributions are still more narrow.

2.4.2 The maps of vent opening probability

Finally, Figure 16 shows the vent opening probability maps obtained from weighting and combining
the six spatial distributions that were considered. The maps have been computed on the same
100x100 grid with cells of side 250 m used for the distribution of the five variables. The probability
of vent opening is expressed as percentage of having a vent per km2 conditional on the occurrence
of a new eruption over the Campi Flegrei caldera (so that the spatial integration of such probability
map closes to 100%). The figure reports both the maps obtained using the kernel functions for the
density distribution of past vents (Figure 16a, b and c) and the maps obtained using the partitioning
of the caldera into sixteen homogeneous zones (Figure 16d, e, and f). Most importantly, thanks to the
doubly stochastic structure of the model, the vent opening probability maps take into account the
sources of epistemic uncertainty quantified here. This means that spatial vent opening probability
is not depicted on a single map but through a set of maps which, in the figure, present mean
values and 5th and 95th percentiles of the distributions associated with the density values of each
cell (corresponding to Figures 16b, e, 16a, d and 16c, f, respectively). In particular, the spread
between such percentiles is influenced by the uncertain correlation of the relevant variables with
the position of opening of a new vent and by the uncertain number of past vents not included in
the eruptive record; however, all the maps include uncertainties on the locations of past vents. The
maps presented here refer to the estimates obtained using the CM solutions, and assume that the
contribution of lost vents is uniformly distributed over the on-land portion of the NYT caldera.
Similar maps, not reported here, have been produced by using the other weighting models and
assuming alternative distributions for the lost vents (e.g. similar to those of the identified vents);
however, they do not produce significantly different outcomes.

All the maps of Figure 16 show that the vent opening position probability is widely spread over
the caldera. With specific reference to the mean probability maps (Figure 16b, e), it appears that
the probability of vent opening per km2 is, roughly speaking, greater than 0.4% over all the NYT
caldera, with values below about 0.1% just in the area between the NYT and CI calderas, whereas
the probability is about 0.2% in the portion of Collina di Posillipo examined. These latter values,
in particular, derive from the contribution of the fault and fracture structures existing between
the two calderas boundaries and on Collina di Posillipo (see Figure 14). No significant differences
appear between the probability values on the map based on the kernel functions and those of the
map based on the caldera partitioning.
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Figure 16. Probability maps of new vent opening as obtained weighting the six variable distributions

considered. Contours and colours indicate the percentage probability of vent opening per km2 (conditional

on the occurrence of an eruption). (a-c) The use of kernel functions for the estimate of the density of past

vents. (d-f) The partition of the caldera in the 16 homogeneous zones (see text for further explanations).

Figures 8a and 8d refer to the 5th percentile, Figures 8b and 8e to the mean values, and Figures 8c and 8f

to the 95th percentile. The median maps result very similar to the corresponding mean maps. From [17].
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From all the maps, the existence of a wide region of high probability of vent opening, located
approximately in the area of Astroni-Agnano-Solfatara, also emerges. Probability values of vent per
km2 up to about 2.4% are predicted by the mean map, from both kernel-based and partition-based
maps (Figure 16b, e). Credible intervals for these highest values range between about 1.6% and
3.2% (see Figure 16a, d and 16c, e). The zone of Pisani, north of Astroni, is also characterized by
significant values of about 1.2%. In this high probability region, too, the estimates obtained using
the kernel functions are consistent with those obtained using the partitioning. As mentioned above,
the main difference is that the kernel distributions concentrate the probability more in the centers
of the clusters of past vents, whereas the partition approach distributes the probability uniformly
over the single zones, based on broader volcanological and structural features. However, in both
cases the highest probabilities were found in the Astroni area.

Outside this higher probability central area, probability of vent opening is quite dispersed with
secondary maxima in the zone of Soccavo, in the eastern part of the caldera, and in the zones of
Averno-Monte Nuovo-Baia-Capo Miseno, in the western part. At Soccavo, vent opening probability
values are about 1.2%; in the western part of the caldera they reach 1% (as mean values). The
zones of Gauro-Toiano in the central-western part of the caldera appear to be associated with the
lowest probability of vent opening; the offshore area is characterized by mean values of about 0.5%.
In Table 3 we report the estimates of vent opening probability distribution integrated over each of
the sixteen zones of the caldera, computed using the caldera partitioning and the kernel functions,
and by adopting the CM, ERF and EW models.

2.5 Discussion

The forecast of the location of a future vent is a challenging goal of volcanology and an important
element for volcanic hazard assessment. This is particularly true for calderas that typically show
eruption behaviour patterns significantly more complex than central volcanoes. Most of the known
calderas have produced eruption sequences which originated from significantly dispersed vents,
difficult to associate into any regular time-space pattern. Moreover, in most cases explosive eruptions
are prevalent and show remarkably variable scales of intensity and magnitude. The way a caldera
evolves also favors the development of significantly complex structures, abundant hydrothermal
circulation and thermal anomalies, all of which further complicate the problem and make forecasts
particularly uncertain (e.g. [1]). Campi Flegrei presents many of the above-mentioned properties
of calderas. The main characteristics of the Campi Flegrei system are: the presence of a large
caldera, produced by two very large explosive eruptions (CI and NYT), with many smaller calderas
and craters located inside it; repeated long periods of quiescence, lasting millennia, interrupted by
periods of activity lasting several centuries (eruptive epochs); the prevalence of explosive eruptions,
and the remarkable spatial scatter of vents active in the last 15 ka over the whole NYT caldera.
This latter feature is particularly relevant for Campi Flegrei due to the significant size of the caldera
(about 12 km diameter) and the dense urbanization of the territory. A vent opening map is therefore
key to providing adequate hazard maps for the main explosive phenomena for which this volcano
system is notable.

We have produced several vent opening probability maps based on the latest knowledge of
the volcano history and quantifying some of the main epistemic uncertainties identified with this
complex volcanic system. In addition to the consideration of the distribution of vents that occurred
in the last 15 ka, including the contribution of lost vents, the analysis accounts for the potential
influence of faults and surface fractures on the opening of future vents. We assume the presence of
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these features indicative of areas of upper crustal weakness in the caldera that could affect magma
intrusion in a case of unrest. The structural survey of the caldera (see [153]) indicates that faults
and fractures acted in various periods of the last 15 ka of caldera evolution, especially in the central
area and along the caldera rims. In particular in the central area the youngest faults (dated from
about 4.2 ka to present, see Figure 14a) show a common extensional stress field characterized by
a NNE-SSW/N-S extension that has been interpreted as a favorable condition for possible future
magma intrusions. Consideration was also given to the fact that caldera systems are particularly
complex and vent opening could be also affected by other variables not accounted for in this analysis.
Thus a uniformly distributed contribution of other influences was assumed over the whole caldera
to represent the incompleteness of our knowledge and understanding of the system.

Through several meetings and open discussions, the study participants deliberated in depth on
the volcanological datasets to be adopted, as well as their meaning for the specific purpose of this
probabilistic analysis. Spreads of opinions were then evaluated and aggregated through structured
expert elicitation (see Appendix A of this chapter), to represent and optimize group judgments.
The findings of the analysis were revised through several iterations to fully refine and clarify the
data considered and reach an acceptable consensus on outcomes. Findings were also evaluated by
adopting alternative elicitation pooling models. The outcomes were found substantially robust with
respect to the choice of the expert aggregation method (CM, ERF or EW), the statistical central
value presented (median, mean, or mode of elicited values), and the approach used to produce the
probability map based on past vent locations (kernel-based or caldera partitioning).

Based on the expert elicitation outcomes, location distributions of previous vents are judged the
most important variables for quantifying the vent opening probability map, with a total contribution
weight of about 47% (mean value). This estimate includes a weight of about 6% related to the lost
vents. In detail, the location distribution of the vents of Epoch III receives the largest weight (about
20% as mean value) followed by the distribution of the vents of Epoch I and Epoch II with about
16% and 4.5% (as mean values), respectively. During the elicitation, experts were asked to assign
weights to the individual vents of each epoch. Then the weight of the vent location distribution for
each epoch was computed as the product of the weight of a single vent and the number of vents that
occurred in that epoch. This is the reason for the larger relative weight of the location distribution
of vents of Epoch I (33 vents) with respect to that of Epoch II (8 vents). The weights ascribed to
a single vent in the three epochs at 32%, 33% and 35% for Epoch I, II and III, respectively (see
Table 1), were remarkably similar and suggest the experts did not have any meaningful preference
for data from one epoch over any other. The distribution of the maximum fault displacement and
surface fracture density were weighted (as mean values) about 16% and 12%, respectively. This
outcome is related to the fact that, for most of the group members, faults appeared more related
than fractures to the deep system of the volcano and therefore possibly reflect potential regions of
future vent opening. In fact, faults produce much larger deformations than fractures suggesting a
closer link to deep processes. Conversely, fractures were considered more representative of the status
of the shallow layers of the caldera. Last of all, about 25% weight was assigned to the uniformly
homogeneous spatial opening map, i.e. to the possibility that the next vent could open anywhere
inside the NYT caldera. Additionally, it is very important to note that, from the elicitation, all
these weight estimates were characterized by significant associated uncertainties.
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Table 3. Integrated probabilities of vent opening in the sixteen zones of our caldera partition (see Figure

13b) by using the three scoring models CM, ERF and EW and the two approaches based on the caldera

partitioning and the kernel density estimation (Figure 16). Central values (i.e. mean, median, and the

best-guess/modal values given by the experts), 5th and 95th uncertainty percentiles of such integrated

probabilities, and also the uncertainty ranges with respect to the mean value, are reported.
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Our final maps (Figure 16), obtained by weighting and combining the five distributions described
above plus the lost vents represented as a uniform distribution, provide a quantitative assessment
of the spatial probability of vent opening within the caldera. The results highlight the existence of
a main, quite wide, region in the central-eastern part of the caldera characterized by the highest
probabilities of vent opening. This region corresponds to the area of Averno-Agnano-Solfatara.
Although the detailed probability distribution in this area depends to some extent on the type of
numerical approach used (e.g. kernel functions vs caldera partitioning), the maximum values of
vent opening probability per km2 are in the credible interval [1.6%, 3.2%] with a mean value of
about 2.4% in both cases. By spatial integration, the total probability of the next vent opening in
this area is about 30% (see also Table 3). Secondary maxima are obtained in the western part of
the caldera, i.e. zones of Averno-Monte Nuovo-Baia-Capo Miseno, and in the Soccavo and Pisani
areas. These areas are characterized by mean values of about 1-1.2%, i.e. less than half the values
estimated for the highest probability area. However, the probability of vent opening is not confined
to these areas and, with mean values everywhere above 0.4%, the possibility is widespread over the
caldera, thus making the associated background hazard potential broadly distributed in space. It
is worth noting also that the last eruption of Campi Flegrei (Monte Nuovo) occurred in one of the
secondary maxima of the computed vent opening probability map and not in the area with the
highest probability.

Table 4. Extension of the principal areal vent opening probability contours (see Figure 8d, e, f): areas (in

km2) and percentages of the whole Campi Flegrei area, with associated uncertainties.

Table 4 reports the total areas of the main vent opening probability contours, the proportions
of the whole caldera they occupy, expressed as percentages, and the associated uncertainties on
these spatial parameters. More than half the caldera has an average probability of vent opening
greater than 0.5% and more than one-fifth has a probability larger than 1% per km2. Furthermore,
the quantified area uncertainty estimates that we provide on these contoured areas should prove
valuable when considering confidence levels in mitigation decisions.

It is worth highlighting also that the vent opening probability values per km2 are associated
to a substantial uncertainty range, here represented as (5th perc−mean)/mean and (95th perc−
mean)/mean; based on inspection of data, it is on average about ±30% of the mean value, with
variations from ±10% to ±50% (corresponding to 5th and 95th percentiles) in different areas of the
caldera. In particular, uncertainty values spatially change as a function of the variables considered
and the way their uncertainties vary and influence the aggregated weights. Estimates of the uncer-
tainty range of integrated probabilities of vent opening on the zones of the caldera partition are
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also reported in Table 2.
From inspection of numerical outcomes, the probability of vent opening in the offshore portion

of the caldera is about 25±5%. This is a significant value suggesting further investigation of such
a possibility would be worthwhile. Also, our knowledge and hence inferences about this portion
of the caldera are affected by the lack of information compared to the on-land areas (see Figure
14 about faults and fracture distributions). From the maps created it is also possible to estimate
that the mean probability of vent opening in the eastern part of the caldera (assuming the division
line between the western and eastern parts coincides with the N-S border dividing the zones of
Gauro-Toiano, on the west, from the zones of Pisani-Astroni-Solfatara, on the east) is significantly
larger than that in the western part (66% vs 34%, with an uncertainty around ±4%).

Our present results appear qualitatively consistent with those of [3] and [122], which suggested
the areas in the central-eastern part of the caldera are those with the greatest likelihoods of vent
opening. They are also semi-quantitatively consistent with those of Selva et al. [141] although,
relative to them, our study indicates the area with the highest likelihood of vent opening (i.e.
Astroni-Agnano-Solfatara) has substantially greater probability values than in other parts of the
caldera. With reference to mean probability values, the area of Astroni-Agnano-Solfatara has a
maximum of 2.4% per km2, against the 1.9% reported by [141]. Conversely, in the western portion
of the caldera the high mean values are about 1% as against 1.5% of [141] In other words, in this
study the probability of vent opening appears substantially more concentrated in the central-eastern
part of the caldera with respect to the estimates of [141], which indicate a main secondary maximum
in the western part of the caldera.

Further, [141] report uncertainty ranges of the vent opening probability per km2 that appear
significantly greater than those reported in this study, over the whole caldera: their average spread
values correspond to about +180%/-90% of the local mean values, compared with our estimate of
±30%. This is probably due, in part at least, to their assumption of Dirichlet distributions defined
with single global dispersion parameters. In contrast, the procedure adopted in our study allows
uncertainties to be spatially modulated as a function of the different variables considered.

2.6 Appendix A: The expert elicitation technique

As discussed in the text, in this study we assumed that the background probability map of new
vent opening can be expressed as a linear combination of the five density maps representing the
spatial distributions of past vents (three maps, one for each of the three epochs), maximum fault
displacement and surface fracture density, plus a homogeneous map that distributes the probability
uniformly over the NYT caldera and a uniformly distributed contribute from lost vents on-land.
The weights are affected by a significant amount of uncertainty representing unknown correlations
of these relevant variables with the position of opening of a new vent. To estimate them and their
variability we followed a structured elicitation procedure aimed at acquiring and understanding the
experts’ opinions. The same technique was used to quantify other relevant unknown variable values,
such as the number of lost vents as well as other unknown values for variables used in the mapping
of PDC hazard (see in the sequel).

2.6.1 Expert scoring rules and weighting assessments

The concept of expert elicitation concerns the adoption of a formal technique, or techniques, to be
used to pool the judgments of a group of experts in order to inform decisions, forecasts or predictions
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based on a formalized treatment of uncertainties in relation to the matter under consideration
(e.g. [41], [7], Chapter 5). In this particular study, the objective was not only the elicitation of
the unknown value for a variable, but also its uncertainty properties. To this aim we applied
three alternative expert scoring/weighting assessment models and we compared the different results
obtained. The different expert scores are reported in Table 5.

In general for a pooling or scoring scheme, the unknown variable values, for which estimates
are needed, are called target items. During the elicitation procedure, each expert provided three
values for every item: their judgment of the central value (represented by the median value of the
uncertainty profile for Classical Model, or by the best guess with Expected Relative Frequency
model) and then interval bounds which express his/her uncertainty about the credible range for the
value. In our particular case the 5th and 95th percentiles of the uncertainty distribution were used
as marker bounds for the uncertainty distributions. One way to aggregate the answers of a group
collectively is that of calculating an equal weights pooling of the experts’ densities: such a model is
called the Equal Weights (EW) solution. This is the first of the three alternative pooling schemes
that we considered.

However, this way of expressing a group opinion is often not optimal in terms of statistical
informativeness: uncertainties tend to be very wide. To estimate value uncertainties accurately and
informatively, empirical performance control (e.g. [41], [7]) is needed. With the Classical Model (see
[41]), each expert is assigned a weight determined objectively on his/her ability to judge uncer-
tainties with statistical accuracy and informativeness, thus providing a rational basis for pooling
the views of a group of experts. In the Classical Model (CM), this empirical control is based on
a set of seed questions. While actual values of these questions are retrievable, from the literature
or other sources, experts are not expected to know them precisely but are expected to be able to
define credible ranges that capture the values by informed reasoning. In our case the seed questions
(reported in Chapter 6) were about carefully researched aspects of Campi Flegrei volcanism, other
Italian volcanoes, such as Vesuvius, and about explosive volcanism in general. Experts’ weights were
then computed using the mathematical scoring rule process described in [41], with the resulting
combination of experts’ assessments on each target item referred to as a ‘Decision Maker’ (DM).
Here we will briefly compare and contrast the Classical Model with a complementary approach, the
Expected Relative Frequency model (ERF) (see [68]), and note these methods are based on similar
but crucially different scoring rule philosophies.

The CM quantifies an expert’s score as the product of two empirically determined measures,
calibration and informativeness. The calibration score rewards good ability in an expert to be
statistically accurate when assigning values to probability outcomes against known values. Thus,
a ‘well calibrated’ expert provides answers such that the real values are symmetrically balanced
with respect to his/her 50th percentile markers, and the majority fall between his/her 5th and 95th

percentiles (but not necessarily all). The information score reflects an expert’s capacity to provide
concentrated distributions over the same variables. On its own, the information score does not
consider the expert’s distribution locations relative to the true realization values; instead, it is the
relative information with respect to a uniform distribution, averaged on all the seed questions (global
weights) or alternatively calculated and compared separately for each question (item weights). In
summary, the CM takes the product of calibration and informativeness to reward jointly an expert
with statistical accuracy and informativeness; we remark that the result is far more sensitive to the
first one, and the CM score drops to zero rapidly if the calibration decreases. Furthermore, the CM
may also perform optimization to maximize the resulting group ‘decision maker’ score (treating the
DM as an added ‘expert’). In particular it is implemented a cutoff threshold on the calibration score,
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that sets to zero the scores of the less calibrated experts if their presence decreases the performance
score of the DM. This method tends to include in the DM only the 1-2 most calibrated experts,
plus few others with very low scores. More details are also reported in Chapter 6.

Table 5. Expert scoring percentages (non including DM), assuming the different scoring rules. We remark

that CM and EW follow the linear pooling, whereas ERF the quantile pooling (see in Chapter 5).

The Expected Relative Frequency model computes a score for each seed item (i.e. the same
calibration questions used in the CM) by integrating the probability density function over an in-
terval centered around the true value. The idea of this model is that the expert’s score is high
if his/her mode is close to the true value (in relative error), but the score is modulated by the
uncertainty declared by the expert. The average of an expert’s scores over all the seed questions
can be interpreted as the ‘expected accuracy’ of the expert (see [68]). In particular, if for each seed
question a random variable is defined with the uncertainty distribution of a chosen expert, then
his/her ERF score is the expectation of the fraction of these random variables that fall in a selected
interval around the true values. The ERF tends to include each expert in the DM, even modulating
his/her score in base of the performance, but there is another difference with respect to the CM
that contributes to avoid the very large uncertainty ranges of the EW. It is implemented a different
algorithm for combining the responses of the experts: instead of the linear pooling it is adopted
the quantile pooling, with the effect of averaging the central values and reducing the uncertainty
bounds (see in Chapter 5).

Relative to Equal Weights, and each other, in general the CM provides better quantification
of variable uncertainty for multiple items, whereas the ERF model can provide more reliable esti-
mates for central values. More information on the differences between the three models and their
performance can be found in [68].

2.6.2 Logic tree questionnaire, linear weights and elicitation outcomes

To simplify the quantification of the weight to assign to each spatial distribution for the definition of
the vent opening probability map, we defined a simple hierarchical logic tree (see Figure 17). Most of
the target questions that were asked quantify the relative importance, or relevance, of one variable
or feature of the system versus others. In each of these comparisons, the best estimate (central)
percentages should sum close to 100%; strictly, the distribution means should sum to 100%, and the
sum of elicited medians may diverge slightly depending upon tail asymmetries; elicited distributions
can be normalized if necessary. Experts were asked to evaluate the uncertainties associated with their
judgments of relative importance. The first question was about the relative importance of the five
different distributions considered jointly compared to that of the uniform distribution, here assumed
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to represent the lack of information. At the next hierarchical level, the contribution of the overall
past vent distribution was compared to that of the current structural features of the caldera (i.e.
fault maximum displacement and surface fracture density). At the next level of the tree, the relative
weights of single vents of the three epochs and the relative weights of faults and fracture distributions
were evaluated. Other relevant questions were about the estimation of the number of lost vents in
each epoch of activity, due to the successive eruptions and the morphological, volcanological and
man-made transformations of the caldera, and to other variables with unknown values which might
be relevant for the mapping of PDC hazard. We reported in Table 1 the abbreviated questionnaire
protocol, and the corresponding CM, ERF and EW outcomes.

Figure 17. Hierarchical logic tree structure associated to the target questions queried during the elicitation

sessions (from [17]).

To calculate the weights and their uncertainty characteristics for each of the three elicitation
methods adopted, the three percentiles of the CM global DM were used for defining triangular
distributions, from which random values could be sampled for each question. We followed a Monte
Carlo simulation approach for determining these single branch weight estimates, normalizing com-
plementary values to sum to one, and then multiplying the single weights over each branch of the
logic tree. In this way we obtained a large sample of randomized weights to assign to the seven maps
of the relevant spatial distributions, i.e. the distribution of past vents from the three epochs, the
distribution of lost vents, assumed uniform, the fault and fracture distributions, and the uniform
homogenous map over the NYT caldera (see Table 2 and Figure 15).

Each vector sample of the weights of the distributions (along with a sample of the number of
lost vents of each epoch) can therefore be convolved into a probability map of new vent opening,
obtained using those weights. To visualize the variability of these maps, we computed ‘average
maps’ by Monte Carlo simulation, plotted as mean or median maps, as appropriate, and two maps
representing the ‘uncertainty bounds’ of the distribution, expressed as the 5th and 95th percentiles
of the values sampled (see Figure 16).

Finally, Table 3 reported the integrated probabilities on the zones of our caldera partition (see
Definition 18), using the three scoring models CM, ERF and EW and the two approaches based on
caldera partitioning and on the kernel density estimation. The outcomes allow comparison of findings
from the elicitation methods and from the density estimation methods. From inspection, it appears
that the results overall are sensibly consistent with each other and that average discrepancies of
mean values are generally below about 1%. Similarly, the upper and lower percentiles expressing
the uncertainty bounds are substantially consistent between the different models. These outcomes
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confirm again that the CM and the ERF models produce narrower uncertainty distributions than
the EW model. It is worth noting also that the distribution mean values and central values (medians
or best estimates obtained directly from the elicitation) are remarkably similar to one another, and
some significant differences arise only with the EW solutions.

2.7 Appendix B: Dirichlet distributions and Bayesian infer-
ence

Let P = (Al)l=1,...,N be a finite partition of the Campi Flegrei caldera in n ∈ N parts; then a vent
opening random variable X could be defined just on P. A sample with respect to the uncertainty
on such discrete vent opening map may be represented with the array θ of the probabilities of its n
elements. Following this semi-parametric assumption the uncertainty distribution is directly defined
on the (n− 1)-dimensional simplex Sn−1 := {θ ∈ Rn :

∑
i θi = 1, θi > 0 ∀i} and a natural class of

probability measures on that space is constituted by the Dirichlet distributions, that also possess
useful properties in Bayesian statistics.

Definition 19 (Dirichlet distribution) Let θ be a random variable on Sn with probability den-
sity function

fD(θ) =
Γ(
∑

i αi)∏
i Γ(αi)

∏
i

θαi−1
i ,

where α is a vector of positive real numbers and here Γ is the Euler Gamma function. Then its
probability distribution belongs to the Dirichlet class: θ ∼ Dn(α1, . . . , αn).

In addition, Dirichlet distributions are easy to sample, thanks to the well known result that if
θ ∼ Dn(α) then ∀i ≤ n

θi =
ζi∑
ζi
,

where (ζi)i=1,...,n is a family of independent random variables each of distribution Γ(αi, 1). In the
vent opening problem there are two different approaches that have been followed with Dirichlet
distributions: the first was to take P as the family of the cells of a grid on the Campi Flegrei
(see [141], where was n = 700), the second was to take P as a partition of the caldera in zones
that are believed to have relevant differences, like in Definition 18 based on geological information.
Another possibility is the implementation of the logic tree within a Bayesian uploading model,
adopting Dirichlet distributions at each level of the tree. We remark that the main purpose of this
chapter was the uncertainty quantification: the model presented is not Bayesian, but the long-term
uncertainty distributions produced could be the basis also for the generation of up-dated short-term
vent opening probability maps, also in a Bayesian framework. In particular the class of Dirichlet
distributions is conjugate with the class of multinomial distributions by the Bayes rule.

Remark 20 (Bayes rule) Bayesian inference is widely adopted in assessing uncertainty problems:
a priori uncertainty distribution is modified to a posteriori uncertainty by the observation of events.
Either past events for long-term models or future events in case of real time changing models during
crises. The likelihood of observed data A given a distribution vector (or a simpler parameter) θ is
expressed by P (A|θ). The classical Bayes formula (one of its possible formulations) reads

fpost(θ) = fprior(θ)
P (A|θ)
P (A)

.
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The multinomial distributions generalize the class of binomial distributions; an example of a
multinomial random variable Y ∼ Mm(y, p) is the array containing the number of occurrences of
each of the values of a dice of n faces rolled m times, assuming pi as the probability of the face
i. In our case the variable Y may represent the number of past eruptions observed in each of the
elements of P (in any combination).

Definition 21 (Multinomial distribution) Let Y be a random variable on Nn with discrete
distribution

P (y) =

{
n!∏k

j (yj !)

∏
i p

yi

i if
∑

yi = m,

0 otherwise,

where p ∈ Sn−1. Then its probability distribution belongs to the Multinomial class: Y ∼ Mm(p).

In the following is the well known conjugation result of Dirichlet and Multinomial distributions.

Theorem 22 (Conjugation result) Let Z = (Xj)j≤m be a family of independent identically
distributed variables on {1, . . . , n} whose discrete distribution is θ = (θ1, . . . , θk). For each given
z ∈ {1, . . . , n}m define y(z) ∈ {1, . . . ,m}n with y(z)i as the number of occurrences of the value i in
the array z. Then the random variable Y := y[Z] satisfies

Y |θ ∼ Mm(θ).

Moreover assume θ is a random variable whose (a priori) distribution belongs to the Dirichlet class
and that it is conditioned to an event A = {Y = y}, then θ|A = θ|y (a posteriori) distribution still
belongs to the Dirichlet class and

θ ∼ Dn(α) ⇒ θ|y ∼ Dn(α+ y).

Even when the information available about past events is weaker and consists in the observation
of an event in an unknown element of a subset of the partition P, there is a generalized conjugation
result about Dirichlet distributions mixtures.

Remark 23 (Dirichlet mixtures) Let be

Cα = Γ

(
n∑

i=1

αi

)
/

n∏
i=1

Γ (αi)

the normalization constant of a Dirichlet distribution with concentration parameters array α. In
particular it can be expressed as

Cα =

(
(

n∑
i=1

αi)− 1

)
!/

n∏
i=1

(αi − 1)!

when αi are positive integers (but this expression could be interpolated for any other positive value).
It is

P (X = k) = Cα

∫
SplN−1

θk

n∏
i=1

θαi−1
i dθ = Cα/Cα+ek



CHAPTER 2. VENT OPENING PROBABILITY MAPS 53

where ek is the k-element of the canonical base of Rn. Hence it is easy to obtain that

f (θ|X ∈ B) =
∑
k∈B

πkf (θ|X = k) ,

where

πk =
1/Cα+ek∑

k∈B 1/Cα+ek

.

It has been stated that the posterior of a Dirichlet, conditional on an event of the form X ∈ B is a
mixture of Dirichlets. Moreover, iterating the expression it is possible to prove that even if the prior
distribution was a mixture of Dirichlet the posterior remains in that class, and the linear constants
are easy to calculate.

The concentration parameters array α which rules a Dirichlet distribution is often represented
through the array of average values Θ and the equivalent number of data Λ. This is a real number
that represent a measure of the concentration of the distribution around its mean value; for each
i ≤ n it is

αi = Θi(Λ + n− 1).

It is called equivalent number of data because whenever an event {Z = z} involving m samples
is considered by the Bayes rule, the value of Λ increases of m (it easy to see from the definition,
reminding that

∑
Θi = 1 either a priori and a posteriori, and that

∑
αi increases of m). Moreover

it is well known that if Λ = 1 and αi = 1/n for each i ≤ n, then the correspondent Dirichlet
distribution is uniform on Sn−1; a higher Λ > 1 implies a more than uniform concentration while a
lower Λ < 1 produces dispersion from the mean values. But the adoption of Dirichlet distributions,
so handy with Bayesian inference, has also some difficulties. Once is fixed the array of average
values Θ, the parameter Λ rules all the model uncertainty, and the difference between the single
locations depends only on the mathematical structure of each Dirichlet distribution, without any
other degree of freedom: it is not possible to increase the uncertainty only in one place. Moreover
the expression of the variance is

E
[
|θi −Θi|2

]
=

Θi(1−Θi)

Λ + n
,

and it is easy to see that the more n is big, the less influence has the same increase of Λ on the value
of the variance: in the limit of a very big n, the uncertainty ranges a priori and a posteriori remain
almost the same. In addition, the adoption of a partition P constituted by a large number of small
cells may produce some scattering phenomena on the samples: this is due to the impossibility to
implement a major spatial correlation between closer cells in this kind of models. In conclusion it
seems that with a simple Dirichlet distribution is not easy to capture the structure of the uncertainty
distribution. Moreover, for developing a method able to include short-term information from the
monitoring network, another difficulty is that the observed events do not coincide to an eruption
in a particular location, that is the random variable of interest, but are only precursors of it and of
hard interpretation.



Chapter 3

Pyroclastic density current
invasion maps

3.1 Summary

Campi Flegrei is an active caldera containing densely populated settlements at very high risk of
pyroclastic density currents (PDCs). We present here an innovative method for assessing background
spatial PDC hazard with probabilistic invasion maps conditional on the occurrence of an explosive
event. The method encompasses the probabilistic assessment of potential vent opening positions,
derived in the previous chapter, combined with inferences about the spatial density distribution
of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from
eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main
effects of topography on flow propagation. Structured expert elicitation is used to incorporate
certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set
of probabilistic hazard maps for the whole Campi Flegrei area.

Our findings show that, in case of an explosive eruption, almost the entire caldera is exposed to
invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas.
Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion
of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific
uncertainties which can be substantial. The results prove to be robust with respect to alternative
elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and
of theoretical and numerical assumptions, to be quantified. As in the other chapters, we base our
probability model on the abstract definition of several random variables associated the volcanological
phenomena of interest. These variables are then assessed assuming for them a doubly stochastic
structure. The definition of the probability measure representing the area invaded by the next PDC
phenomenon and its explicit construction separating epistemic uncertainty from physical variability
as we did for the map of vent opening, is of the main importance in this chapter.

Definition 4 (The distribution of PDC invaded areas) Let Y be a random variable from the
sample space (Ω,F , P ) to (R+,B(R+)), representing the area invaded by PDCs during the next
explosive eruption at Campi Flegrei. Let νY be the probability measure that is the law of Y on
(R+,B(R+)); it is called a distribution of PDC invaded areas.

54
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To construct a doubly stochastic model for this variable, we follow again the ideas and notation
of Definition 1, projecting the space (W,W,M) on (R+,B(R+)).

Definition 5 (Conditional distribution of PDC invaded areas) Let π2 be a measurable func-
tion from (W,W,M) to (R+,B(R+)), representing the projection of the physical space onto the
eruptive scale space. We assume that

Y (ω) = π2 (χ(ξ(ω), ω)) , for almost every ω ∈ Ω,

and we define the random variable Y̌ from (E × Ω, E ⊗ F , η ⊗ P ) to (A,B(A)) as

Y̌ (e, ω) := π2 (χ(e, ω)) .

For each e ∈ E the random variable Y̌ (e, ·) on (Ω,F , P ) represents the area invaded by the next
PDC phenomenon at Campi Flegrei once adopted the epistemic assumption e. Its law νY̌ (e) is called
probability distribution of PDC invaded areas conditional on the epistemic assumption e.

The definition of a very simple model representing the propagation of a PDC of a particular
scale, once assumed its eruptive vent location is the second fundamental step.

Definition 6 (The simplified flow model) Let B ⊆ R2 be a domain such that B ⊇ A, repre-
senting an enlarged zone possibly affected by PDC hazard, considered with its Borel sigma algebra
B(B). Let F be a functional from A × R+ to the Borel subsets of B, such that F (x, y) represents
the set invaded by a PDC propagating from a vent x with a scale y.

Combining the map of vent opening µX (see previous chapter) with the distribution of PDC
invaded areas νY and by using the simplified propagation model F , it is possible to produce prob-
abilistic hazard maps of PDC invasion and to give an estimate for their considered epistemic un-
certainty.

Definition 7 (The maps of PDC invasion probability) Let p be a measurable function from
(B,B(B)) to ([0, 1],B([0, 1]), that is defined as

p := E[1F (X,Y )]

and represents the probability of each point of B to be reached by the next PDC. For each z ∈ B we
also define a random variable p̌ from (E, E , η) to ([0, 1],B([0, 1]) as

[p̌(z)](e) := E[1F (X̌(e,·),Y̌ (e,·))](z).

It expresses the probability of each point of B to be reached by the next PDC, conditional on the
epistemic assumption e.

In other words with p̌ we estimate the random probability of each point of B to be reached by
the next PDC as a function of e ∈ E. This is calculated by a double Monte Carlo simulation with
a nested structure.

Remark 24 Basic mapping of PDC hazard at Campi Flegrei has been already reported in previ-
ous studies. Some related to field reconstruction and numerical modelling of specific past events,
while others endeavoured to produce specific or integrated PDC hazard maps in which variabilities
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of important parameters of the volcanic system, such as the eruption scale and vent location, were
explicitly accounted for. For instance, Lirer et al. [100] reconstructed the distribution of PDC de-
posits from the main events of the last 5 ka and outlined a zonation of areas potentially affected by
PDCs. Similarly, Orsi et al. [122], used field data to reconstruct the distribution of deposits in the
last 15 ka and proposed a qualitative PDC hazard invasion map based on the last 5 ka of activity. In
both studies, the eastern part of the caldera was found to have the greatest hazard exposure; however,
the area considered for PDCs was limited to that within the caldera rim (i.e. excluding the Collina di
Posillipo). Rossano et al. [134] proposed a hazard map based on a dynamic 1D Bingham flow model,
which considered the variability of eruptive scale (including very large caldera-collapse events) and
assumed a uniform vent opening probability in an area centered on the town of Pozzuoli. Todesco et
al. [150] and Esposti Ongaro et al. [65], using 2D and 3D numerical multi-phase flow simulations of
Plinian type events, analyzed in more detail the propagation dynamics of PDCs within the caldera
to improve the description of the complex interaction between flows and topography. Those studies
were focused specifically on the eastern sector of the caldera and showed that, for some positions of
the vent, pyroclastic flows could overtop Collina di Posillipo, a notable topographical barrier for the
central part of the city of Naples.

More recently, Alberico et al. [4], starting from the probability distribution of new vent opening
positions of [3] and the occurrence probabilities of the three eruption size categories of the last 5 ka, as
defined by Orsi et al. [123], produced a qualitative integrated hazard map of PDC invasion for the city
of Naples with five levels of hazard (Vesuvius hazards were also included in the map). Similar maps,
this time associated with various eruption VEIs (Volcanic Explosivity Index), were also proposed
by [3]. For both studies, the invasion areas were determined using the energy-cone model, based
on the assumption of linear decay of flow energy with distance (see [85]). In both cases, the final
invasion maps were only qualitative and did not account for any epistemic uncertainty quantification
associated with the properties of the volcanic system and its modes and dynamics of eruption.

Where probabilities are associated with them, the above maps represent background, or long-
term/base-rate, assessments of PDC hazard in the sense that none of them takes into account
information and measurements that would come from monitoring and observation networks during
an unrest or eruptive episode. This context is necessary because of the present difficulty of predicting
the timing, size and vent location of a future eruption, based on current understanding of the state
of the volcano and monitoring data. As a consequence, the definition of a quantitative background
probabilistic PDC invasion map is a fundamental need not only for the aim of effective urban
planning for risk mitigation, but also to have an a priori probabilistic spatial distribution of hazard
to be updated during the crisis (see, for instance, [106], [148], [154]).

3.2 Methodology

Our mapping work integrates information on the distribution of the spatial probability of vent
opening, the density distribution of areas previously invaded by PDCs, and the results from a
simplified PDC flow invasion model. It is very difficult to predict the exact location of the next active
vent as well as the scale (or typology) of the next eruptive event, so this imposes the requirement to
consider the potential physical variability of these factors when producing hazard maps. Moreover,
much of the available information is conditioned by large epistemic uncertainties that significantly
influence the resulting maps. Also in this chapter, we implemented a doubly stochastic model able
to explicitly consider, in addition to the aleatoric variability of the process, some of the main
uncertainties by using structured expert elicitation techniques (see Chapters 2 and 5; e.g. [41], [7]).
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Such methods allow uncertainty distributions on identified variables to be determined for hazard
assessment purposes, based on expert judgment when insufficient data or incomplete knowledge of
the system do not permit conventional statistical enumeration of uncertainties.

3.2.1 Probabilistic spatial distribution of vent opening

We briefly summarize the information on the probabilistic spatial distribution of vent opening
location derived from the analysis presented in the previous chapter, for making this model self-
standing. In that analysis it was assumed that the probability map of new vent opening over the
caldera, conditional on the occurrence of an eruption, could be expressed as a linear combination
of the distribution of the eruptive vents that opened during the three epochs of recent activity
of the volcano (i.e. the last 15 ka), the distributions of maximum fault displacement, and surface
fracture density. In addition, it was considered that the probability of new intra-caldera vent opening
could possibly be correlated to other variables or unidentified processes which, in this phase of our
investigation, cannot be included specifically: to accommodate the influence of such unknowns, a
single compensating surrogate contribution was added, assumed uniformly distributed inside the
Neapolitan Yellow Tuff caldera.

Figure 18. Probability maps of new vent opening location (see also Figure 16). Contours and colours

indicate the percentage probability of vent opening per km2 conditional on the occurrence of an eruption:

(a), (b) and (c) refer to the 5th percentile, mean and 95th percentile values, respectively. Note that for the

definition of the PDC invasion maps we do not consider the offshore portion of the caldera as a possible

area of vent opening. Modified from [118].

The analysis in Chapter 2 also quantified the influence of some of the main sources of epistemic
uncertainty that affect the hazard distribution. In particular, their analysis considered the uncertain
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localization of eruptive vents as reconstructed from field data, the number of past events which
do not correspond to presently identified vents but for which stratigraphic evidence exists (i.e.
‘lost vents’), and also the uncertain weights to be associated with variables that contribute to the
definition of the vent opening map. For the definition of these weights, as well as of other relevant
uncertain parameterizations, the analysis used expert judgment techniques, with a simple logic
tree of target questions and various complementary procedures of structured elicitation to test the
sensitivity of uncertainty quantifications to the different models.

Figure 18 shows an example of vent opening probability maps obtained with the above procedure
(see also Figure 16). The three maps (Figure 18a, b, c) represent, respectively, the 5th percentile,
the mean, and the 95th percentile of the uncertainty distribution of the vent opening location map.
The distribution of past vents was computed by assuming a partitioning of the caldera into sixteen
homogeneous zones, with uniform spatial distributions within each. However, very similar maps
were also generated by computing a distribution of past vent positions based on Gaussian kernel
functions. These synthesized results show the presence of a high probability region of vent opening in
the central-eastern part of the caldera (i.e. the Astroni-Agnano-Solfatara area), whereas the rest of
the caldera is characterized by significantly lower probability values with local secondary maxima in
the Soccavo and Pisani plains and in the western zones of Averno-Monte Nuovo-Baia-Capo Miseno.

3.2.2 Distribution of PDC invasion areas

Limitations in our ability to predict the type and scale of the next eruption event require a hazard
mapping approach that considers a range of possible eruptive scenarios. We take the well-known
history of eruptive activity from the last 15 ka, and assume it will be representative of future
patterns of behaviour of the volcano. Very large scale eruptions (i.e. caldera-forming), such as the
NYT and the CI, are not included in the dataset due to their very low probability of occurrence
(well below 1% based on frequency of occurrence estimates, e.g. [132], [122]).

We designated the areas invaded by PDCs as a random variable representative of the aleatoric
variability affecting the next eruption event scale. The parameters of this variable were then assumed
to be affected by some epistemic uncertainty as described in the following. The PDC invasion model
allows us to use the area invaded by the flow as an input. The dataset on areas inundated by PDCs
that occurred in the three epochs of activity (plus Monte Nuovo) largely relies on the work of Orsi
et al. [122], with a few minor modifications and updates due to the most recent research findings
(Figure 19 and Table 6). In detail, twenty records were included for Epoch I, six for Epoch II, and
twenty for Epoch III, in addition to the Monte Nuovo event (i.e. 47 records in total). With respect
to the data of [122], the records of the events of Rione Terra and Archiaverno were deleted from
Epoch I, whilst the records of Capo Miseno and Nisida were moved from Epoch I to Epoch III (see
[145]). In addition, the reconstruction of the PDC distribution produced for the Agnano Monte
Spina (AMS) event by [53] was considered as an alternative to the data of [122]. In all cases, part
of the PDC went offshore, so on-land invasion areas were extended over the sea in order to better
represent the total area affected by the flow.

The flow area boundaries (Figure 19) refer to the minimum areas invaded due both to the irregu-
lar distribution of outcrops and to the large erosive and anthropologic actions affecting the deposits
(see [122]). Based on the available field datasets, and using alternative expert judgment procedures,
the radial underestimation error of deposit boundaries (treated as epistemic uncertainty) was con-
sidered to vary between about 150 and 1,000 m, with a mean value of about 500 m (see Table 1). It
is worth mentioning that such values are comparable with estimates of extended run-out shown by
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surge-like flows with respect to the underlying dense portion of the PDC, observed in recent erup-
tions for flows of small-medium scale (see e.g. [116], for more information). Such an underestimation
of the deposit extent could therefore represent a minimum value of the actual flow run-out.

Figure 19. Reconstruction of the distribution of PDC deposits generated by explosive events that occurred

in: (a) Epoch I, (b) Epoch II, and (c) Epoch III plus the Monte Nuovo event (modified from [118]). Numbers

refer to the events reported in the legend (lines with different colour tone indicate different events). Reported

deposit boundaries were extended over the sea to allow estimation of reasonable values for PDC invasion

area (shown in the legend). Data were derived and updated from [122]. The distribution shown for the AMS

PDC was derived from [53]. The events names and sizes are reported in Table 6.
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In order to use a representative dataset of the invasion areas, it was necessary to extend the
recorded inundated areas reported in Figure 19 with reasonable estimates for areas of ‘lost deposits’.
Based on a comparison between the datasets of invasion areas (Figure 19) and that of the identified
vents (Figures 11 and 12), a number of lost deposits were added to the three epochs. PDC invasion
areas up to 10 and 50 km2 were added as follows: for Epoch I, four records up to 10 km2 (repre-
senting the events of Minopoli 1, Pisani 1, Fondo Riccio, Concola) and nine records up to 50 km2

(representing the events of La Pigna 1, La Pigna 2, Gaiola, Paradiso, Paleopisani 1, S4S31, S4S32,
Pignatiello 1, Casale); for Epoch II, one record up to 10 km2 (representing the event of Baia or a
flow from a lost vent); for Epoch III, seven records up to 10 km2 (representing the events of Agnano
1, Pignatiello 2, Santa Maria delle Grazie, Paleoastroni 3, Olibano Tephra, and two PDCs from lost
vents) (see [97], [145]). The choice to add lost deposits of two different areas reflects the fact that
the reconstruction of deposits for Epoch I is significantly more difficult than for the later epochs
and so larger missing deposits are more likely to be appropriate. The spatial extents invaded by
these lost PDCs were sampled using a distribution fitted to the available field datasets, truncated
with the thresholds mentioned above. This information was treated as another source of epistemic
uncertainty beside to the radial underestimation.

Table 6. Names and invaded area reconstruction for PDC deposits shown in Figure 19. The ID values of

events follow Figures 11 and 12, and their naming follows [145].

With the dataset of PDC invasion areas defined, it is possible to generate probability density
functions of spatial extent distribution considering either the last 5 ka (i.e. Epoch III plus the Monte
Nuovo event) or the last 15 ka datasets (i.e. the three Epochs together plus Monte Nuovo). Figure
20a, b shows the histograms of PDC invasion areas for these two alternative datasets together
with the curves of probability density functions derived from them, whilst Figure 20c, d shows the
corresponding exceedance probability curves (survival functions). The curves, calculated by a Monte
Carlo simulation, relate to the 5th and 95th percentiles and the mean coming from such uncertainty
sources. In the 5 ka dataset, the AMS eruption represents an anomalous value much larger than
any other record. In contrast, the presence of several intermediate data points between the body
of the empirical distribution for the 15 ka dataset and the AMS event allows a quasi-continuous
distribution of the PDC inundation areas to be hypothesized, and the AMS event to be considered
simply one element in a continuous tail distribution, not as an extreme outlier.
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Figure 20. Histograms of the PDC invasion areas as estimated from Figure 19 for: (a) Epoch III and (b)

all three Epochs (plus the Monte Nuovo event in both cases). (a) and (b) also show probability density

functions for the invasion areas after consideration of underestimations of PDC run-out and the addition

of ‘lost deposits’, as discussed in the text and Appendix A of this chapter. (c) and (d) show probability

exceedance curves (survival functions) corresponding to the two periods considered, 5 ka and 15 ka. The

black curve is the mean and the coloured curves are the 5th and 95th uncertainty percentiles. From [118].

The histograms (Figure 20) relate to the inundation areas (Figure 19), whilst the density and
exceedance probability curves include the radial underestimation of PDC inundation areas and the
randomly sampled lost deposit areas. Comparison of plots in Figure 20c and 20d indicates that
the curves associated with the 5 ka history are very similar to those associated with the 15 ka
counterpart, although the latter has a slightly larger number of small events and a slightly fatter
tail. We assume these probability distributions valid over the whole caldera, thus neglecting any
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dependence of eruptive scale (i.e. PDC invasion area) on vent position or repose time. Following
notation of Definition 5, we have decided to restrict νY̌ on the class of log-normal distributions,
parameterized by the values of mean and standard deviation, assumed as random variables. Like
in Definition 16 for assessing their distribution we rely on the uncertainty affecting the elicitation
responses, through a measurable function g.

Definition 25 (The log-normal distribution with random parameters) Let (γ1, γ2) be a
couple of real positive random variables defined on (E, E , η); they represent the values of mean and
standard deviation of a random law of PDC invaded areal sizes; the problem of assessing Y̌ is
reduced to find the distribution of their block:

νY̌ (e) = exp♯ (N (γ1(e), γ2(e))) .

Let β̃ = (βj)j∈d′+1,...,d′+q be a family of random variables defined on (E, E , η) as in Definition 16
representing the elicitation responses devoted to PDCs assessment. Let g be a measurable function
from (Rq,B(Rq)) to (R2,B(R2)) such that

g(β̃(e)) = γ(e)

for each e ∈ E.

The Monte Carlo simulation implemented calculates the maximum likelihood (ML) parameters
for each sample, obtaining the distribution of γ and Y̌ from the distribution of β̃. The ML lognormal
distribution appears to be the most defendable for characterizing available datasets; from sensitivity
analyses, other different but plausible distributions do not significantly change hazard estimate
outcomes (see Appendix A of this chapter).

3.2.3 Simplified PDC invasion model

The dynamics of PDCs is particularly complex due to the multi-phase nature of the flow, the
highly uncertain source conditions and the complicated interactions of the current with topography
(e.g. [59], [25], [20]). Volcanoclastic deposits at Campi Flegrei seem to be mostly characterized
by surge-like facies, although a quite large variability of transport and emplacement mechanisms
can be invoked for different eruptions and even for the same eruptive sequence [e.g. [151], [51]).
Some of these complexities can be investigated by 2D/3D numerical simulations of the partial
collapse of the eruption column and the propagation of PDCs over topography (e.g. [150], [66]).
Such simulations explored, for instance, the influences of different collapsing regimes in the column
and of vent positions on the PDC features. However, due to the large computation time needed to
produce such simulations (of the order of some days with parallel computing), it is impractical and
expensive to apply this kind of modelling within Monte Carlo algorithms involving thousands of
simulations.

Therefore, with the aim of exploring main effects of the large variability of vent location and
eruptive scale (i.e. PDC invasion area) on the area inundated, a simple integral PDC propagation
model is adopted here. The model is based on the so called ‘box model’ of Huppert and Simpson
[86] (see also [45], [80], [81]) and is suited to describing the propagation of turbulent, particle-laden
currents, in which inertial effects dominate over viscous forces and particle-particle interactions.
The model has been validated and calibrated through extensive comparison with 2D numerical
simulations produced with the PDAC model (see [114], [64], [67]). Following notation of Definition
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6, indeed the function F is based on such integral model, that solves a dynamical system coupling the
von Kármán equation for fixed volume density currents propagation and an equation representing
the particle sedimentation. A brief description of the model and its comparison with 2D numerical
simulations is reported in Appendix B of this chapter; a more detailed physical description is
reported in Chapter 5.

Figure 21. (a) Example of decay of radial flow head kinetic energy expressed in terms of potential height

as a function of distance from the source. Curves refer to a flow run-out of 10 km and to values of the C

parameter equal to 1.0, 1.8, 2.0, and 2.4 (m2/3/s), as reported in the labels. In the inset the probability

distribution of the C parameter is shown once a uniform distribution is assumed on the physical variables

forming it. (b) Estimates of the initial mass of pyroclastic material of the column collapsing to the ground

as a function of the initial concentration of pyroclasts and their sedimentation velocity. All curves refer

again to a radial flow run-out of 10 km, whereas the coloured lines refer to the four values of parameter C

reported in (a). See Appendix B of this chapter for more details. From [118].

The integral model allows computation of the flow kinematics and of the maximum distance
(flow run-out) reached over a sub-horizontal surface by a current generated by instantaneous release
(i.e. dam-break configuration) of a finite volume of gas and solid particles, at a given concentration.
Based on outcomes of numerical simulations (e.g. [150], [66]), such a generation mechanism describes
reasonably well the unsteady release of a portion of the column collapsing to the ground. The box
model assumes that the current is vertically homogeneous and deposits particles during propagation
as a function of their (constant) sedimentation velocity. No effect of wind or other atmospheric
conditions is considered by the model. In the present application the model is used in its simpler
formulation, which assumes a single particle size representative of the mean Sauter diameter of
the grain-size distribution of the mixture. The integral model can therefore compute the flow front
velocity, the average flow thickness and the particle concentration as a function of time, assuming
either axisymmetric (our choice in all the examples) or unidirectional propagation, from which the
kinetic energy (or dynamic pressure) of the flow front can be calculated.

In particular, in absence of topography and assuming a cylindrical symmetry with respect to
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the position of the vent, we calculated the kinetic energy of the flow front as a function of the
distance from the vent and of the maximum run-out distance: a parameter that is equivalent to the
volume of the current, and can be calculated by numerical inversion from the PDC invasion area
y ∈ R+ once is fixed the vent location x ∈ A. Indeed for relying on the dataset of PDC invasion
areas reported in Table 6, in this study the PDC invasion model is applied in an inverse mode, i.e.
starting from the invasion area (obtained using the density functions described above) and then
computing the parameter lmax associated with such propagation, given a specific vent location and
surrounding topography (see Definition 26). This parameter is equivalent to the volume (or the
pyroclast mass) required to generate such propagation (see also Chapter 5). However we remark
that the area invaded by past PDCs was likely generated by various flows in succession, whereas
our inverse analysis did not consider this aspect: additional research focused on the comparison
between the box model and the 3D simulations is of the main importance.

In order to quantify main effects of topography on the propagation of a PDC, the flow kinetic
energy is compared to the potential energy associated with, and therefore required to overcome, the
topographical relief that the flow encounters, thus following the same approach of the energy-line
(or energy-cone) model (see [85], [4]). It is worth noting, however, that the integral model allows a
more realistic description of the propagation of a turbulent flow compared to the energy-line, which
instead assumes a simple linear decay of flow kinetic energy more appropriate for describing the
dynamics of landslides and high concentration granular flows (not commonly outcropping at Campi
Flegrei).

Definition 26 (The kinetic energy inequality) Let K be a real positive measurable function
defined on [0, diam(B)] × R+, such that K(r, lmax) represents the kinetic energy at a distance r
from the vent, neglecting topography for the flow front of a PDC with maximum run-out lmax. Let
F̃ be a functional from A× R+ to the Borel subsets of B such that

F̃ (x, lmax) := {z ∈ B : K(d(z, x), lmax)− U(z) > 0}

where d is the Euclidean distance on B ⊆ R2, U is a real measurable function defined on (B,B(B))
and representing the potential energy associated with the local topography. Such a set F̃ (x, lmax)
in a first approximation represents the set of points that the current has enough kinetic energy to
reach.

Figure 21a illustrates the non-linear decay of the flow kinetic energy, expressed as potential
height for a radial flow with run-out 10 km, as a function of distance from source and as a function
of the C parameter (m2/3/s) which accounts for the initial volume concentration of particles and
their sedimentation velocity in the flow (see Appendix B of this chapter). The main approximation
is to compare the potential energy associated to the topographical barriers in position z to the
kinetic energy calculated neglecting the topography that separates z and the vent x. We modify the
definition of F̃ to avoid at least the situation of jumps in the propagation. An additional important
aspect is that the PDC invasion model is applied in an inverse mode.

Definition 27 (The inversion of invaded area) Let σ be a set function from A × P(B) on
P(B), such that for each D ⊆ B, σ(x,D) is the subset of D that is a star-convex set with respect to
x. Let R be a real positive measurable function defined on A×R+, such that the value R(x, y) = lmax

represents the maximum run-out as a function of the vent location x ∈ A and the PDC invasion
area y ∈ R+. We finally define an expression for the functional F

F (x, y) := σ(F̃ (x,R(x, y))).
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We remark that it was possible to calculate the values of the function R(x, y) = lmax by
numerical inversion of the expression∫

B

1σ(F̃ (x,lmax))
(z)dz = y

that is in principle a discontinuous, but monotone crescent in function of lmax. More details can
be found in Appendix C of this chapter. Figure 21b shows the mass of pyroclasts collapsing to
the ground that is able to generate a radial PDC with run-out 10 km, as a function of the initial
pyroclast volume concentration and sedimentation velocity, considering a flat topography. The
physical parameters of the flow adopted in the integral model are assumed representative of the
eruptive mixture and collapse conditions at Campi Flegrei (e.g. [51], [150], [65], [66]).

3.3 Results

Combining the spatial probability map of new vent opening, the probability distribution of PDC
invasion areas, and the PDC integral box model described above, it is possible to produce several
probabilistic hazard maps of PDC invasion with their associated uncertainty. In the following, a few
cases are shown and discussed to illustrate our main findings. Several other maps were produced
to investigate the influence of some key variables or assumptions on the hazard mapping. Our
maps relate solely to the probability of invasion by PDCs and not to the distributions of specific
hazard variables, such as dynamic pressure and temperature. We also assumed that a future PDC
episode will originate in the on-land portion of the caldera because source conditions would be
fundamentally and significantly different in the case of an underwater vent.

Our invasion maps are the result of a Monte Carlo simulation procedure, implemented to com-
bine the several probability distributions discussed above (aleatoric variabilities) together with
their epistemic uncertainties, based on a doubly stochastic model. The Monte Carlo simulation
has a nested structure, configured for estimating uncertainty on the results: as a consequence, the
procedure creates maps of PDC invasion in terms of a mean (or median) value and of representative
percentiles with respect to the uncertainty sources we consider. With the location of the eruptive
vent determined and the areal size to be invaded by the flow defined, the simulation of a single PDC
propagation event associates a value of 1 to those zones reached by the flow, and 0 otherwise. This
is done using the PDC flow model in inverse mode and including the blocking effect of the topog-
raphy (see Appendix C of this chapter). Therefore, for each outcome of the epistemic uncertainty
sources (i.e. uncertainty on the probability map of new vent opening, uncertainty on the density
distribution of the PDC invasion area), by repeating the simulation of a single PDC a large number
of times randomly changing vent location and inundation area, and then aggregating the zone 0/1
values obtained to estimate their means, it is possible to approximate, by the law of large numbers,
the probability that each location of the map is reached by a PDC conditional on the occurrence of
an explosive eruption. To limit computation time, most of the maps are produced using a regular
Cartesian grid of cells with 500 m sides, although simulations were also performed with higher
resolutions to investigate the sensitivity of results to this numerical parameter. For instance, a grid
of cells with 250 m sides produced maps similar to those using 500 m resolution. Based on the 500
m grid, and due to the nested structure of the Monte Carlo procedure, each invasion map requires
the execution of over half million model simulations.
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Figure 22. PDC invasion probability maps computed by assuming the vent opening distribution described

in Figure 18 and the density distribution of invasion areas of the last 5 ka, shown in Figure 20a. The maps

assume that PDCs originate from a single vent per eruption, and that the vent is located in the on-land

part of the caldera. Contours and colours indicate the percentage probability of PDC invasion conditional

on the occurrence of an explosive eruption. The maps relate to: (b) the mean spatial probability, and (a)

the 5th and (c) 95th percentiles, respectively. Modified from [118].

Figure 22 shows the PDC invasion probabilities in terms of a mean map and maps of the 5th

and 95th percentiles, assuming the vent opening probability maps of Figure 18, and the probability
distribution of invasion areas associated with the 5 ka dataset (See Figure 20a, c). The PDC
invasion probability maps assume that each new event would be able to produce PDCs just from
a single vent located in the on-land portion of the caldera. With reference to the mean map,
from the distribution of isolines of equal invasion probability it emerges that, consistent with the
deposit data (e.g. [122]), the central-eastern part of the caldera is the most exposed to PDC hazard
with peaks of probability of invasion of about 53% in the Agnano plain. Probabilities above 45%
are also computed in the Astroni area and above 30% in the area of Solfatara. Note that mean
probability values above 5% apply to almost all parts of the caldera (with the exception of a small
portion of the Capo Miseno peninsula) and a large part is associated with mean values exceeding
10% PDC invasion probability. Values between about 5 and 10% affect some areas outside the
caldera border (e.g. Collina di Posillipo and some neighborhoods of Naples). The plots showing
5th and 95th percentiles (Figure 22a, c) enumerate the substantial uncertainty on these mapped
probabilities of PDC invasion with respect to the sources of epistemic uncertainty described above.
These maps apply only to the propagation of PDCs over the landward portion of the caldera;
isolines of the probability of invasion in offshore parts of the caldera are shown in outline to give a
first approximation of the potential hazard represented by PDCs traveling over the sea. We assume
the sea surface as flat ground topography with no effect of the water on the PDC propagation (thus
neglecting any specific heat and mass transfers between flow and sea), although theoretical studies
have pointed to a reduced mobility of PDCs over water (e.g. [60]).
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Figure 23 shows the same maps as Figure 22 but in this case assumes the probability distribution
of invasion areas derived from events over the last 15 ka (see Figure 20b, d). The maps are very
similar to those of Figure 22, with a slight increase in areas affected by low probabilities of invasion
(see, for instance, the 2-10% isolines) and an associated slight decrease of the peak values computed
in the central-eastern part of the caldera. As mentioned above, these effects are the result of the
slightly fatter tail of the distribution related to the 15 ka history compared to that of the 5 ka
record (see Figure 20).

Figure 23. PDC invasion probability maps computed by assuming the vent opening distribution described

in Figure 18 and the density distribution of invasion areas of the last 15 ka, shown in Figure 20b. The maps

assume that PDCs originate from a single vent per eruption, and that the vent is located in the on-land

part of the caldera. Contours and colours indicate the percentage probability of PDC invasion conditional

on the occurrence of an explosive eruption. The maps relate to: (b) the mean spatial probability, and to (a)

the 5th and (c) 95th percentiles, respectively. Note that the colour scale used in these maps is consistent

with that used in Figure 22. Modified from [118].

Several other maps, for the sake of brevity not described here, were also produced, some of
which are reported in Figure 24. These investigate the effects on the PDC invasion probability
maps of: i) the procedure followed for the definition of the vent opening map (i.e. kernel function
vs partitioning of the caldera, see Chapter 2, for explanations) (Figure 24b); ii) neglecting fault-,
fracture- and homogeneous distribution maps in the definition of the vent opening map (Figure 24c);
iii) considering only the vent locations of Epoch III in the definition of the vent opening probability
map (Figure 24d); iv) different physical properties of the flows adopted in the PDC invasion model
(Figure 24e), and v) the vent opening probability map of Selva et al. [141] (Figure 24e). Some more
details on the specific parameters used to produce these maps are given in the caption to the figure.
As it emerges from the comparisons, despite some significant differences observed locally in specific
areas of the caldera, our main findings about the spatial distribution of PDC invasion probabilities
remain largely valid.
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Figure 24. Ensemble of mean spatial probability maps of PDC invasion showing the effect of different

assumptions. (a) Reference mean map (as in Figure 22b) assuming the vent opening map of Figure 18

and the density distribution of PDC invasion areas of the last 5 ka in Figure 20a; (b) PDC invasion mean

probability map assuming the vent opening maps of Figure 16a, b and c, based on the use of kernel functions;

(c) mean map obtained by neglecting the influence of faults, fractures and homogeneous distribution maps

on vent opening probability; (d) mean map obtained considering only the distribution of vent location of the

events of Epoch III; (e) mean map obtained by assuming a value of parameter C equal to 1 m2/3/s instead

of 2 m2/3/s , as assumed in all other maps (see Appendix B of this chapter), and (f) mean map obtained

by assuming the vent opening map of [141]. Contours and colours indicate the percentage probability of

PDC invasion conditional on the occurrence of an explosive eruption from a single vent located on-land.

Note that the colour scale is consistent with those used in Figures 22 and 23. Modified from [118].
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Our method also enables us to draw probabilistic invasion maps that consider eruption events
constrained below a defined upper scale limit (in our analysis, up to a defined PDC invasion area).
This can be obtained straightforwardly by truncating the eruptive scale distributions of Figure 20c,
d at a given limit. For instance, Figure 25 shows PDC invasion maps representative of the mean, and
5th and 95th percentiles of the distribution, when the limiting value corresponds to 5% exceedance
probability of the PDC invasion areas with reference to the 5 ka curve (corresponding to 112 km2

areal size, ±15 km2; Figure 20c). Based on the estimates of the probability of occurrence at different
eruptive scales, as computed by [123], such a limit approximately corresponds to the occurrence of
explosive eruptions of small and medium scale, but not large scale events (e.g. the AMS eruption;
the average probability of occurrence of large eruptions is, in fact, estimated to be about only 4% of
all scale sizes). Under this restriction, the resulting PDC invasion maps (Figure 25) remain similar
to those that consider the full distribution of eruptive scales (Figures 22 and 23). However, in Figure
25 the probability isolines now affect slightly smaller areas due to the neglecting of PDCs produced
by large scale events. Of course, maps of the same type could be produced for other thresholds
associated with other probabilities of exceedance of the PDC invasion areas (Figure 20c, d).

Finally, we investigate the possibility of simultaneous or near-simultaneous openings of multiple
vents in zones of the caldera significantly distant to each other (i.e. not related to vent migration
within the same area). Such occurrences are indeed a possible scenario at a caldera, as shown at
Rabaul volcano (Papua New Guinea) in September 1994, with the simultaneous opening of the
vents of Tavurvur and Vulcan volcanoes, on opposite sides of the caldera (8 km distant from each
other) (see [130]). Recent work (e.g. [97]) has shown that such a phenomenon likely occurred also at
Campi Flegrei with the contemporaneous eruption, about 4.3 ka BP, of the Solfatara and Averno
centers, located about 5.4 km apart (i.e. the events of Solfatara and Averno2). Tephra placed at
the same height of the stratigraphic record (e.g. [57], [145]) and still not chemically and physically
correlated suggest that other groups of eruptions could have been simultaneous. Multiple venting
implies therefore the possibility of an increased area potentially invaded by PDCs in an eruptive
episode, both inside and outside the caldera.

Based on all the available evidences at Campi Flegrei and elsewhere, the probability of the
opening of two simultaneous vents is estimated from expert judgment to be about 10%, but with
an uncertainty range from about 5% to 25% (corresponding to the 5th and 95th credible range per-
centiles, see Table 1 for details). Based on these numbers, Figure 26 shows PDC invasion probability
maps for the scenario of two simultaneous vents in terms of (b) the mean map, and (a) 5th and (c)
95th percentiles. No constraint was imposed on the distance between the two simultaneous vents.
Based on the probability map of vent opening, a mean distance between dual vents of 4.7 km was
calculated (assuming two independent samples from the same spatial distribution), with 5th and
95th percentiles of 1.0 and 10.0 km, respectively.

The maps of Figure 26 are comparable to those of Figure 22 in the sense that they assume,
for both eruptive centers, the same probability of vent opening of Figure 18 and the probability
density function of the PDC invasion areas of the last 5 ka. In this scenario, the area invaded by
the flows generated by two simultaneous vents is computed as the union of the areas invaded by
the PDCs that originate from the two distinct vents. From comparison with the maps of Figure 22,
it emerges that in the scenario with dual venting the peak probabilities computed in the Agnano
plain are about 5% higher and also that the isolines representative of the 5% and 10% probability
of invasion occupy, in this situation, slightly wider areas.
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3.4 Discussion

In this study, we develop an innovative method to generate probabilistic maps of PDC invasion
in caldera settings conditional on the occurrence of an explosive eruption. Our approach allows
different strands of data to be combined within a probabilistic framework and, most importantly,
enables us to consider and quantify the influence of some key sources of epistemic uncertainty
present in the volcanic system. The approach is particularly relevant for caldera settings due to the
large variations of possible vent locations and eruption scales that can be exhibited by volcanoes of
this type (aleatoric variabilities).

In the present case of Campi Flegrei, PDC invasion maps are obtained by conflating a proba-
bilistic distribution for new vent opening position, a distribution of PDC invasion areas assumed
representative of the range of eruption scales (based on an updated version of the dataset of [122]),
and a simplified PDC invasion flow model able to account for the PDC scaling properties and the
main effect of caldera topography on the extent of areas invaded by the flows. These probabilistic
distributions are also able to account for some of the main epistemic uncertainties affecting the
volcanic system (see also Chapter 2). In particular, the analysis takes account of the uncertain loca-
tion of past vents, the number of ‘lost vents’, the uncertain correlations between the distribution of
observable features of the caldera, such as faults and fractures, and the spatial probability of vent
opening, the incomplete reconstruction of areas invaded by previous PDCs, and the possibility to
have simultaneous activation of two distinct vents during the same eruptive episode. Our analysis
relies on evidence about the last 15 ka of activity of the volcano and therefore does not include
extreme caldera-forming events such as the CI or the NYT eruptions. Moreover, all the maps pre-
sented here presume that the eruptive vent openings take place in the landward portion of the
caldera; offshore eruptions are, fundamentally, a different, and more difficult, problem to tackle.

We provide PDC invasion maps under different assumptions in order to investigate their relative
relevance and the robustness of the results. Assuming the activation of a single vent per eruptive
event, it emerges from these maps that the whole caldera is significantly exposed to PDC hazard
(e.g. Figure 22). Mean invasion probabilities above 5% are calculated over almost the whole caldera,
with peak values just exceeding 50% in the Agnano plain. The areas of Astroni and Solfatara are
exposed with mean values above about 30%. Mean probabilities of about 10% are also computed in
some areas outside the caldera, in particular over Collina di Posillipo and in some neighborhoods
of the city of Naples. Consideration of the density distribution of PDC invasion areas over the last
15 ka (see Figure 23) does not affect significantly the probability distribution described above but
just extends slightly the area affected by low probability isolines, simultaneously reducing slightly
peak value probabilities in the central-eastern part of the caldera. Different assumptions about the
vent opening mapping and PDC properties also produce changes to the probability values of about
the same amount, as shown in the additional maps reported in Figure 24.

These maps also allow the influence of different eruption scenarios to be considered. Figure 25,
for instance, relates to the possibility to define an upper limit on the expected eruptive scale of a
future event. Specifically, the probability distribution of the PDC invasion areas (Figure 20) was
restricted to its 95th percentile value to produce Figure 25. This limit represents approximately the
occurrence of small to medium scale events at Campi Flegrei, but not large scale events (such as
the AMS event, see [123]). Under this constraint, the computed distribution of probability results is
again very similar to that described above, but in this case with a general decrease in mean values
of about 2%. Nevertheless, essentially the whole caldera is still characterized by mean probabilities
of flow invasion larger than 5%, and values up to about 10% are again computed in some eastern
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areas outside the caldera rim.
Similarly, Figure 26 considers the possibility of simultaneous activation of two separate vents

during the same eruptive event. This possibility has been postulated as having happened already
at Campi Flegrei (see [97]), and has the effect of increasing the area potentially affected by PDC
invasion. Assuming this scenario could occur in 10% of all eruption episodes, with a credible range
between about 5% and 25%, the resulting mean invasion map produces slightly wider inundation
footprints with a general increase of probability values of about +2% compared to the case of single
vent.

Figure 25. PDC invasion probability maps computed by assuming the vent opening distribution described

in Figure 18 and the density distribution of invasion areas of the last 5 ka shown in Figure 20a with a

bounding limit corresponding to 5% exceedance probability for invasion area, i.e. 112 ±15 km2. The maps

assume that PDCs originate from a single vent per eruption, and that the vent is located in the on-land

part of the caldera. Contours and colours indicate the percentage probability of PDC invasion conditional

on the occurrence of an explosive eruption. The maps relate to: (b) the mean spatial probability, and to (a)

the 5th and (c) 95th percentiles, respectively. Note that the colour scale used in these maps is consistent

with those used in Figures 22, 23 and 24. Modified from [118].

An important outcome of our approach is the possibility to identify and quantify some of the
sources of epistemic uncertainty affecting the phenomena of concern. This permits us to generate not
only a mean (or expected value) map of the probability of PDC invasion but also a set of maps that
represent 5th and 95th percentile uncertainty spreads. From inspection of the results, the difference
in relative percentage between the 5th or 95th percentiles and the local mean values (i.e. divided
by such mean values) can be approximately quantified inside the caldera typically as ±25% of the
mean probability values, with variability from about ±15% up to ±35% (corresponding to the 5th

and 95th percentiles) in different areas of the caldera. Outside the caldera the average variability
rises to about ±55% of the local mean, with ranges from about ±30% to ±110% from place to
place. Despite the significant sizes of such uncertainty estimates, in the present analysis just some
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of the relevant sources of epistemic uncertainty were considered, as previously described. Other
possible influences, for instance, dependence of vent location and temporal patterns on eruptive
scale, the effect of eruption duration, the accuracy of the PDC propagation model, complexities of
3D topography on flow propagation, as well as the potential influence of atmospheric conditions,
are not included in the present analysis and could represent objectives of future studies.

Figure 26. PDC invasion probability maps computed for PDCs that possibly originate from two simulta-

neous vents in an eruptive event, with the vents located in the on-land part of the caldera. The calculations

assume the vent opening distribution described in Figure 18 and the density distribution of invasion areas

of the last 5 ka, shown in Figure 20a. The probability of a double event is [5% - 10% - 25%]. Contours and

colours indicate the percentage probability of PDC invasion conditional on the occurrence of an explosive

eruption. The maps relate to: (b) the mean spatial probability, and to (a) the 5th and (c) 95th percentiles,

respectively. Note that the colour scale used in these maps is consistent with those used in Figures 22, 23,

24 and 25. Modified from [118].

The limitations of the PDC propagation model and of the stopping criterion should be con-
sidered when evaluating the invasion maps. The integral box model does not take into account
complex processes occurring during PDC propagation, such as partial blocking of the current by
topographical barriers, the generation of buoyant thermals and co-ignimbrite columns from disrup-
tion of the main flow or by passing over topographic obstacles, and the complex multi-dimensional
and transient effects associated to the interaction of a flow with the ground topography (see [150],
[66]). The effect of wind on the propagation of the PDC is also neglected. Moreover, our maps are
computed on a Cartesian grid with cells of side 500 m, meaning that the associated probability
should be interpreted as a mean value over the cell space and that details below this scale are not
meaningful. This is the case, for instance, for some small island-shaped probability contour areas
located mostly over Collina di Posillipo and eastwards that are generated by the complex interplay
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between the envelope of all simulations with varying vent location and scale and the rough topogra-
phy of the caldera. As a consequence, detailed local-scale zonation of the flow invasion probabilities
cannot be achieved using the approach illustrated here. For that purpose, more accurate transient
and multi-dimensional physical models and more detailed analyses of local topography should be
used.

The probabilities of flow invasion reported in all the maps (Figures 22 - 26) are conditional, as
mentioned above, on the occurrence of an explosive eruption from a vent or vents in the subaerial
portion of the caldera. This means that to compute the probability of invasion conditional on
the occurrence of an unspecified eruption (i.e. effusive or explosive, with vents located on-land
or offshore) it is necessary to multiply all the probability isoline values by (1-P), where P is the
probability of being effusive (assuming, for the sake of simplicity, an equal vent opening spatial
distribution for explosive and effusive eruptions) or the probability of having a vent located in the
sea (hence not producing a significant PDC hazard in the common sense). By assuming a probability
of occurrence of an effusive eruption of about 10% (see [123]), and a probability of occurrence of an
eruption with vent located offshore of about 25% (see Chapter 2), the probability values reported
on the maps presented here need to be multiplied by a factor (1-P) of about 0.68 (assuming the two
circumstances to be independent). Finally, it is possible to highlight the notable probability that a
Campi Flegrei PDC originating on-land would likely interact with seawater. Significantly wide areas
along the coast of the municipality of Pozzuoli have associated mean probabilities of flow invasion
up to about 40%, with all the coast of the Golfo di Pozzuoli being potentially affected with mean
probabilities above 10%. The generation of a PDC-induced tsunami should therefore be considered
a possibility, such as was observed during the 1994 eruption of Rabaul (see [119]) and the eruptive
crises of the Soufrière Hills volcano, Montserrat (e.g. [109]). This adds the hazards associated with
PDC-induced tsunami waves to those of other hazardous processes generated by potential explosive
events with a vent located offshore, which possibility is estimated to have a mean probability of
occurrence of about 25% (based on Chapter 2 results).

3.5 Appendix A: Classes of distributions representing the
PDC invasion areas

In order to choose which distribution fits better the datasets reported in Figure 20, i.e. the 5 ka
dataset (D1, Figure 20a, c) or the 15 ka dataset (D2, Figure 20b, d), we performed some analyses
and statistical tests. In particular we focused on the maximum likelihood (ML) lognormal, the ML
Weibull and the Pareto distributions.

Recall that the density function of a lognormal distribution of log-mean m and log-standard
deviation s, is:
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whereas the density function of a Weibull distribution of mean λ > 0 and shape k > 0 is:
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In the first case, the logarithm and the exponential terms of the expression counterbalance each
other to a certain extent and produce a quasi-polynomial decay although faster in the limit. In
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the second case, the distribution produces a quasi-exponential tail although slower in the limit.
While both distributions fit quite well the body of the datasets, the lognormal distribution gives
higher likelihood to the largest values. Statistical analyses were performed in order to quantitatively
evaluate the effect of this choice.

Some criteria were unable to discriminate between the two distributions. The Akaike information
criterion values (i.e. the logarithm of the maximal likelihood) are very similar for both datasets and
therefore could not provide discerning indication. Similarly, a measure of fitting error was unable to
give a clear difference between the two distributions. We define the fitting error E as the L1 distance
between the cumulative function of our estimation choice and the cumulative empirical function of
the observed data, rescaled in proportion of the range of the dataset. In the case of dataset D1,
the fitting errors of the ML lognormal and ML Weibull resulted in values about 4.8×10−2 and
5.5×10−2 respectively; conversely for the dataset D2, values of distance of about 4.6×10−2 and
2.6×10−2 were, respectively, obtained for the two distributions.

Therefore, in order to find the best distribution to use, a statistical test that estimates how
probable the observed values are, supposing they are extracted from an ML lognormal distribution
or from an ML Weibull distribution, was carried out. By using simple Monte Carlo simulation, the
distribution of the index E when the observed datasets are substituted with a random sample of
the same size extracted from each of the ML distributions was determined. The calculated p-value
is the probability of extracting a statistical sample that produces a fitting error E greater than that
associated with the actual data: therefore, a very small p-value means that is improbable to find the
real dataset with that distribution and, in contrast, a large p-value means that the distribution is a
good candidate to generate realization values similar to those observed. With dataset D1, p-values
of about 0.45 and 0.17 were obtained for the ML lognormal and ML Weibull, respectively, whereas
p-values of 0.94 and 0.7 were obtained for the D2 dataset, respectively. Based on this test, the
ML lognormal is therefore preferred to the Weibull distribution, and seems to fit better the larger
elements of the body of the data.

The fact that the ML lognormal distribution fits the tail of the distribution better than a ML
Weibull suggests that the tail behaviour is more nearly polynomial rather than nearly exponential.
The representative class of probability measures that have density functions with polynomial tails
is the Pareto (power laws), with typical density expression as:

fP =
αxα

0

xα+1
,

for all x > x0, and 0 otherwise, the two parameters representing the exponent α > 0 and the
threshold x0 > 0. In order to test this type of distribution, the datasets were separated also into
two subsets to estimate separately the body and the tail of the distributions. Adjusting the choice
of x0, a joint Weibull-Pareto distribution was fitted to the data. However, due to the small number
of data that define the behaviour of the tail, even in the case of the full dataset D2, this approach
was not able to provide better results with respect to the ML lognormal distribution. Due to the
above considerations the ML lognormal was assumed in our analysis.

3.6 Appendix B: Pyroclastic density current box model

The box model of Huppert and Simpson [86] allows the kinematic properties of a PDC to be com-
puted under the assumption that a given volume of pyroclastic mixture is instantaneously released
and the flow is assumed vertically homogeneous (i.e. turbulent and well-mixed) and traveling on a
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sub-horizontal surface. These assumptions allow a simple dynamical system to be stated, providing
a relationship for the rate of propagation, depth and average particle concentration of the current as
a function of time (see Chapter 5 for more details). If u(t) is the velocity of the front of the current,
l(t) is its position and an axisymmetric propagation of the flow is assumed, the model states: u = dl

dt = Fr (gpϕh)
1/2

dϕ
dt = −ws

ϕ
h ,

l2h = V.

where Fr is the Froude number, gp the reduced gravity, ϕ the volume fraction of particles in the
flow, ws the sedimentation velocity of particles and V the volume of collapsing mixture divided by
π. After simple computations we find the function

l(t) = [tanh(t/τ))]
1/2

lmax

solves the above equation, where τ =
(
Fr−1(gpϕ0V )−1/2l2max

)
/2, ϕ0 = ϕ(0) is the initial volume

concentration of particles in the mixture, and lmax is the maximum distance reached by the flow
(i.e. the PDC run-out) that it is possible to calculate from the other parameters as:

lmax =
(
8ϕ

1/2
0 g1/2p V 3/2w−1

s Fr
)1/4

.

In a similar way to the energy-cone approach, the front average kinetic energy is computed and
compared to the potential energy associated to an obstacle of height H. Here the comparison was
done considering simple gravity and also neglecting hydraulic effects associated with flow-obstacle
interactions. By using the above formula of l(t), we derive an expression for u(l) and therefore the
following function for H:

H =
1

2g

[
Cl

1/3
max

x cosh2 artanh(x2)

]2
, C =

(
Fr2wsϕ0gp

)1/3
/2.

where x = l/lmax. This function basically replaces the straight line of the energy-cone model. It
should be noted that the parameter C is the only physical parameter of the integrated model
and therefore its value can be obtained with different combinations of the variables that form it.
Assuming reasonable bounds on the physical parameters involved for the Campi Flegrei case, such
as ws = 0.05 − 1.2m/s (corresponding to mean Sauter particle sizes between 10 and 500 µm),
Fr = 1 − 1.19 (as resulted from calibration tests), ϕ0 = 0.5 − 1.5%, and ρp = 700 − 1000kg/m3,
and assuming a uniform probability distribution between these ranges as appropriate given the
large uncertainty affecting these parameters, the mean and median values of the C parameter result
around 2 m2/3/s (1.0, 1.8 and 2.4 m2/3/s corresponding to the 5th, 50th and 95th uncertainty
percentiles respectively; see the inset of Figure 21a for the C uncertainty distribution). Therefore,
in most of the simulations a value of 2 m2/3/s was assumed although, to check the effect of this
variable on the spatial probability map, a value of 1 m2/3/s (corresponding to the 5th percentile)
was also used, as shown in Figure 24e. Adopting instead the other extreme value of 2.4 m2/3/s
(corresponding to the 95th percentile) does not produce significant changes to the corresponding
mean map. Figure 21 shows that a value of C = 1 m2/3/s is representative of a PDC, at constant
any other initial variable, richer of fine particles and therefore more mobile (i.e. able to reach a
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specific run-out distance with a lower amount of collapsing mass) than PDCs with a value of C =
2 m2/3/s or greater.

Figure 27. (a) Isocontours of the Logarithm base 10 of particle volumetric fraction of the current with

particles of diameter dp = 100µm and initial particle volume fraction ϕ0 = 5 × 10−4; (b) non-dimensional

front position versus non-dimensional time for particle-laden currents with different values of the Sauter

particle diameter. For each particle class the dimensionless scaling law was obtained setting the Froude

number Fr = 1.18 and computing the settling velocity from the free particle fall in a still current with

equal volume fraction. Modified from [118].

The integral box model has been extensively tested against laboratory experiments (e.g. [72])
and numerical simulations able to describe the dynamics of stratified PDCs. In particular, the model
was validated in non-ideal conditions, i.e. in case of significant density differences between the flow
and the ambient and assuming different particles sedimentation rates. As an example, Figure 27a
shows the time evolution of the flow calculated by the numerical model PDAC (see [64], [66]) with
density contrast of 0.4 and particles of 100 µm diameter, whereas Figure 27b shows a comparison
between the numerical model results and the box model predictions in case of sedimenting currents
with different particles sizes (from 100 to 500 µm) in Cartesian coordinates. When set to non-
dimensional variables (i.e. t/τ and l/lmax) all simulations collapse on to the curve predicted by the
box model, confirming minor influences on flow propagation by current stratification and viscous
and buoyancy forces.

As mentioned in the main text, the model is applied in an inverse mode in order to produce
the invasion maps (see also Appendix C of this chapter). This means that the model is used to
estimate the mass (or the equivalent volume) of the collapsed pyroclastic mixture able to invade
the inundation area, as extracted from the density functions derived from field reconstructions.
Given a specific vent location and associated surrounding topography, such a calculation is carried
out numerically by an iterative procedure based on the secant method, with an initial condition
estimated from inversion of a simple energy-line model. The method re-produces invasion areas
with a relative error below 0.05 in 95% of cases and with just about 5 - 6 iterations. Calculation of
the area invaded by the PDCs is also computed adopting different grid resolutions and numerical
algorithms. For instance, the invasion areas of a single PDC can be obtained assuming both a
regular Cartesian grid up to 50 m resolution and a radial discretization of the space in 360 sectors
by using a 10 m Digital Elevation Model resolution. Different assumptions were also made on
the way topographic reliefs shade the downstream areas with specific reference to the algorithms
implemented to compute the areas; results indicate some effects of these choices on some limited
areas of the final hazard maps that, however, can be quantified to the order of few percentage points
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in terms of probability of flow invasion.

3.7 Appendix C: Details of the implemented propagation
algorithm

In the sequel are presented more details about the simplified procedure that is implemented to sim-
ulate a single PDC propagation: it is repeated thousands of times during a Monte Carlo simulation.
This and similar models, with the main purpose of being very fast at the cost of some accuracy, are
also called emulators. An additional aspect is the assumption of the areal size to invade from the
beginning, instead of more usual initial conditions about volume (or mass) of the flow, although
there are simplified relations linking the two parameters. For this reason our propagation model
is structured in two parts: the (direct) simulation of a flow of fixed initial conditions and then a
numerical inversion aimed at obtaining a simulation that reaches a pre-imposed areal size. A third
paragraph is devoted to the implementation of the Monte Carlo simulation.

Direct simulation A trivial way to cope with this problem is not implementing the topography
into the algorithm: just assuming circular areas of invasion for the flows gives results that a posteriori
are not so far from the ones from relatively more accurate other simple models of invasion. The
motivation of such robustness is the adoption of the invaded area sizes as the main input: the
algorithm seeks for the shape of the area, not its size. Merely linking the areal sizes to the areas
of past deposits permits to obtain a model that is indirectly influenced by (past) topographical
barriers. Another traditional approach that is commonly adopted to take into account the influence
of the topography is the well known energy line model (see Hsu (1975)). The core of the energy line
model is the following idea: suppose to set a bidimensional domain B, and a point (x1, x2) ∈ B that
represents the coordinates of the eruptive vent; once it is fixed the height H of the eruptive column,
its collapse is represented on each radial line on B through the profile K of kinetic energy of the
front of the flow, defined as a linear function of the distance d(i, j) of each point (i, j) from the
vent. The only other physical parameter is the slope coefficient α of such line. This approximation
is unidimensional, but the kinetic energy profile forms a cone in space: for this reason it is also
called energy cone model. This approach gives better results for simulating granular flows, as in the
case of landslides and avalanches.

The topography effect is implemented through a Digital Elevation Map (DEM), i.e. a matrix
containing the elevation of each point (i, j) above sea level. The function

H(i, j) = K(i, j)− g ·DEM(i, j),

where the mass of the flow front is simplified, and simple gravity g is considered, compares the
kinetic energy with the potential energy needed for the overcome of topographical barriers. This
permits to discriminate the points in two classes: when H(i, j) > 0 the flow in principle has enough
energy to reach and invade the point (i, j), otherwise (i, j) cannot be reached because the flow does
not possess enough energy. Moreover, for better representing such stopping on each single radial
line, the model does not invade any point farther than the first point with negative H: in other
words the model does not invade the points shaded by any topographical barrier respect to the
vent.

The model is summarized in these two phases: the energy comparison and the shading of to-
pography barriers; in the particular topography of a caldera the second phase becomes particularly
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important for deciding in what way the flow interacts and possibly overcomes the caldera bound-
ary. The implementation of the box model is build through the same two phases, but in the energy
comparison phase our approach changes the radial profile of the kinetic energy: instead of using
a straight line it is adopted the nonlinear curve of decay obtained from the box model physical
approximation (see Figure 21a, Appendix B of this chapter, and also Chapter 5). More alternative
procedures have been explored for optimally solving the shading problem, and their implementa-
tions are reported in Chapter 6. The first approach is dividing the space in N = 360 circular sectors
with center on the vent and then assuming invaded the totality of each sector from the vent up
to the distance of the first negative value of H restricted on its bisecting line. This approach is
the traditional one for the energy line models. Another shading procedure was also implemented,
setting a discrete grid and shading all the cells that have the centers laying in the cone of shadow of
any cell with a negative value H; this is competitive with the first method in terms of computation
time only at a low scale discretization.

The approach adopted for producing all the probability maps presented in this study is instead
based on simple and local connection controls on the single cells of the grid: this in general shades
less cells than the previous methods based on global radial lines, but it is much convenient in terms
of computation time and gives results still consistent with 3D simulations. In particular the cells
are checked following a precise ordering, starting from the center and considering increasing square
frames; if H(i, j) > 0 then the cell (i, j) is invaded only if one at least of the 1-2 adjacent cells that
are crossed by the line from the vent to the center of (i, j) have been invaded (the strict ordering
implies that in all the cases these two cells have just been checked). It is also possible to consider
more adjacent cells: the 2-3 cells that have the center closer to the vent than the center of (i, j) or
even all the 3-4 adjacent cells than are crossed by a line from the vent to any of the points of the cell
(i, j). The first choice is preferred because of the possibility to propagate the invasion from more
adjacent cells would imply an increased capability to turn around obstacles that is not specific of
PDCs.

In some particular scenarios this integrated model have been compared with the 3D multi-phase
simulations: the box model volumes that produce the best fit of the invaded area are about 5-10 times
bigger than the correspondent 3D volumes; the motivation can be found in the fact that a continuous
flow have been approximated with a transient collapse. Moreover, even the axisymmetric deposits
of past eruptions are believed to be the sum of single members propagated in different directions,
each involving less mass than a single big axisymmentric collapse. More accurate (direct) PDC
propagation emulators capable of considering a partial overcoming of topographical barriers and
blocking effects may be a fundamental step ahead.

Inversion problem Assuming to have sampled an area extension of y km2 and a vent location
x, the inversion problem corresponds to find the right initial conditions for invading that areal size
from such source location. This approach strongly depends on the past deposits estimation: indeed
the invasion model and the topographical barriers determine only the shape of the invaded area,
its size being imposed from past data information. The direct model formal representation is the
function σ(F̃ ) of Definition 27, that once fixed the vent location x (and the physical parameters
of the flow) gives a relation between the maximum run-out lmax without topography and the area
y invaded: σ(F̃ )(x, lmax) ⊆ B. An inversion problem solution is an l∗max such that G(l∗max) = y,
where

G(l∗max) :=

∫
B

1σ(F̃ )(x,l∗max)
(s)ds.

The function G in not even continuous, but it is increasing: using this property it is possible to use
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the secant method (Regula Falsi) to solve the inversion problem. Such method needs two starting
values, one above and one below the solution l∗max. To find the first one it is explicitly solved
the inversion problem in the simpler case of the energy line model: because of the linearity of the
decaying function it is equivalent to a single direct propagation in terms of computation time. Then
it is iteratively sought a second initial point and finally it is implemented the secant method with two
stopping conditions: one primary condition on the relative error of the area invaded |G(lmax)−y|/y,
and a secondary condition on the step |ln+1

max − lnmax| of the approximation sequence. This second
condition can produce inaccuracy on the invaded area, but it is fundamental to stop the algorithm
in the case the target area lays in a discontinuity of the function and it is impossible to reach
precisely. Anyways it was directly tested that the inversion algorithm gives relative errors below
0.05 in more of the 95% of the extractions. The whole algorithm (reported in Chapter 6) needs
about 5-6 iterations of the direct propagation method and it is fast enough to be run in the Monte
Carlo simulation aimed at exploring on the PDC invasion maps the effects of the uncertainties
affecting vent location and eruption scale. Alternative approaches for avoiding this inversion have
been considered, but volume or mass estimates of past PDCs are very uncertain and difficult to
obtain.

Monte Carlo structure Recalling notation of Definition 7, the mean p(z) of the PDC invasion
probability of point z ∈ B with respect to all the random variables both aleatoric and epistemic,
represents an information of the main importance. Fixed a vent location x and an areal size y, a
single run of the PDC propagation emulator permits to obtain the indicator function of the invaded
area: a function Px,y := 1F (x,y) from B onto [0, 1] taking only the two extreme values: Px,y(z) = 1
if the point z is reached, Px,y(z) = 0 otherwise. According to the doubly stochastic approach the
average of such random indicator functions with respect to vent location, areal size and also the
epistemic sources of uncertainty corresponds to calculate E[PX,Y (z)] = p(z) = EE [[p̌(z)](·)]. Then,
for quantifying the sensibility of the PDC invasion probability to the epistemic uncertainties in-
volved, the structured Monte Carlo algorithm implemented permits to produce also a conditional
PDC invasion probability map [p̌(·)](e) for each sample e ∈ E of the sources of uncertainty. For each
point x ∈ D it is estimated the profile of the distribution of each variable p̌(z) calculating an approx-
imation of its percentiles (see also Figure 28). A first formula for the Monte Carlo implementation
is

[p̌(z)](e) = E[1F (X̌(e,·),Y̌ (e,·))](z) ≈
N∑
i

1F (X̌(e,·),Y̌ (e,·))(z)/N,

where N ≫ 1, X̌ represents the vent location and Y̌ represents the PDC invaded area conditional
on e. For approximating the profile of each p̌(z) as a function of e it is produced a population of
N2 ≫ 1 random functions p̌(ξ), where ξ represents a random sample for epistemic uncertainty (as in
Definition 1). It is adopted an implementation based on the discretization of the spatial distribution
of vent opening location:

E[1F (X̌(e,·),Y̌ (e,·))](z) = EµX̌(e)⊗νY̌ (e)[1F (·,·)](z),

and applying Fubini theorem for each e ∈ E implies

= EνY̌ (e)
[
EµX̌(e)

[
1F (·,·)

]]
(z),
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and discretizing on a grid of points (xj)j<n for each y ∈ R+

EµX̌(e)[1F (·,y)] =

n∑
j

qj(e)1F (xj ,y),

where qj(e) are the discretized probabilities on the points of the grid. In conclusion the approxima-
tion adopted is

[p̌(z)](e) ≈
N1∑
i

n∑
j

qj1F (xj ,Y̌ (e,·))(z)/N1.

The total number of PDC simulations using the emulator is N2×N1×n ≈ 75×15×500 ≈ 5×105.

Figure 28. General scheme for the nested Monte Carlo simulation. The blue arrows represent the random

samples which determine the elements in the small blue boxes, the pair of black arrows represents the

box model PDC propagation. For obtaining each single PDC invasion map conditional on the epistemic

assumptions sampled by (A) and (B) we calculated the mean of the PDC invasions (in the small red box)

with respect to (1) and (2). The large black box envelopes this part of the scheme. The larger blue box

envelopes the whole of the scheme, needed for calculating the uncertainty percentiles of the PDC invasion

maps depending on the epistemic assumptions sampled by (A) and (B).

Remark 28 The output maps are the bi-dimensional plots of the mean probability of invasion
p(z) = EE [[p̌(z)](·)] and of the uncertainty bound functions p1 and p2, that are the 5th and 95th

percentiles functions of the variables [p̌(z)](·) for each z ∈ B. That maps are obtained working on
a discrete grid of cells 500 m aside, with tests of sensibility assuming a grid of cells 250 m aside.
Assuming to choose a threshold probability ϵ, there are two different approaches for defining the
points with probability to be invaded p > ϵ in some sense. A first straightforward way is to take the
contour ϵ on the map of p, but this means to consider the epistemic uncertainty in the same way
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of the physical (aleatoric) variabilities of the phenomena. Another approach is instead to take the
contour ϵ of the map of p2: the 95th percentiles functions with respect to the uncertainties involved;
this means that it is assumed to take almost the worst outcome following the epistemic uncertainty.
Even more detailed approaches may be followed considering also the map of p1.



Chapter 4

Time-space model for the next
eruption

4.1 Summary

The main objective of this chapter is developing a robust temporal model capable of producing a
background (long-term) probability distribution for the time of the next explosive eruption at Campi
Flegrei. In the last 15 ka, intense and mostly explosive volcanism has occurred within and along the
boundaries of the caldera (see Chapter 2; e.g. [97]). Eruptions occurred closely spaced in time, over
periods from a few centuries to a few millennia, and were alternated by periods of quiescence lasting
even several millennia; sometimes events also occurred closely in space thus generating a cluster
of events (e.g. [96]). As a consequence, activity has been generally subdivided into three distinct
epochs, i.e. Epoch I, 15 - 10.6 ka; Epoch II, 9.6 - 9.1 ka, and Epoch III, 5.5 - 3.8 ka BP (e.g. [122],
[145]). The most recent Monte Nuovo eruption (e.g. [56], [58], [79]) occurred in 1538 AD after more
than 2.7 ka from the previous one. Unfortunately, there is a remarkable epistemic uncertainty on
the eruptive record, affecting the time of eruptions, location of vents as well as the erupted volume
estimates. Other studies including information about the time-space eruptive behaviour of Campi
Flegrei are [133], [139], [57], [54].

The temporal model will focus on the eruptive clusters recognition and uncertainty quantifica-
tion; it aims at being informative also about the unknown long term consequences of the Monte
Nuovo eruption, which at the moment seems to be an outlier in the temporal record. In particular
the first purpose of the study is the modelling of the epistemic uncertainty by using a quantita-
tive probabilistic approach and obtaining estimates about the temporal and spatial distribution of
the volcanism. It is adopted a time-space doubly stochastic Poisson-type model with a local self-
excitement feature able to re-produce clustering events that are consistent with the reconstructed
observed pattern at Campi Flegrei.

Our results allow to estimate the temporal eruptive base-rate of the caldera as well as its capacity
to generate clusters of events, under different volcanological assumptions. The analysis allows also
to discriminate between the initial and the main part of the eruptive epochs as well as to consider
separately the different behaviour of the eastern and western sectors of the caldera. The results
from Epoch I record give a rate of generation of new clusters of one on 148 years, while for Epoch

82
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III we estimated one new cluster each 106 years in average. The duration of the self-excitement
appears quite different between the epochs, with an average duration of 658 years for Epoch I and
about 96 and 101 years respectively for Epoch II and Epoch III. Considering only the first parts of
the eruptive epochs the rate of generation of new clusters is still around one on 150 years, although
the clusters tend to last longer. Considering separately the events of the western sector produces
one new cluster each 400 - 450 years, but the clustering features are the weakest and the most of
the single events must be assumed as independent clusters.

The analysis of the past record implies that the Monte Nuovo event is too distant in time
from the end of the Epoch III for being considered a continuation of it: a repose time of ∼3 ka is
potentially longer than the periods of quiescence that separate the epochs. In particular with the
base eruption rate obtained from the rest of Epoch III the probability of producing such a long
repose time is below 10−12. Moreover, the past epochs volcanic activity seems to have started in
the western sector of Campi Flegrei caldera: the possibility that a new eruptive epoch began 477
years ago cannot be neglected, and an epoch of activity containing only Monte Nuovo event would
represent a behaviour never observed in the previous 15 ka. If we assume Monte Nuovo as the
first event of a new eruptive epoch, the estimates about the next eruption time are of 103 years in
average based on all the past activity, and of 470 years relying only on the western sector eruptive
record. In both cases the physical variability is large: 5th and 95th probability percentiles range
from 1/20 of these estimates to 3 times, and are respectively [5, 318] years and [25, 1467] years. The
considered epistemic uncertainty affecting all the estimates is relevant, and have been quantified as
±30% and ±35% respectively, slightly skewed on the positive values.

4.2 Methodology

Various preliminary analyses and figures, are aimed at making more evident the presence of clusters,
including the not negligible effects of the main sources of epistemic uncertainty. The choice of the
Hawkes counting processes (see also Chapter 5) has the purpose to re-produce the clusters of
eruptions in time-space, and we develop a doubly stochastic generalization of such processes called
Cox-Hawkes processes for implementing the epistemic uncertainty. Then we obtain some estimates
for the next eruption time based on this probability model.

The simplest choice of counting process would be a homogeneous Poisson process; however it
is a too crude approximation of reality, based on the remarks of the following sections, where we
emphasized the non-homogeneity in time (and space) of volcanic events at CF. A homogeneous
Poisson process assumes that the waiting times between two events are independent identically
distributed exponential random variables; the inverse of the average value of such waiting times is
called the intensity λ of the process. As a consequence the intensity function λ has also the meaning
of the average density of eruptive events: the integral

∫ t1
t0

λdt is the average number of events in the

time interval [t0, t1].
The next simplest choice would then be a non-homogeneous Poisson process, which corresponds

to take an intensity λ(t) that changes as a function of time: it may be possible to produce clusters
first increasing and then decreasing the intensity function, and such processes are easy to simulate
from homogeneous processes conditionally sampled (e.g. [46], [87] and Definition 73). An approach
involving non-homogeneous processes may assume to fit a λ(t) directly on the eruption rate observed
during one of the epochs, but such model could be over-fitted over past data: the three epochs have
different durations and patterns and even mixing them risks to rely too much on the past behaviour.
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To solve this problem, the approach we have adopted is to assume a self-excitement of the
intensity function of a ground homogeneous process: a constant base rate produces the background
events, each of them having the chance of spreading an offspring, and even each of these spawn
events has a chance to produce offspring. This is called a branching process and the families of
offspring events can replicate clustering phenomena with a random pattern (see also Chapter 5).
The intensity λ(t) is defined as the sum of a constant term λ0 and of a time dependent random
(positive) term λcl that represents additional intensity produced by each event for a prescribed time
range after its occurrence. In particular the process representing the number of eruptive events that
occurred in each zone of the caldera as a function of time is taken in the class of multivariate Hawkes
processes; e.g. [44], [46], [49] for more information, and [15] for another application in volcanology.

A Hawkes process Z behaves as follows: the time rate of new events is, at time t,

λ(t) =
∑
k≥1

φ(t− Tk)1{Tk≤t},

where (Tk)k≥1 are the event times for Z, and φ is a positive function representing self-excitement
decay. In other words, each time Z has a jump, it excites itself in that it increases its rate of jump.
If φ decreases to 0 (the usual case, e.g. an exponential function with negative exponent or a sigmoid
function) then the influence of a jump decreases and tends to 0 as time evolves.

This study included two phases: first the volcanological information is reported and a quantita-
tive model of epistemic uncertainty affecting past eruption data is constructed, then the family of
counting processes representing the number of vents (or fissures) opening in each zone as a function
of time it is defined. In particular in the first phase the times, locations and volumes of dense rock
equivalent (VDRE) erupted are randomly sampled and estimated through Monte Carlo simulations.
Then it is presented a qualitative description for the main features of time-space structure of past
activity, and also through the probabilistic simulation of the local and global erupted volumes as a
function of time is remarked the presence of local clusters of events and in general of a recurrent
behaviour of the volcanic system. In the second phase, the main parameters of the Hawkes process
are fitted on the record of past activity, incorporating the effect of the sources of epistemic uncer-
tainty. We focus on the case of processes with self-excitement locally in space, without assuming
interaction between different zones. Finally, through another Monte Carlo simulation several esti-
mations are developed about the time remaining before the next eruption at Campi Flegrei, based
on conditional sampling and diverse volcanological assumptions.

4.3 The probability model for epistemic uncertainty on the
past record

The available volcanological record about past eruptive events (see [122], [145]) includes four types of
information: the uncertain location of the eruptive vents/fissures; the ordered stratigraphic sequence
of the eruptions (unsure in a few cases); some large dating time windows for a subfamily of the
eruptions, i.e. 2.5th and 97.5th percentiles; VDRE estimates for the eruptions, some of them affected
by a large uncertainty.

The spatial localization of past vents relies on the new data of Chapter 2: the uniform ellipses
of uncertainty and the caldera partitioning constructed are adopted (Figure 29 and also Figure 11-
12). Each eruption has been associated with an element of the partition if its ellipse does not spread
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on more zones, or otherwise randomly sampled during the Monte Carlo simulation in proportion
of the fraction of ellipse contained in each zone. In addition we define a separation line between
the western and the eastern sectors of the on-land portion of Campi Flegrei caldera, corresponding
respectively to the zones 1-5 and 6-13 accordingly to the partition of Figure 29.

The eruptions pattern of Epoch I consists of several events on the boundary of Neapolitan
Yellow Tuff collapse, with evident spatial clusters in the zones of Soccavo and Pisani; in addition
there was a remarkable activity in the central-eastern sector, but the relevant spatial uncertainty
affecting it makes very difficult the recognition of clusters. The eruptions of the western sector seem
less clustered and are much aligned on the caldera rim. During Epoch II five of the eight eruptions
concentred in the central eastern part of the caldera, maybe on the boundary of a previous collapse;
activity on the western sector was also present in the zone of Baia. The eruptions pattern of Epoch
III is much more centralized than the previous: there are three quite evident spatial clusters centered
respectively in Agnano, Astroni and Solfatara zones involving all the eruptions except for 5 that
were in proximity of the caldera rim. A preliminary analysis of clusters of Epoch III is detailed in
the following, taking into account also the time sequence.

Figure 29. Partitioning of the caldera in 16 zones (see also Figure 13). The colours of the ellipses corre-

spond to the epoch of activity which belong the events. The black-and-yellow dashed line separates eastern

and western sectors.

The stratigraphic sequence and the time windows for past events, reported in Table 7,
largely relies on [145] with a few minor modifications and updates due to the most recent research
findings and uncertainty assessments (see also Chapter 2 and [17]): in particular in Epoch I the
new eruptions of S3s4-1 and S3s4-2 have been added and Archiaverno event was eliminated from
the record; in Epoch II the new eruptions of Baia and Monte Spina lava dome were considered; in
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Epoch III Solfatara lava dome and Olibano tephra have been added. Moreover the stratigraphic
order of some Epoch III eruptions was modified in the initial part of the epoch and the first events
after Agnano Monte Spina.

Table 7. Record of times, erupted VDRE and locations (eastern or western sectors and partition zones

of Figure 29) of the events at Campi Flegrei, with uncertainty bounds. The events with unknown ordered

sequence are reported in green, the events with both ordered sequence and datation are reported in red. The

VDRE estimates possessing estimated values in [145] are reported in blue. In Epoch III dataset, the pairs

of events with uncertain order are indicated with *, the two simultaneous events with **. Data modified

from [145].

The following is the formal definition of the probability model for epistemic uncertainty that
samples the ordering the times and the locations of the past eruptions: technical details on the
formal construction of these random variables are in Appendix A of this chapter. It partially relies
on the notation of Definition 1.

Definition 8 (Time-space record with uncertainty) Let (wi)i=1,...,n be the set of all the erup-
tive events considered. Assume that τ is a random variable from (E, E , η) to the space S(n) of the
permutations of {1, . . . , n} such that (vj)j=1,...,n, where

vj := wτ(j), ∀j,
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represents a random sample for the ordered family of eruptive events. Let (tj)j=1,...,n be a vector
of real random variables from (E, E , η) to Rn

+, each tj representing the time of eruptive event vj,
consistent with the datation bounds available. For each j = 1, . . . , n let Vj be a random variable
from (E, E , η) to (A,B(A)) representing the location of the eruption vj. We define the random set
of random variables

Θl =: {tj : Vj ∈ Al}

representing the times of each eruption vj that occurred in the zone Al. We adopt the notation
Θl = (tlj)j=1,...,nl

.

The production of the probability distribution of past eruptions time is assessed by a Monte
Carlo simulation, based on simple conditional sampling procedures (see also [15]), following three
main steps.

1. At first the uncertain orders of some pairs of events are randomly sampled, including also the
constrain of two simultaneous events (see Chapter 2 and [98]); this was done only for some
eruptions of Epoch III due to lack of detail in the previous epochs. In particular Averno 2 and
Solfatara were assumed contemporaneous, while for Pignatiello 2 and Cigliano, Olibano lava
dome and Santa Maria delle Grazie, Olibano tephra and Solfatara lava dome we assumed a
randomized order: the first pair with 50% and the other pair with 25% probability to have a
different order than in Table 7. Anyways this has a negligible effect on the uncertainty model
output because none of these was a very large event and some of these pairs affected the same
zone of the caldera.

2. After this preliminary phase, the times for the eruptions associated with dating time windows
are then sampled, assuming symmetric triangular probability distributions with the percentiles
shown in Table 7, and repeating the samples that violate the stratigraphic order except for
three events of the western sector, assumed free to change their place in the eruptive sequence.
In particular Bacoli and Porto Miseno datation ranges in Epoch I and also Capo Miseno range
in Epoch III are much larger than the constraints coming from the stratigraphic sequence,
which is very uncertain for them. It is remarkable that also Gauro in Epoch I and Nisida
in Epoch III are affected by a very large epistemic uncertainty compared to the others, but
in both cases it was consistent with the eruptive sequence. The available datation ranges
interest a total of 23 eruptive events: 6 of Epoch I, 4 of Epoch II and 13 of Epoch III; this
information comes from [145] with some modifications: in Epoch I the uncertainty range of
Archiaverno event was not considered because the eruption was eliminated from the record,
and the datation range assumed for Astroni 3 was assigned instead to Astroni 1 (R. Isaia,
personal communication).

3. The remaining subsequences of eruptions between the times just fixed, are sampled as ordered
families of independent uniformly distributed random variables. To give an example, assume
that Astroni 1 and Astroni 7 eruption times have been sampled at t1 > t7 years BP: then five
events are sampled uniformly and independently in the interval between that times obtaining
t2 > t3 > t4 > t5 > t6 years BP; hence the first time is assigned to Astroni 2, the second to
Astroni 3 and so on, respecting the known ordered sequence. We remark that this uniform
sampling could partially hide a potentially stronger clustering behaviour, in particular during
Epochs I and II. In addition, for such epochs a few eruptions starting and ending the strati-
graphic sequence are without informative datation ranges, so their times were sampled for
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simplicity a number of years uniformly distributed between 0 and 100 after the previous and
before the successive: we chose this time scale because it is representative of the average time
interval that separates the events during the eruptive epochs. E.g. if Gauro is sampled at t
years BP, then Mofete and Bellavista are assumed t+u1 and t+u1+u2 years BP respectively,
where u1 and u2 are uniform samples in [0,100] years.

The erupted volumes (VDRE) also rely on [145]: some of the eruptions have a single valued
estimate, and for them it was assumed a triangular sampling with 5th and 95th percentiles corre-
sponding to ±50% relative errors, coherently with [94]. The most of the other eruptions possess
only inequality bounds: they have been uniformly sampled inside three separate intervals associated
to different volume sizes: [0 - 0.01] km3 for very small eruptions/lava domes, [0.01 - 0.1] km3 for
medium eruptions, [0.1 - 0.3] km3 for larger eruptions. The minor eruptions of Concola and Fondo
Riccio and the newly included eruptions of Solfatara lava dome, Baia and Monte Spina lava dome
were assumed as small sized, S4s3-2 and Olibano tephra as medium sized and S4s3-1 as large sized
(R. Isaia, personal communication).

The most large erupted volumes correspond to events located in the eastern sector of the caldera,
with the only exceptions of Gauro and Bacoli during Epoch I. There were four major eruptions
overcoming 0.5 km3 VDRE: Gauro, Soccavo 1, Pomici Principali during Epoch I, and Agnano
Monte Spina during Epoch III. Moreover, each of the most evident clusters seem to contain at
least one large eruption, with the exception of Solfatara cluster in Epoch III. In particular, during
Epoch I large eruptions were located in the zones of Gauro (Gauro volcano), Soccavo (Soccavo 1
and Soccavo 4), the central eastern zones (Pomici Principali, S4s31), Pisani (Paleo Pisani 2, Pisani
1, Pisani 2), and Capo Miseno (Bacoli). During Epoch II the only large eruption was in Agnano
zone (Pigna San Nicola). Epoch III presented large eruptions only in the zones of Agnano (Agnano
3, Monte Sant’Angelo, Agnano Monte Spina) and Astroni (Paleoastroni 2, Astroni 3-4-5-6). An
analysis of the localized erupted volumes as a function of time is detailed in the sequel, and some
examples are plotted in Figure 34.

4.3.1 Detailed exploration of data

Accordingly to the probability model defined, the average duration of eruptive epochs and periods
of quiescence is reported with its 5th and 95th epistemic uncertainty percentiles by a simple Monte
Carlo simulation: Epoch I [2.56 - 3.63 - 4.74] ka, the first period of quiescence [0.79 - 0.95 - 1.10]
ka, Epoch II [0.29 - 0.46 - 0.63] ka, the second period of quiescence [3.53 - 3.75 - 3.97] ka, Epoch
III [1.37 - 1.81 - 2.24] ka; the time interval between Nisida and Monte Nuovo depends directly
on the uncertainty affecting the first: [2.79 - 3.22 - 3.65] ka, and the latter occurred 477 years
BP. The three epochs have remarkably different durations: Epoch I lasted about twice Epoch III,
while Epoch II was much shorter than both and lasted a quarter of Epoch III duration. The first
period of quiescence is much shorter than the second, its duration is even lower than the range
of uncertainty affecting the times of some eruptions in the first part of Epoch I; anyways the first
period of quiescence is twice the time interval between Monte Nuovo eruption and the present time
(year 2015).

Another remarkable observation is that the period of quiescence of 3.22 ka in mean between
Nisida and Monte Nuovo is more than 3 times longer than the first period of quiescence between
Epoch I and Epoch II lasted 0.95 ka in mean, and it is very similar to the long period of quiescence
between Epoch II and Epoch III, of 3.75 ka in mean. Hence the assumption to consider Monte Nuovo
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as a continuation of the Epoch III activity is not consistent with the separation in epochs. If it is
assumed the division in epochs of activity and periods of quiescence, basing only on time records
information the only reasonable possibility is that Monte Nuovo opened a new epoch; what it is
uncertain is the duration and the number of event of such epoch of activity, that could either contain
the Monte Nuovo eruption alone or develop in the future a pattern similar to one observed during
past epochs. However an eruptive epoch containing only one event would represent a behaviour
never observed in the previous 15 ka of activity.

Figure 30. Random samples of eruption times and zones during Epoch I (a-b) and Epoch II (c-d). Each

coloured dash represents an event, accordingly to the model for assessing the epistemic uncertainty. The

red ellipses remark some qualitatively recognizable time-space clusters of activity; the black dashed ellipse

remarks an hypothetically enlarged Astroni cluster including Paleoastroni events.
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Figure 30 shows two samples of eruptions times and zones during Epoch I and III, the presence of
clustering phenomena is quite clear. In Epoch I it is possible to recognize some hypothetical clusters:
the sequences of Soccavo zone, Pisani and Astroni-Agnano present clear evidence of clustering. Also
Epoch II may have presented very small clusters of couples or triplets of eruptions (not shown in
figure) but in both cases the epistemic uncertainty overwhelms any more detailed description.

Figure 31. Event number as a function of time during Epoch I (a), Epoch II (b), Epoch III (c) and then

during the entire record considered (including Monte Nuovo) (d), assuming the probability model described

above. The bold line is the mean value, the narrow line is the 50th percentile and the dashed lines are

5th and 95th percentiles of the epistemic uncertainty. The labels correspond to the eruptions possessing

datation bounds and ordering.

During Epoch III, by visual inspection of Figure 30 it is natural to identify three space clusters
in time-space plus a cloud of reasonably homogeneous background points. The first cluster (in order
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of time) is made of the eruptions denoted by Agnano 1, Agnano 2, Agnano 3, Pignatiello 2, Monte
Sant Angelo; the second one is made of the eruptions denoted by Santa Maria delle Grazie, Olibano
lava dome, Solfatara lava dome, Olibano tephra, Accademia lava dome, Solfatara; the third one by
Astroni 1 - 7.

Figure 32. Cumulative volume erupted as a function of time during Epoch I (a), Epoch II (b), Epoch

III (c) and then during the entire record considered (including Monte Nuovo) (d), assuming the probability

model described above. The bold line is the mean value, the narrow line is the 50th percentile and the

dashed lines are 5th and 95th percentiles of the epistemic uncertainty. The labels correspond to the largest

eruptions of each epoch.

Even this first analysis is a source of interesting discussion: the Paleoastroni sequence (possibly
including Cigliano event and/or AMS) of eruptions may belong to an enlarged Astroni cluster or
may also constitute a small separate cluster, the eruption of AMS may be included in the Agnano
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cluster (or in the Astroni cluster, if enlarged to include Paleoastroni) even though it is more distant
in space and time from the others, and may also arise an issue about this first cluster to be formed
instead by more smaller detached clusters; and everything is made worse to decide because of the
uncertainty affecting it.

Figure 33. Cumulative volume erupted as a function of time during Epoch I (a), Epoch II (b), Epoch III

(c) and then during the entire record considered (including Monte Nuovo) (d), with a separation between

the eastern and the western sectors of the caldera. The bold line is the mean value and the dashed lines are

5th and 95th percentiles of the epistemic uncertainty.

Then in Figure 31 is reported the eruptions number as a function of time with uncertainty.
Epoch I and even the smaller Epoch II present some evident features despite the large uncertainties
that affect them. An intensification of the activity rate is quite evident during Epoch I (in this case
the rate change may correspond to Pomici Principali). The data of Epoch III are relatively more
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precise and it is easier to investigate the time-space structure of the eruptions record. Also in the
second part of Epoch III after a relatively slow start it is possible to see an increase of the activity
frequency, and the change in eruption rate seems to coincide with the climactic eruption of Agnano
Monte Spina (AMS).

In particular may be identified two different stages, like two sub-epochs, separating 11 known
eruptions before and 17 after to AMS; the time-structure is quite different, but the vent locations
during these two periods affected similar and overlapping zones. In addition a slow-down of the
activity is quite evident at the end of the epoch. These features are perhaps accentuated by the
large uncertainties affecting the starting and the ending of both Epoch I and Epoch III. However the
pictures seem not compatible with an homogeneous Poisson process and also the location in space
of the eruptions is clearly non-homogeneous (Figure 29 and 30; see Chapter 5 for more information
about Poisson processes).

Figure 34. Localized cumulative volume erupted as a function of time during Epoch I (a) and Epoch

III (b), from three different zones characterized by intense or recurrent activity. The bold line is the mean

value and the dashed lines are 5th and 95th percentiles of the epistemic uncertainty.

We remark that this approach relies in principle on the counting of past eruptions in time space,
but the number of the events itself could be a matter of discussion. Indeed it is widely accepted that
Astroni activity was constituted by a sequence of 7 (or more) eruptions during 150 - 350 years (see
[96]) and that the eruptive phases of AMS were instead much more concentred in time and they
have been considered as a single event (see [53]). However the estimates of the cumulative erupted
volume of Astroni sequence are quite similar to the volume estimates of AMS and analogue issues
may arise on the phases of the Averno 2 activity or on the large eruptions of Epoch I. For making the
probabilistic model results more robust and not only dependent on the event counting, the eruptive
record includes some estimates of the erupted volumes, which are unfortunately affected by huge
additional uncertainties because of the difficult procedure that must be followed to estimate them
from the deposits. Such uncertainties are incorporated in the analysis, assessed by Monte Carlo
samplings and it is still possible to observe the presence of clusters of events in time-space also on
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the rates of eruptive volumes. In Figure 32 are shown the cumulative erupted volumes: it is worth
noting the different scale of Epoch II, 0.5 ±0.1 km3, involving volumes 5 times smaller than Epoch
III, 2.6 ±0.5 km3, and even 8 times smaller than Epoch I, 4.2 ±0.7 km3.

In Figure 33 the cumulative volumes erupted by the eastern part of the caldera are separated
from the volumes from the western, which even including the significant activity of Gauro volcano
in the Epoch I are remarkably smaller. It can be also noted that the activity in the western sector
seems mainly associated to the initial phases of the eruptive epochs, compatibly with considering
the recent Monte Nuovo eruption as the first one of a new epoch. Figure 34 shows the cumulative
volumes locally erupted by the main zones affected by the larger or recurrent explosive activity
during Epochs I and III: the plots clearly highlight the presence of clusters of events in time and
space.

4.4 The probability model for re-producing the eruption ac-
tivity in time-space

We define a family of counting processes representing the number of vents opening in each zone
of the caldera as a function of time. The model adopted relies on a ‘Cox-Hawkes process’, i.e. a
doubly stochastic Hawkes process (see Chapter 5), including a spatial localization in the different
sectors of the caldera. The Hawkes processes are non-homogeneous Poisson processes (NHPP) in
which the intensity rate increases with a jump whenever an event occurs and instead decreases (often
following exponential or sigmoid decay curves) as time passes without any event occurring. The Cox
processes are simply the doubly stochastic version of the NHPP, in which the model parameters are
assumed affected by uncertainty. The innovative model developed presents both these properties;
in particular we explored the case of an exclusively local self-excitement, i.e. without interaction
between different zones.

Definition 9 (The Cox-Hawkes process) Let Z = (Zl)l=1,...,N be a doubly stochastic multi-
variate Hawkes process on (Ω,F , P ), adopting the nontrivial structure of Definition 1. Let φ be an
application from E to the functional space of continuous decreasing functions on R+, representing
the diminishing of self interaction for the process Z. For each l = 1, . . . , N , let λl

0 be a random vari-
able on (E, E) representing the base rate of the process Zl. The intensity function of the component
Zl is then expressed by

λl(t, ω) = λl
0(e) +

∑
tli(w)<t

[φ(e)](t− tli(ω)) = λl
0(e) +

∫ t

0

[φ(e)](t− u)dZl
u(ω), ∀l = 1, . . . , N,

where we assume e = ξ(ω) of Definition 1.

For each zone j of the caldera, the self-interaction decay function φ is assumed exponential

φ(t) = h exp(−kt),

where k and h are positive parameters. In addition, due to the epistemic uncertainty that affects
the times and the locations of past events, such Hawkes processes have to be doubly stochastic in
the sense that the parameters are randomly distributed as a function of the sources of uncertainty
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considered. Doubly stochastic NHPP are called Cox processes; e.g. [44], [46] for more information
and [88], [89], [90] for examples of applications in volcanology. Each of the physical parameters of
the model: base rate λ0, time scale of excitement decay T and mean number of offspring events µ,
is represented as a random variable on the epistemic space (E, E , η). A maximum likelihood (ML)
procedure is implemented inside a Monte Carlo simulation to calculate the uncertainty distribution
of the parameters as a function of the sources of epistemic uncertainty described above: time,
sequence and location of past events.

Definition 10 (Conditional Cox-Hawkes processes) Let π3 be a measurable function from
(W,W,M) to the space of l-dimensional counting measures, representing the projection of the phys-
ical space onto the set of next eruptions times in each of the caldera zones. We assume that

Z(ω) = π3 (χ(ξ(ω), ω)) , for almost every ω ∈ Ω,

and we define the point process Ž from (E × Ω, E ⊗ F , η ⊗ P ) to (A,B(A)) as

Ž(e, ω) := π3 (χ(e, ω)) .

For each e ∈ E the point process Ž(e, ·) on (Ω,F , P ) represents the set of next eruptions times at
Campi Flegrei once adopted the epistemic assumption e.

More formally, the epistemic uncertainty of the Hawkes process Z comes from the random
vectors (Θl)l=1,...,N of Definition 8 through the parameters of the random intensity functions λl.

Definition 29 (The parameters of the process) Let h and k be real positive random variables
on the space (E, E , η); we define the self interaction function from the class of exponential functions:

[φ(e)](s) = h(e) exp(−k(e)s).

Let λ0 be a random variable on (E, E) representing the base rate of
∑N

l=1 Zl. Each one of local base
rates is defined as λl

0(e) = [µX̌(e)](Al)λ0, where for each e ∈ E, µX̌(e) is a conditional probability
map of vent opening (see Definition 3).

A global base rate λ0 is assumed for the whole caldera, and the local base rate of each zone
is calculated in proportion to the frequency of the number of events observed in that location on
the total; another possibility may be to use the spatial frequency during a particular epoch, but it
might be a choice over-fitted to its specific spatial pattern, and it have been preferred to assume
global parameters. Also the parameters k and h are defined independently of the zone, but in the
sequel it is explored the possibility of assuming different parameters for the eastern and western
sectors of the caldera.

In particular the parameter k is proportional to the time T = k/ln(20) needed for the decay of
the 95% of self-excitement (i.e. the integrated additional intensity on the times above T is 5% of
the total); a smaller k produces concentrated and better separated clusters, while instead a larger k
produces longer clusters, easily with overlapping durations. Moreover h permits to define the mean
offspring µ = h/k of an eruption, i.e. the mean number of eruptions generated by the additional
intensity caused by a single event; a larger h (compared to k) produces clusters including more
events, with the critical threshold h ≤ k otherwise the average size of the clusters diverges to
infinity.
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Figure 35. Four random samples of eruption times and zones obtained from the Hawkes model described

above. The parameters adopted are the average ML values for the entire record of the three epochs. Each

red dash represents an event. The blue ellipses remark some qualitatively recognizable time-space clusters

of activity; the black dashed ellipse remarks an hypothetically enlarged cluster.

The Galton-Watson representation of the process
∑

l Z
l (see Chapter 5) permits to obtain the

total base rate λ0 as a function of the total number of past eruptive events n and the duration of the
epochs of activity. The explicit definition of h and k as a function of e ∈ E is based on a maximum
likelihood procedure with respect to the random vectors (Θl)l=1,...,N . Additional information on
the likelihood expression is reported in Chapter 5. Some samples of the model outcomes are shown
in Figure 35.



CHAPTER 4. TIME-SPACE MODEL FOR THE NEXT ERUPTION 97

Proposition 30 (The likelihood expression) Let [0, t] be a closed interval, representing the
time domain in consideration. The likelihood of the families (Θl)l=1,...,N being the instants of the
points of the processes Zl in [0, t] for each l = 1, . . . , N , assuming that t ≥ max (

∪
l Θl), is obtained

by

L ((Θl)l=1,...,N , t) =

N∏
l=1

Ll

(
(tli)i=1,...,nl , t

)
,

where for all l = 1, . . . , N

Ll

(
(tli)i=1,...,nl , t

)
=

 nl∏
i=1

λl(tli)

 exp

(
−
∫ t

0

λl(s)ds

)
,

and ∫ t

0

λl(s)ds = λl
0t−

nl∑
i=1

(
h

k

(
exp(−k(t− tli))− 1

))
.

In case Θl = ∅ for some l, we have Ll(∅) = exp
(
−
∫ t

0
λl(s)ds

)
= exp

(
−λl

0t
)
.

It is easy to see that the likelihood is a real random variable on (E, E), depending on the random
vector (Θl)l=1,...,N . The log-likelihood of a time and space record can be easily expressed for each
zone j as

logLj((tji )i≤Nj , E) =

Nj∑
i=1

log λj(tji )− λj
0(E2 − E1)−N jh/k +

Nj∑
i=1

(
h/k exp(−k(E2 − tji ))

)
,

where E = [E1, E2] is the time interval considered (assumed to contain each tji ); the global log-
likelihood of an eruptive record is the sum of the log-likelihoods of the single zones. Through a
Monte Carlo simulation the ML parameters have been calculated for 2500 samples of the eruptive
record, permitting also to estimate the uncertainty ranges for them (the implementation is reported
in Chapter 6).

Remark 31 The maximizing procedure is repeated for each sample, finding the best fitting values
for λ0, h and k; with the purpose of reducing the dimension from three to two parameters and
making it faster in the Monte Carlo simulation, the algorithm is implemented for finding directly
T and n best fitting values, where n := λ0(E2 − E1) represents the average number of base rate
eruptions that may be sampled on the considered time interval. The additional implicit relations
k = ln(20)/T , h = kµ ≈ k(N − n)/N are imposed to close the algorithm; the last one is due to the
branching structure of the process: each base rate eruption produces a cluster of 1/(1−µ) eruptions
in average, hence N ≈ n/(1 − µ) if it is assumed that each of the clusters is concluded inside the
time interval considered (see also Chapter 5).

4.4.1 Conditional Monte Carlo for next eruption time estimation

The Cox-Hawkes process that maximizes the likelihood of the past data is also adopted for the
forecast of the waiting time for the next eruption, in particular when a residual self-excitement
from Monte Nuovo eruption is included. Excitement coming from previous eruptions is assumed
negligible because of the long period of quiescence.
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Definition 11 (The next eruption time distribution) Let Zmn be a multivariate Cox-Hawkes
process representing eruptions in each of the caldera zones, and starting from a situation without
excitement except for the residual additional intensity from an event occurred t0 = 477 years before
time 0, in zone 3 (Averno-Monte Nuovo). Then define on (Ω,F , P ) the real positive random variable

Z∗ := min
l

Zl
mn,

representing the remaining time before the next eruption at Campi Flegrei. Let ϱZ∗ be the probability
measure that is the law of Z∗ on (R+,B(R+)); it is called a distribution of next eruption time.

Moreover it is possible to use the doubly stochastic structure (see Definition 1) of Zmn and
construct a conditional version of this variable on the epistemic uncertainty.

Definition 12 (Conditional next eruption time distribution) For each e ∈ E let Žmn(e, ·)
be a conditional multivariate Cox-Hawkes process representing eruptions in each of the caldera zones,
and starting from a situation without excitement except that from an event occurred t0 = 477 years
before time 0, in zone 3. Then define on (E × Ω, E ⊗ F , η ⊗ P ) the real positive random variable

Ž∗(e, ω) := min
l

Žl
mn(e, ω),

and let ϱŽ∗ be its law on R+. For each e ∈ E the random variable Ž∗(e, ·) on (Ω,F , P ) represents
the remaining time before the next eruption at Campi Flegrei once adopted the epistemic assumption
e. Its law ϱŽ∗(e) is called probability distribution of next eruption time conditional on the epistemic
assumption e.

The random variable Ž∗ is assessed through a double Monte Carlo simulation with a nested
structure, calculating a family of time samples depending on the different Cox-Hawkes model pa-
rameters obtained from each epistemic uncertainty sample. In particular once the uncertainty ranges
for the parameters of the process have been estimated by a first Monte Carlo simulation, it is as-
sessed a second Monte Carlo simulation for sampling the time remaining before the next eruption
at Campi Flegrei, including Monte Nuovo residual self-excitement. This second simulation is based
on independent triangular distributions that sample the stochastic process parameters. Additional
research exploring the dependence properties between the model parameters λ0, T and µ will be of
the main importance for improving the uncertainty quantification.

A family of ML exponential distributions is then calculated for assessing the aleatoric variability
of the model, conditional to each epistemic uncertainty sample. In Figure 36, we report the curves
composed of mean values and of 5th and 95th percentiles of the probability density functions of
such distributions. Furthermore, we express the mean and uncertainty bounds with respect of
epistemic uncertainty of the mean and the 5th and 95th percentiles of the physical variability of the
distributions. These procedure have been repeated under different volcanological assumptions for
testing the sensitivity of the results. Also the effect of modifying the epistemic uncertainty with the
Bayes theorem have been tested, concerning the 477 years passed without observing activity.

4.5 Results and discussion

In the following are first reported the parameters and the outcomes of the Cox-Hawkes process,
then the discussion will focus on the next eruption time estimation results. In Table 8 are shown the
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ML values of the parameters 1/λ0, T , µ for each epoch, and also the results obtained maximizing
the product of the likelihood of more epochs records. Similarly, Tables 9, 10, 11 report the ML
values obtained under specific additional assumptions. Possible explorative/alternative features of
the model may be related to the qualitative details highlighted about past activity: in particular
the possible change of eruption rate with the climactic eruptions of Pomici Principali in Epoch I
and Agnano Monte Spina in Epoch III, the differences between eastern and western parts of the
system, and even the refusal of the division in eruptive epochs and periods of quiescence.

Other interesting information is obtained from the model: the probability of an eruption to
generate offspring, the mean number and size of clusters of two or more events, and the probability
distribution on the possible cluster sizes. Because of the branching structure of the process it is
imposed that the chances of clusters sizes are a strictly decreasing sequence with respect to N: there
are many more smaller clusters than larger; an observed large cluster is more likely constituted by
the superposition of two or three medium size independent clusters.

Assuming such simple model and Monte Nuovo eruption to be the starting event of a new
eruptive epoch, the residual probability Qmn of having in the future a second element of a cluster
generated by it, and the likelihood Lmn of not observing any other eruption anywhere in the Campi
Flegrei area for 477 years after it have been also calculated: both are significantly small; in the sequel
it is explored if this might be a consequence of a different behaviour specific of the starting of the
eruptive epochs or of the separation between eastern and western parts of the volcanic system.

Definition 32 Let Z be the Cox-Hawkes process representing (localized) eruptions starting from a
situation without excitement except for an event at time zero in zone 3 (Averno-Monte Nuovo); let
t0 = 477. Then for each e ∈ E we define the random variables

Qmn(e) := P

{
lim

s→+∞
Z̃3(e)s > 0

}
, Lmn(e) := P {Z(e)t0 = 0} ,

where Z̃3 is a counting process with intensity λ3
t+t0 − λ3

0.

4.5.1 Parameters of the Cox-Hawkes process

In the following the epistemic uncertainty ranges of the variables, here represented as (5th perc −
mean)/mean and (95th perc − mean)/mean will be included after the mean values. We remark
that in general, the uncertainty ranges reported refer to the mean holding time of the new clusters
1/λ0 and not to the base rate λ.

The complete record of only eruptive epochs. In Table 8, the features of Epoch I are a base
rate of one on 148 years, [-35%, +60%], (about 2/3 of the base rate of Epoch III), a self-excitement
duration T = 658 years, [-90%,+100%], (6 times the duration of self-excitement in Epoch III), and
a mean offspring µ = 0.30 with an epistemic uncertainty range of [-55%, +40%]. The probability
Qmn of observing a second event of a cluster started by Monte Nuovo is 3.8% in average for Epoch
I. With the assumption of Monte Nuovo as the initial event of a new eruptive epoch, the likelihood
Lmn of no eruptions occurring in Campi Flegrei after Monte Nuovo for 477 years is [0.6%, 3.8%,
10.5%] based on Epoch I data (4 times greater than for Epoch III). Comparing the short Epoch II
with the following Epoch III, we remark a base rate almost twice larger, a similar T with a larger
uncertainty range, and a decreased µ meaning a less clustered structure. The probability Qmn and
the likelihood Lmn are both almost null based on Epoch II.
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The ML parameters for Epoch III eruptive record correspond to a quite fast base rate of one
on 106 years, [-25%,+35%], a self-excitement duration T = 96 years, [-90%, +105%], and a quite
strong mean offspring µ = 0.42, [-30%, +20%] that implies the generation of 5.5 clusters, [-35%,
+40%], each composed of 3.2 elements in average, [-18%,+12%]. The probability Qmn is almost
null. The likelihood Lmn is only [0.2%, 0.9%, 2.3%] (average value with the 5th and 95th epistemic
uncertainty percentiles) based on Epoch III data.

Reminding the description of past activity during Epoch III, there have been recognized three
clusters of 5, 6 and 7 events respectively, plus 10 dispersed eruptions (see Figure 30). It is likely to
not have recognized 1 to 3 couples of events from the background of single eruptions, and there is
the chance of 1-2 of the clusters of being instead two smaller clusters superimposed: it is reasonable
to estimate 4 to 8 clusters plus 4 to 8 single events; this corresponds to 10 to 14 events coming from
the base rate (i.e. the sum of the clusters and the single events numbers that are consistent with
the observations), and prescribing the estimated duration of 1.37 to 2.24 ka it is obtained a base
rate from one on 224 to one on 98 years, that is compatible with the epistemic uncertainty range
of the ML parameters calculated, although a bit lower.

Table 8. Maximizing the likelihood of Epoch I (first column), Epoch II (second column) or Epoch III

records (third column), or also maximizing the product of the likelihoods of all the epochs records together

(fourth column), or even excluding the shorter Epoch II (fifth column), we report several results. We include:

the mean holding time of the new clusters 1/λ0, the duration of the self-excitement T, the mean offspring

of each event µ (first three rows); the probability of cluster generation, the number of clusters of vents in

case of single epochs, and the mean size of clusters (fourth to sixth rows); the discrete distribution of the

cluster sizes (seventh row, composed of several lines); the probability Qmn for an eruption of producing the

first offspring event after 477 years (eighth row); the probability Lmn of passing 477 years after an eruption

without observing other events anywhere in the caldera (ninth row). Mean values, 5th and 95th percentiles

are reported, as a function of the sources of epistemic uncertainty considered.

The parameters maximizing the combined likelihood of Epochs I×II×III, i.e. of the three epochs
assumed as independent samples, are much similar to Epoch III, except for the duration T that
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is doubled; considering Epochs I×III combined likelihood, implies an increase of T , with a minor
increase of the base rate and of µ. The estimates for the average probabilityQmn obtained combining
the epochs either with or without Epoch II are 0.3% and 0.9% respectively. The likelihood Lmn

is similar to the one based on Epoch III (0.8% in average, increasing to 1.2% without considering
Epoch II).

The first parts of the eruptive epochs. From past data it seems indeed that multiple and
fast clusters tended to occur only in the second half of the longer epochs (I and III); for these reason
the parameters and their epistemic uncertainty are also separately fitted on the first parts of the
epochs (see Table 9). In particular it is remarkable that the seemingly similar features of Epoch Ia
and Epoch IIIa bring different consequences on the ML parameters: in both cases the clustering
properties result different compared to the second parts of the epochs, but based on Epoch Ia the
eruptions produce fewer and smaller clusters with possibly shorter duration, while based on Epoch
IIIa the eruptions may constitute fewer, long lasting, overlapping e slightly larger clusters.

From Epoch Ia, i.e. the first 11-13 eruptions of Epoch I, it is obtained a decrease of the base rate
to one on 171 years, [-45%, +80%], of the duration T = 333, [-95%, +165%], and of the parameter
µ = 0.22, [-65%, +45%], respect to the values calculated on the whole epoch; this implies the
decrease of Qmn to [0.0%, 1.2%, 4.2%] and the increase of Lmn to [0.5%, 5.4%, 16.6%]. The Epoch
IIIa eruptive record, i.e. the first 10-11 eruptions of Epoch III, presented a base rate that is 2/3 of
the base rate obtained considering the whole epoch: one on 142 years, [-30%, +35%], but a very
long duration T of 970 years with an uncertainty range of [-85%,+45%], and a slightly increased
µ = 0.49, [-35%, +15%]. The probability Qmn increases to [ 0.0%, 7.5%, 15.5%] due to the much
longer duration of self-excitement, while likelihood Lmn is still low at [0.7%, 2.5%, 5.9%].

Table 9. Maximizing the likelihood of the first parts of Epoch I (first column) or Epoch III records (second

column), or also maximizing the product of the likelihoods of such records together with Epoch II (third

column), or even excluding it (fourth column), we report some results. We include: the mean holding time of

the new clusters 1/λ0, the duration of the self-excitement T , the mean offspring of each event µ (first three

rows); the probability Qmn for an eruption of producing the first offspring event after 477 years (fourth

row); the probability Lmn of passing 477 years after an eruption without observing other events anywhere

in the caldera (fifth row). Mean values, 5th and 95th percentiles are reported, as a function of the sources

of epistemic uncertainty considered.

Maximizing the combined likelihood of Epoch Ia and Epoch IIIa records produces results con-
sistent with Epoch IIIa, but more uncertain (similarly to Epoch Ia): it is obtained a quite low base
rate of one on 145 years, [-30%, +45%], a long uncertain duration T of 956 years, [-90%, +70%],
and a quite large µ of 0.49, [-55%, +35%]; this corresponds to a decreased number of overlapping
quite big clusters. In this case Lmn rises to [0.6%, 2.8%, 7.2%], and Qmn to [0.0%, 7.6%, 18.0%].
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Maximizing the combined likelihood also including Epoch II record reduces 1/λ0, µ, and halves the
duration T ; both Qmn and Lmn decrease in average to 2.5% and 1.8%, respectively.

The western and eastern sectors. In Table 10 are shown also the parameters obtained
considering separately the western and the eastern parts of the Campi Flegrei caldera (zones 1-
5 and 6-13 accordingly to the partition in Figure 29). During Epoch IW, i.e. the western sector
activity during Epoch I (8 events), the activity presents a lower µ than in the rest of the Epoch 0.18,
[-65%, +65%], but a much shorter and very uncertain duration T = 101 years, [-99%, +195%], and
a low base rate of one on 378 years, [-30%, +50%]; the clustering behaviour is again not strongly
recognizable. The probability Qmn become negligible. The reduction of the base rate increases very
much the likelihood Lmn to [14.1%, 24.1%, 36.4%] for Epoch IW. Focusing on Epoch IE, i.e. the
record of eastern sector events, shows a 3/5 base rate and a 1.5 times higher mean offspring than
considering the whole Epoch I, and a double duration T = 1282 years, [-70%, +45%]; it is likely
the presence of some overlapping clusters of events in different zones.

Table 10. Maximizing separately the likelihood of the parts of Epoch I (first column) or Epoch III (second

column) records located in the (a) western sector and (b) the eastern sector, or also maximizing the product

of the likelihoods of such records together respectively with the western and eastern parts of Epoch II record

(third column), or even excluding it (fourth column), we report some results. In (a) we include: the mean

holding time of the new clusters 1/λ0, the duration of the self-excitement T , the mean offspring of each

event µ (first three rows); the probability Qmn for an eruption of producing the first offspring event after

477 years (forth row); the probability Lmn of passing 477 years after an eruption without observing other

events anywhere in the caldera (fifth row). In (b) we include the mean holding time of the new clusters

1/λ0, the duration of the self-excitement T and the mean offspring of each event µ. Mean values, 5th and

95th percentiles are reported, as a function of the sources of epistemic uncertainty considered.

Epoch IIIW is constituted by only three events (Capo Miseno, Averno 1, Averno 2) and from
these few eruptions it is not possible to robustly recognize a clustering behaviour: µ decreases to
0.15 with uncertainty range [-55%, +45%] and the duration T becomes huge: 5722 years in average,
meaning that in principle the whole epoch could coincide with the cluster length; the base rate is only
one on 467 years, [-25%, +50%]. The probability Qmn increases to [5.3%, 10.5%, 15.5%] for Epoch
IIIW because of the very long cluster duration, and the likelihood Lmn reaches values of [25.4%,
35.9%, 48.8%]. The eastern events produce instead very similar parameters to the whole epoch: the
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elimination of only three events from the record seems not to change the system behaviour.
Maximizing the combined likelihoods of Epoch IW and IIIW confirms a not recognizable clus-

tering, and a low base rate of one on 469 years, [-25%, +50%], similar to Epoch IIIW; considering
also the Epoch IIW record (only 2 events) does not change remarkably the estimates. The proba-
bility Qmn is negligible like from Epoch IW record, while the estimates of Lmn are much similar to
the ones of Epoch IIIW. Epoch IE and IIIE together produce a very high µ of 0.62, [-35%, +25%]
with a quite long duration of 366 years, [-85%, +120%], and a base rate of one on 150 years, [-35%,
+55%]. Considering also Epoch IIE does not change the results.

Rejecting the epochs hypothesis. Moreover a very strong assumption about the eruption
record is the separation in three eruptive epochs. It is remarkable that the Monte Nuovo event
occurred such a long time after the end of Epoch III that rejecting its separation from that epoch
implies the rebuttal of the separation of the other epochs, as was obtained by the exploration of
data. In all the previous cases the ML parameters were fitted on the single epochs or otherwise on
more epochs assumed as separate independent samples, i.e. multiplying the likelihoods. In contrast
in Table 11 are reported the results obtained assuming to merge more epochs (and even Monte
Nuovo eruption) in a unique record that takes into account also the duration of the periods of
quiescence; this corresponds to the idea of rejecting the subdivision between Epoch I and Epoch II,
or also all of them.

Focusing on Epoch I*II, i.e. all the eruption record between the start of Epoch I and the end of
Epoch II, the base rate and the mean offspring are similar to Epoch I values (both slightly lower),
and duration T decreases to 359 years, [-85%, +90%]; a possible motivation is the necessity of in-
creasing the likelihood of the quite long interruption of the events during the period of quiescence.
Considering the combined likelihood of Epochs (I*II)×III, which corresponds to assume the exis-
tence of only two epochs of activity instead of three, gives parameters not much different from the
estimates coming from Epoch I×II×III or I×III, with a light decrease of the base rate and a light
increase of the mean offspring and the duration.

Table 11. Maximizing the likelihood of the merged records of Epoch I and Epoch II including the period

of quiescence duration (first column), maximizing the product of the likelihood of this merged record with

Epoch III (second column), maximizing the likelihood of the merged records of all the epochs (third column),

or even including Monte Nuovo event still including the periods of quiescence (fourth column), we report

some results. We include: the mean holding time of the new clusters 1/λ0, the duration of the self-excitement

T , the mean offspring of each event µ (first three rows); the probability Qmn for an eruption of producing

the first offspring event after 477 years (fourth row); the probability Lmn of passing 477 years after an

eruption without observing other events anywhere in the caldera (fifth row). Mean values, 5th and 95th

percentiles are reported, as a function of the sources of epistemic uncertainty considered.
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Based on Epoch I*II*III record, which corresponds to the extreme assumption of refusing every
subdvision in epochs, the results change a lot: the base rate is halved, and considering the complete
record that includes even a third period of quiescence and Monte Nuovo eruption, the base rate is
only one on 352 years, [-15%, +15%], with duration 337 years, [-55%, +40%], and mean offspring
0.45, [-15%, +10%]. The probability Qmn is [0.0%, 0.8%, 2.3%], but these parameters increase
the likelihood Lmn to [13.2%, 16.4%, 19.8%]. Anyways the non-homogeneity between the eruptive
epochs and the periods of quiescence seems too strong to be captured by such a simple model:
the rejecting of the epochs hypothesis would require additional mathematical features aimed at
increasing the likelihood of such long interruptions of the activity.

4.5.2 Probability distribution of next eruption time

The results about next eruption time forecast are a very complex issue and strongly rely on the impli-
cations that the volcanological assumptions have on the Cox-Hawkes process parameters. However,
based on the model developed as reconstructed on the available datasets, it is possible to estimate
the remaining time before the next Campi Flegrei eruption. In particular, the estimates include
the residual self-excitement coming from Monte Nuovo eruption: excitement coming from previous
eruptions is assumed negligible because of the long period of quiescence. The doubly stochastic
structure of the model permits to separate the epistemic uncertainty from the physical variability:
like in the previous chapters, we represented the physical variability of an observable, for which we
produced percentile estimates that quantified the sensitivity of the results on the main sources of
epistemic uncertainty.

All the curves reported in Figure 36 correspond to ML exponential distributions, but alternative
non-parametric results coming from gaussian kernel density estimators are completely consistent
with the exponential curves. In Figure 36a the sensitivity to different assumptions concerning the
time windows of the eruption records on which the likelihood is maximized are reported. Considering
the three eruptive epochs as independent samples and assuming Monte Nuovo as the first event of a
new epoch of activity, we obtain a mean time to the next Campi Flegrei eruption of 103 years, with
physical variability ranging from 5 to 318 years; the epistemic uncertainty have been quantified as
[-25%, +35%] of these values (black lines). As expected from the results on the parameters of the
process, focusing on the first part of the epochs produces a slightly slower eruption rate (red lines),
whereas including the periods of quiescence produces waiting times 3 times longer (purple lines).

In Figure 36b is reported instead the sensitivity of the time forecast by considering a separation
between the western and eastern portions of the caldera. Considering a probability model with
different parameters for the eastern and western sectors produces estimates which are very similar
to the ones from the model that does not separate the record. Focusing only on the eastern sector
dataset tends to slow a bit the eruption rate (green lines), and the western record instead rises the
time estimates of almost five times to 470 years in mean, with physical variability ranging from
25 to 1467 years; epistemic uncertainty have been quantified as [-25%, +45%] of these values (blue
lines).

Alternatively assuming to start the simulation immediately after Monte Nuovo event and then
rejecting the samples corresponding to times before the present, produces time estimates that are
increased of +15% concerning the complete record of the eruptive epochs (119 years in mean),
but only of +5% in the case of the western sector record (508 years in mean). Indeed the epistemic
assumptions corresponding to shorter holding times are rejected more easily. However this approach
no more relies directly on the doubly stochastic probability model that we defined based on past
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eruptive record.

Figure 36. Probability distributions for the remaining time before the next eruption, assuming ML expo-

nential distributions on the time samples of the described model. The bold lines indicate the mean probabil-

ity density functions per year, and the dashed lines are composed of the 5th and 95th epistemic uncertainty

percentiles of the values of such functions. Different colours correspond to alternative volcanological as-

sumptions. In (a) are compared different time records, in (b) are compared eastern and western sectors

records. The values reported are the 5th percentile, the mean and the 95th percentile with respect to epis-

temic uncertainty (from above to below), of the 5th percentile, the mean value and the 95th percentile of

the physical variability (from left to right).

4.6 Appendix A: Formal definition of the uncertainty model

The model for epistemic uncertainty affecting past eruptions times record is obtained by a simple
Monte Carlo simulation based on several conditional samplings. In the sequel we formally report
the technical details of such model. First we define 3 classes of eruptions with different levels of
information, which will be treated separately.

Definition 33 (Classes of events) Class C1 = (wi)i=1,...,n1 includes n1 events possessing data-
tion and ordering; class C2 = (wi)i=n1+1,...,n1+n2 contains n2 events possessing only the ordering
(including some small uncertainties); class C3 = (wi)i=n1+n2+1,...,n1+n2+n3 is formed by n3 events
that possess some datation bounds, but not any robust ordering information. Lets call n = n1+n2+n3

the total number of events and m12 = n1 + n2 the number of events belonging to the union of the
first two classes.

We start the definition of the probability model sampling the ordering of past events of classes
C1 and C2.

Definition 34 (The ordering sampling) We define a random variable τ̌ from (E, E , η) on the
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space S(m12) of the permutations of {1, . . . ,m12} such that (v̌j)j=1,...,m12 , where

v̌j := wτ̌(j), ∀j,

represents a random sample for the ordered family of eruptive events, not including class C3.

The permutation τ̌(ω) will be for almost every ω ∈ Ω the restriction of the permutation τ(ω) of
Definition 8 on C1 ∪ C2. First we sample the times for the events in classes C1 and C3.

Definition 35 (Events with datation bounds) Let ([ai, bi])i=1,...,n1
and ([ai, bi])i=m12+1,...,n be

closed intervals on R representing the datation windows available for the elements of C1 and C3,
each associated with a central value t∗i (the midpoint between ai and bi in absence of other infor-
mation). Let (si)i=1,...,n1 and (si)i=m12+1,...,n be vectors of real random variables on (E, E , η), each
si representing the time of eruptive event wi. We assume that each si has a triangular distribution
supported on the interval [ai, bi] with central value t∗i , and that si1 < si2 ∀i1, i2 ≤ n1 such that
τ̌−1(i1) < τ̌−1(i2), i.e. the time samples are consistent with the ordering samples.

In the following we complete the time sampling with the elements of C2, which do not possess
any temporal bounds except for their ordering.

Definition 36 (Events without datation bounds) Let (wi1 , wi2) be a pair of events in class
C1, such that vτ̌−1(i1) < vτ̌−1(i2) and they are adjacent in C1, i.e. does not exist a separator inside
C1 with respect to their ordering. Let W = (wi)i∈I where I := τ̌{k|τ̌−1(i1) < j < τ̌−1(i2)} be the
set of events in class C2 which are ordered between wi1 and wi2 . Then we define the random vector
(si)i∈I as a number of independent random variables uniformly distributed on the interval [si1 , si2 ],
ordered increasingly. We repeat this procedure for each adjacent pair in class C1. For defining even
the times of events of class C2 ordered before the first or after the last event of class C1, we assumed
a time interval uniformly distributed on [0, 100] years between each of them.

We got the time samples (si)i=1,...,n for all the events; the last phase of time sampling completes
the procedure, re-ordering them.

Definition 37 (The joint distribution of times) We extend the permutation τ̌ on the whole
set of n events, including the events of class C3 consistently with the order of the sampled times,
and we call it τ . Then we define

vj := wτ(j), tj := sτ(j), ∀j = 1, . . . n,

as the randomly ordered events with their random times.

Moreover we report that for each j ≤ n the distribution for the spatial location Vj of Definition
8 is the uniform probability measure ζj on the set Dj of Definition 17 (see also Figure 29). We
remark that this procedure is the core of every Monte Carlo simulation assessed in this chapter.



Chapter 5

Addendum

5.1 Summary

In this Chapter are included three detailed digressions about important topics concerning the math-
ematical and physical background of the previous chapters. In particular is presented a general in-
troduction to the expert elicitation theory, then the complete construction of the simplified model
adopted for propagating pyroclastic density currents (box model), and at last a summary about
Cox processes and Hawkes processes.

5.2 The expert judgment approach

By the term expert elicitation we mean those techniques used to inform decisions, forecasts or
predictions based on a formalized treatment of the judgments or opinions of experts, usually in
the context of decision support for non-specialists (e.g. [41], [92], [120], [8]). Performance based
elicitation procedures include an empirical step of expert ranking: based on the answers given by the
experts to test questions with known answers (called seed items), different weights are computed
and attributed to individual experts (e.g. [42], [43]). These weights are then used to pool their
opinions about target questions of specific interest to a problem owner, e.g. those that cannot be
determined from data or direct measurement, or those that will become known only in the future,
after a decision has been made. In practice, the goals of an elicitation can be twofold: to give reliable
pointwise estimates of variables of interest and to assess the level of uncertainty of such estimates.
Here, we mean a sort of intrinsic uncertainty, not the subjective precision of the estimate declared
by an expert who, by character, may be overconfident, proficient, or cautious in making judgments
(see also [95]).

Some experts may be very good in estimating true values, while others may be better in the
assessment of the true uncertainty; in the first case we say they are good in accuracy, in the second
we say they are well calibrated. When we consider the performance of a particular weighting method
on the test questions, we would like to measure both accuracy and calibration; but these features
cannot be summarized in a single index: they are inherently bi-dimensional (see [68]). These two
abilities have a different nature and may pertain to different people: for instance, very good point
value estimators may be overconfident when it comes to uncertainty estimation. For this reason,

107



CHAPTER 5. ADDENDUM 108

it is possible to measure the performance of a weighting method by means of various indices that
reflect different features: we define three indexes called calibration, informativeness, and expected
accuracy, the meaning of each reward will be explained in detail in the sequel.

Among the several weighting methods known in the literature, we focus on the Cooke Classical
model well described in [41], because it is devised on the basis of formal performance scoring rules,
incorporates empirical control and is found on the calibration index. We use also the Expected
Relative Frequency (ERF) method of [68], which in some sense is based on likelihood. It is based on
an orthodox probabilistic idea related to probability densities: from the answers of the expert we
build up a probability density function and then is possible to compute the likelihood of the true
answer under this density. However, the likelihood-based methods can have a practical drawback:
when the density is very concentrated, very peaked, its values are very large (much greater than one)
and the weight of the expert may be implausibly high; and it can be criticized theoretically, since
one could argue that an expert inclined to accept high risks is encouraged to give very concentrated
densities to receive huge rewards. For these reasons the density is integrated on a small interval
around the true value to diminish these problems. This is the number computed by the method as
the Expected Accuracy index.

Still in [68] are observed the following tendencies: i) group-based models (the Cooke Classical
model, ERF model and also Equal Weights) perform better than single Best Expert models and
the majority of single a priori-chosen experts; ii) non-trivial models are the best, in most situations,
with respect to specific aims of elicitation (Cooke Classical model for the assessment of uncertainty,
ERF model for pointwise estimation); iii) the performance of the Equal Weights model is often
close to the optimal ones. For these last reason we always report also the results obtained with this
basic approach.

5.2.1 Mathematical preliminaries

An elicitation session involves a group E of k experts, who are asked to answer a questionnaire
Q. The questionnaire is composed of two type of questions: a set Qsd of seed questions and a set
Qtrg of target questions. The number n above is the cardinality of Qsd. Seed questions have known
answer (known to the interviewer) and have the purpose of giving weights to the experts. The
target questions are those of interest in the specific field of application, with unknown answer. The
numbers (xq)q=1,...,n above are the true answers to the seed questions. Each expert e is uncertain
about each question q. Uncertainty may have a physical origin, due to the complexity of phenomena
behind the problem, or may be just subjective, due to partial knowledge of the problem, of some
of its input data. All this uncertainty is summarized in the pdf fe,q, which depends on expert and
question. So fe,q is the subjective statistical evaluation of question q from expert e.

Remark 38 We have described the answers of experts by pdfs. This is what experts are asked to
tell us in their questionnaires: summaries of fe,q. Ideally, however, we may also think that experts
are asked to give a numerical answer, a guess of the value xq itself, not its statistics. Let us call Xe,q

the random answers we expect to receive from expert e for question q. The law of Xe,q is represented
by fe,q, by definition of these two objects. The random variable Xe,q has an auxiliary character in
expert elicitation, since it is never really asked, but it is real in potential applications of this theory
to pooling the results of numerical simulations from different codes (Xe,q is the sample value, fe,q
is only estimated a posteriori if we have a large number of samples).
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Denote by L1
+ the set of all pdfs on real numbers, namely all Borel measurable functions f : R →

[0,+∞) such that
∫∞
−∞ f (x) dx = 1. Denote by Pk the set of all vectors (we)e=1,...,k ∈ [0,+∞)k

such that we ≥ 0 and
∑k

e=1 we = 1.

Definition 39 (Reward) Given n ∈ N, any function

F :
(
L1
+

)n × Rn → [0,+∞)

will be called a reward on n questions (we accept also the case when the domain of F is just a subset
of
(
L1
+

)n × Rn).

A reward is the score we give to an expert who chose certain pdfs to describe the answers to the
seed questions. The score is computed by a comparison between the pdf (fe,q)q=1,...,n and the true

answers (xq)q=1,...,n; thus, to compute the score we use n densities and n real numbers. Of course

the definition or reward is ‘empty’ in a sense, since any map F :
(
L1
+

)n × Rn → [0,+∞) (even far
from the idea of reward) has this name. The aim of the theory is to find out useful rewards. The
weighting rule associated to a reward is an obvious concept: if the reward gives scores W1, . . . ,Wk

to the k experts, we just normalize them to define weights (weights are non-negative numbers with
sum one).

Definition 40 (Weighting rule) Let F be a reward on n questions and k ∈ N, the corresponding
weighting rule is the function

WF :
(
L1
+

)n×k × Rn → Pk

defined as

WF

(
(fe,q)e,q , (xq)q

)
=

F
(
(fe,q)q , (xq)q

)
∑

e′ F
(
(fe′,q)q , (xq)q

) .
where we have shortened the notations

(fe,q)e,q = (fe,q)e=1,...,k
q=1,...,n

, (fe,q)q = (fe,q)q=1,...,n , (xq)q = (xq)q=1,...,n

Whence weights

(we)e=1,...,k = WF

(
(fe,q)e,q , (xq)q

)
have been found, consider any one of the target questions (the argument applies to each of them).
The experts have chosen densities (fe)e=1,...,k for the answer to it. A pooling rule is a way to average
these densities and get a new one, say f .

Definition 41 (Pooling rule) Given k ∈ N, any function

G :
(
L1
+

)k ×Pk → L1
+

will be called a pooling rule on k experts.

The result G
(
(fe)e=1,...,k ,WF

(
(fe,q)e,q , (xq)q

))
of this series of operations has been called

forecast map, since f is the density which describes the unknown answer to that question. The
forecast map requires the choice of two basic ingredients: a reward and a pooling rule. We call
Decision Maker any such choice.
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Definition 42 (Decision Maker) Given n, k ∈ N, a Decision Maker (DM) is any pair (F,G)
where F is a reward on n questions and G a pooling rule on k experts. The DM (F,G) defines a
map

ΦF,G :
(
L1
+

)n×k × Rn ×
(
L1
+

)k → L1
+

given by

ΦF,G

(
(fe,q)e,q , (xq)q , (fe)e=1,...,k

)
= G

(
(fe)e=1,...,k ,WF

(
(fe,q)e,q , (xq)q

))
.

We call it the forecast map.

Often in practice we do not assume that the expert knows fe,q in detail. We only assume expert
e is able to declare certain summaries of fe,q, like the 5%, 50% and 95% percentiles. Therefore,
while in this preliminary part we work prevalently with the full pdf fe,q, when we will focus on
applications and real data we use approximations based on summaries of fe,q (experts are not able
to quantify their beliefs with a full pdf).

Definition 43 (Representation map) Given m ∈ N, and a sequence (t1 < · · · < tm) ∈ [0, 1]m,
any symmetrical function (i.e. not depending of the order of components of the variable vector)

R : Rm →
(
L1
+

)
will be called a representation map on the quantiles (ti)1≤i≤m if∫ vi

−∞
[R(v)] (u)du = ti,

for each i ∈ {1, . . . ,m}.

All these definitions are quite generic, as it is the definition of estimator in statistics. A reward
may be good for some purposes and less for others; the order between DMs may depend on the
purpose. We have detected experimentally a dichotomy between good DMs for pointwise estimate
and good ones for uncertainty assessment. Therefore, it seems it is not possible to give such general
concepts in a unique way.

5.2.2 Equal weights rule

We start with this simple method, that essentially combines the experts opinions giving equal weight
to them.

Definition 44 (Equal reward) Let F be a reward on n questions, we call it equal reward if it is
constant. The constant value of F does not matter, since we always have

WF

(
(fe,q)e,q , (xq)q

)
=

1

k
.

The pooling rule that is used is very natural, it is simply the mixture of the given densities.
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Definition 45 (Linear pooling) Define the pooling rule

Gl

(
(fe)e=1,...,k , (we)e=1,...,k

)
=

k∑
e=1

wefe.

This is called linear pooling.

Linear pooling is the standard choice in part of the literature, see for instance [41]. It is correct
that linear pooling is good for incorporating both the uncertainty of each expert and the variability
between them (suitably weighted). Indeed on some probability space (Ω, F, P ), let (Xe)e=1,...,k be
independent random variables on such that Xe has law fe, and I be a random variable taking
values in {1, . . . , k} with P (I = e) = we. Then the random variable XI has law

∑k
e=1 wefe. In

other words,
∑k

e=1 wefe is the law of a mixture. With probability we′ we choose the answer of
expert e′, with probability we′′ the answer of expert e′′, and so on.

Remark 46 In Definition 59 is also shown the quantile pooling, an alternative rule that focuses on
the accuracy of pointwise estimation losing an amount of the spread of the ranges of uncertainty. A
third drastic approach not followed by any of the method presented may be to average the answers,∑k

e=1 weXe, to take advantage of an averaging property similar to the Law of Large Numbers. This
could be called ‘weighted convolution pooling rule’, but has the big drawback of strongly diminishing
the uncertainty range of the associated DM with respect to the ranges of the single experts; in the
trivial case of all the experts giving for each question independent identically distributed answers
this DM would have a small spreading around the mean, smaller than the range of the single experts
and tending to zero as the number k of the experts grows.

At this point we can take the Decision Maker associated to the previous definitions.

Definition 47 (Equal weight DM) We call Equal Weight DM the pair (F,G) where F is con-
stant and G is linear pooling. Therefore

ΦF,G

(
(fe,q)e,q , (xq)q , (fe)e=1,...,k

)
=

1

k

k∑
e=1

fe.

Associated to this rule there is a simple representation map.

Definition 48 (Maximum entropy distribution) Given m ∈ N, a sequence (t1 < · · · < tm) ∈
[0, 1]m and a range [a, b], we define the representation map R(v) as the piecewise constant function
that on each interval (vi−1, vi], 1 ≤ i ≤ m + 1 is equal to ti

vi−vi−1
, where (v0, vm+1) = (a, b). It

is trivial that it is a representation map on the fixed quantiles, and it is called maximum entropy
distribution (or minimal information distribution).

It will be observed that with this representation map each variable must be supplied with an
intrinsic range [a, b] containing all the quantiles elicited from experts. In some cases the choice of
the cutoff points might be motivated, for example if the answer Xe,q were a relative frequency or a
percentage then 0 and 1 might be natural cutoff points. However, in some cases the choice of cutoff
points must be made ad hoc. In our case when Xe,q does not represent percentages we used a 10%
overshoot above and below the interval [v1, vm]. See more details of such representation map on
[41].
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5.2.3 Cooke Classical Model

The Cooke Classical model is based on a reward that is the combination of the different indexes
called calibration and informativeness, with calibration playing a dominant role. The designation
classical derives from a close relation between calibration scoring and hypotheses testing in classical
statistics. Initial development was sponsored by the Dutch Ministry for environment, and later
phases have been supported by the European Space Agency and the European Community. Now
we introduce the concept of relative information, needed for the definitions of both calibration and
informativeness. Let p = p1, . . . , pn be a probability distribution over alternatives {1, . . . , n} the
entropy or negative information H(p) of p is defined as

H(p) := −
n∑

i=1

pi ln pi.

Let s = s1, . . . , sn be a probability distribution, and assume pi > 0 for all i, then the relative
information of s with respect to p is defined as

I(s, p) :=
n∑

i=1

si ln
si
pi
,

and we have that I ≥ 0 and it is null is and only if s = p. It is commonly taken as an index of
the information learned if one initially believes that p is correct and subsequently learns that s is
correct. It is also true that H(p) = lnn− I(p, u) where u is the uniform distribution over 1, . . . , n;
that is ui = 1/n for each i. Similarly, if f1 and f2 are pdfs and f2 > 0 on the Borel set A ⊆ R the
relative information of f1 respect to f2 is defined by

I(s, p) :=

∫
A

f1(u) ln
f1(u)

f2(u)
du.

This method is strongly based on applications, and the following construction assumes that each
expert e give a vector of m ∈ N values (f i

e,q)1≤i≤m for each question q, associated to the quantiles
(ti)1≤i≤m. The representation map R adopted is the maximum entropy distribution defined above.
Define pi = ti − ti−1, i = 1, . . . ,m + 1, where (t0, tm+1) := (0, 1). Assume p = (p1, . . . , pm+1), and
call probability outcome each interval [ti−1, ti]; the vector p represents a probability measure on the
probability outcomes.

Definition 49 (Informativeness) The informativeness index of a function f on a fixed range
[a, b] is the relative information with respect the uniform distribution on [a, b]. If f = R(v), we have
that

I(R(v))[a,b] = ln(b− a) +
m+1∑
i=1

pi ln
pi

vi − vi−1
,

where R is the representation map, p is defined above and v is the quantile values associated.
The informativeness index of an expert e with respect to set of questions Q is the average of the
informativeness indexes with respect to the questions (all assumed with an intrinsic range):

I(e) =
1

n

n∑
q=1

I(fe,q).
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We now define a general class of rewards, focused on uncertainty estimation.

Definition 50 (H-based reward) Let H : [0, 1]
n → [0,+∞) be a function which measure an

inverse distance between a sample (uq)q=1,...,n and the uniform distribution. By ‘inverse distance’
we mean that samples ‘closer to uniform ones’ have larger values of H. Then consider the reward

F
(
(fq)q=1,...,n , (xq)q=1,...,n

)
= H

((∫ xq

−∞
fq (x) dx

)
q=1,...,n

)
.

We call it H-based uncertainty estimate reward.

This is the basic idea to reward well those experts who capture the correct level of uncertainty
of a problem. Let us briefly describe a general idea to give a meaningful score to the ability in
uncertainty assessment, formalized above with the H-based uncertainty estimate reward. We have
to think that the true answers xq are realizations of random variables Xq and the best possible
expert is the one who captures their probability distribution. Then, in the best possible case, fe,q

should be the pdf of Xq. If so, the pdf of the random variable
∫Xq

−∞ fe,q (x) dx is uniform on [0, 1],
by a well known theorem. This motivates the following idea: let e be an expert, and for each seed
question q ∈ Qsd, compute the cumulative probabilities corresponding to the true answers

pe,q =

∫ xq

−∞
fe,q (x) dx.

As we said above, in the best possible case the set of numbers (pe,q)q=1,...,n should be a random

sample from the uniform distribution on [0, 1]. Hence, reward rules suitable to score ability in
uncertainty assessment may be based on a numerical measure of the anomaly of the set of numbers
(pe,q)q=1,...,n with respect to uniform distribution (anomalous sets should correspond to low score).
The calibration index heuristically belongs to this class of rewards, however it is not a function of
a single pdf (the answer of the expert) and a value (the true answer), but rather it is a score of the
single expert depending of all the seed questions; if normalized it would be a weighting rule. We
remind the idea of the Chi-square test, contained in the concept of calibration index. Let s denote
a sample distribution generated by n independent samples from the distribution p. Let χ2

d denote
the cumulative distribution function a chi square variable with d of freedom. Then we have that

P{2NI(s, p) ≤ x} → χ2
n−1(x), N → +∞.

This property imply a simple test that may be used as an inverse distance, defining n inde-
pendent samples from the true answers (xq)q=1,...,n. As said above, assume that any pdf fq,e =

R((f i
e,q)1≤i≤m) for some quantiles (ti)1≤i≤m. For each fixed expert e any value xq of a seed ques-

tion belongs to an interval [fi−1, fi] for some 1 < i < m; in this way, observations of x1, . . . , xn

generate a sample distribution s = (s1, . . . , sR+1) over the probability outcomes for each expert. In
general if the densities fq,e do not come from a representation map, if we take φq,e as its cumulative
distribution function it is possible to define p as the uniform distribution on [0, 1] and take the
values

(
φ−1
q,e(xq)

)
1≤q≤n

as the sample of the distribution s; in this case the probability outcomes

are a continuous set, but in the following we will never need this case.

Definition 51 (Calibration) The calibration index of an expert e is defined as

C(e) := 1− χ2
R [2NI(s, p)] ,
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where I(·, ·) is the relative information function and s, p are the distributions on the probability
outcomes defined above.

Finally we can define the complicated weighting rule of this method.

Definition 52 (Cooke weighting rule) Let α ∈ (0, 1). Take

W ′
e = C(e)× I(e)× 1[α,1)(C(e)),

and define the Cooke weighting rule as

W
(
(fe,q)e,q , (xq)q

)
=

W ′
e∑k

e=1 W
′
e

.

The constant α eliminates the experts that are poorly calibrated, representing in some sense is
the significance level of the statistical test. For each choice of α a different DMα is defined. It can

also be scored like an additional expert, hence is defined W
(
(fDMα,q)e,q , (xq)q

)
, the weight that a

virtual expert would receive when he gives the DMα distribution and it is scored along the actual
experts. Suppose that we add the virtual expert to the set of experts and re-calculate a new DM: it
is easy to see that this new DM would be equal to the initial one. It is possible to take the α value
that maximizes the DM virtual weight, thereby optimizing that parameter choice and defining the
so called Cooke DM.

Definition 53 (Cooke DM) With a little abuse of notation the pair (W,Gl) where W is the
Cooke weighting rule and Gl is linear pooling is called Cooke DM.

5.2.4 Expected relative frequency model

The following reward gives high score to those experts who choose densities which give high prob-
ability to a neighborhood of the true value, as an index of their pointwise accuracy. In this sense it
may be considered similar to a likelihood score. It can be considered opposite to the Cooke method
because that is based on uncertainty estimation, while this is based on a pointwise estimation (see
[68] for more details about this method).

Definition 54 (Expected accuracy reward) Given β > 0, define, for all (xq)q=1,...,n ∈ (R� {0})n
the reward

F
(
(fq)q=1,...,n , (xq)q=1,...,n

)
=

1

n

n∑
q=1

∫
Iq

fq (x) dx

where
Iq = [xq (1− β) , xq (1 + β)] .

It is called Expected accuracy (or ERF) reward.

The definition of Iq is multiplicative because the size of the interval must be linked to the scale
of the problem, an information embodied by the true answer xq. If are introduced typical length
scales we can easily give an additive version of the previous definition. It is reasonable to expect
that this reward give prize to experts who are good in pointwise estimation of the true value. Let
the random variable Xe,q represent an answer (see Remark 38). Let us introduce the concept of
accurate answer.
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Definition 55 (Accurate answer) Choose intervals (Iq)q=1,...,n around the true answers, xq ∈
Iq. We call accurate answer (for expert e about question q) the event

Xe,q ∈ Iq.

Expert e has opinion fe,q about question q. Based on this opinion, the probability expert e gives
an accurate answer is

P (Xe,q ∈ Iq) =

∫
Iq

fe,q (x) dx.

Definition 56 (Expected Relative Frequency) The relative number of accurate answers for
expert e on questionnaire Qsd, that we call empirical score of e on Qsd, is the random variable

Score (e,Qsd) :=
1

n

n∑
q=1

1{Xe,q∈Iq}

where 1{Xe,q∈Iq} is the indicator function of the good answer event {Xe,q ∈ Iq}. Let us call Expected
Relative Frequency of accurate answers, shortly ERF, the average score:

ERF (e,Qsd) := E [Score (e,Qsd)] .

The number ERF is a measure of the ability of expert e to predict values close to the true
ones. An expert with very high ERF chooses densities fe,q such that, in the average, realizations
of the family (Xe,q)q=1,...,n have several values very close to the true values (closedness depends

on the choice of Iq). The number ERF , a priori, should depend on the joint distribution of the
random variables (Xe,q)q=1,...,n , but linearity of the average implies it depends only on the family

of marginals (fe,q)q=1,...,n:

Proposition 57 (Cooke) We have

ERF (e,Qsd) =
1

n

n∑
q=1

P (Xe,q ∈ Iq) =
1

n

n∑
q=1

∫
Iq

fe,q (x) dx.

Proof. It simply follows from

ERF (e,Qsd) = E

[
1

n

n∑
q=1

1{Xe,q∈Iq}

]
=

1

n

n∑
q=1

E
[
1{Xe,q∈Iq}

]
.

�

Due to this proposition we see that ERF coincides with the ERF reward, explaining its name.
Lets pass to the definition of an alternative pooling rule that enhances the accuracy of pointwise
estimation reducing the spread of the ranges of uncertainty; the idea is conceptually linked to the
equivalent representation of the linear pooling in the space of cumulative distribution functions
(cdf).
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Remark 58 Because of linearity of the integral functional, the linear pooling could also be defined
using cdf φ(f) as

φ
(
Gl

(
(fe)e=1,...,k , (we)e=1,...,k

))
=

k∑
e=1

weφ(fe).

Similarly, it is possible to take the linear combination of quantile functions θ(f, ·) := φ(f, ·)−1.

Definition 59 (Quantile pooling) Define a pooling rule such that:

θ
(
Gq

(
(fe)e=1,...,k , (we)e=1,...,k

))
=

k∑
e=1

weθ(fe).

This is called quantile pooling.

Hence the linear pooling rule corresponds to take the vertical mean of the graphs of the cdf,
while this rule corresponds to take an horizontal mean of that graphs. The purpose of the next
example is to show in what sense the quantile pooling focuses on the pointwise accuracy of the
associated DM. Se also some examples in the sequel.

Example 60 Assume to have two experts with the same weight 1
2 , and probability distributions

corresponding respectively to a Dirac δ in zero and the uniform distribution on [−1, 1]. Then with
the linear pooling is obtained a mixture of the two: with probability 1

2 the DM will extract with the δ,
otherwise with the uniform. This is the best way for defining an uncertainty distribution that is the
combination of the two, but nevertheless it could show a bad behaviour with respect to the pointwise
estimates. Suppose that the first expert is quite accurate (but enormously overconfident) and the
true answer x falls near zero but it is not null: then the accuracy of the DM becomes poor as soon
as it is calculated on a small enough interval around x. In contrast the adoption of quantile pooling
produces a triangular distribution, with vertex in 0 and base on [−1, 1] and in the case of x near
zero but not null the expected accuracy increases significantly.

At this point we can take the Decision Maker associated to the previous definitions.

Definition 61 (Expected relative frequency DM) We call Expected relative frequency DM
the pair (F,Gq) where F is ERF reward and Gq is the quantile pooling rule.

In the very common case of eliciting three quantiles which the second is the median (i.e. 5th,
50th and 95th percentiles) the associated representation map of this method is not the maximum
entropy distribution defined above, but is a map that tends to centralize more the probability
measure constructed around its central value; this enhances the pointwise accuracy of the method.
See an example in Figure 37.

Definition 62 (Triangular distribution) Given m ∈ N, the triplet (t1, t2, t3) ∈ [0, 1]m, where
t2 = 0.5, with a small abuse of notation we define the representation map R((v1, v2, v3)) as the
piecewise linear function whose graph corresponds to a triangle with vertex on t2 and base with
extremal points the unique couple a < b such that∫ v1

a

[R((v1, v2, v3))] (u)du = t1,

∫ b

v3

[R((v1, v2, v3))] (u)du = 1− t3.

It is called triangular distribution associated to the triplet of quantile values (v1, v2, v3).
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Figure 37. Examples of representation maps for an expert response equal to [30% - 50% - 80%]. In (a) is

reported the maximum entropy probability distribution, in (b) the triangular probability distribution.

A small abuse of notation consists in confusing the mode of the triangle with its median, losing
the fundamental property of the representation maps, but in practice most of the experts in their
mind do this confusion that moreover is not significant in distributions that are not too much
skewed (the median and the mean are shifted with respect to the mode in case of major skewness).
Another issue that come with this representation map is the automatical definition of the range
of the distribution, and this could become a problem if the range is imposed a priori, like in the
case of the elicitation of a probability value that must be in [0, 1]. In that case we put all the mass
that falls outside the intrinsic range as a Dirac δ on the associated extremum (other solutions are
reasonable, as a uniform spreading of that mass on the interval next to the extremum). To use
this representation map in Monte Carlo simulations we implemented a very fast Newton-Raphson
algorithm (reported in Chapter 6) to invert the explicit expression of the cumulative distribution
of such a triangular pdf as a function of (a, b).

5.2.5 Pooling rules comparison

We give three different examples of the implications of adopting linear pooling or quantile pooling
rules, obtained with e = 1, 2, w = (0.5, 0.5) and both f1 and f2 are gaussian. The consequences of
a different mean (Figure 38), a different standard deviation (sd) (Figure 39), and both at the same
time (Figure 40), are explored. It is obtained that:

• the median of the quantile pooled pdf is the weighted combination of the two initial median
values; instead the mean of the linear pooled pdf is the weighted combination of the two initial
mean values.

• the shape of quantile pooled pdf (or cdf) is still gaussian, and has a sd that is the weighted
combination of the two initial sd (indeed the sd coincides with a particular quantile).
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• the shape of linear pooled pdf is bimodal on the two initial mean values, and the second
moment is the weighted combination of the two initial second moments: hence the sd can be
very large, including also an effect from the difference between the initial mean values. Even
in case of equal initial mean values, the DM sd can be larger than the weighted combination
of initial sd (due to the nonlinear operation of square root).

In summary, the quantile pooling results in a distribution that preserves the average width of
the uncertainty bounds given by the single experts, and is centered on the average of their central
estimates. This could correspond to focus first on the single median values for calculating the DM
median, and then to transport the average uncertainty onto this.

In other words with a quantile pooling it is assumed to believe in the average of the experts’ best
guesses, affected by an averaged uncertainty. Conversely, the linear pooling combines the differences
between the experts as additional uncertainty, preserving local modes in correspondence of their
precise answers. The resulting distribution does not lose any information, reaching a comprehensive
view of the uncertainties in play (even a lot wider than each initial single uncertainty), and it is
possible to obtain cases in which the mean value (that is the weighted average of initial mean values)
does not get any likelihood.

In practice the decision of assuming a linear pooling corresponds to choose randomly (in propor-
tion the weights) an expert and believe to him: the variability of the DM being the combination of
the variability between experts and of single experts. In conclusion the linear pooling gives a mixed
DM that expresses the total uncertainty in play, without any statistic, while the quantile pooling
presents a DM ruled by a statistic of the median and of one of the standard deviation.

Figure 38. Linear (green line) vs quantile (violet line) pooling rules comparison, assuming two experts

with equal weight and uncertainty distributions gaussian N (−8, 2) (red line) and N (8, 2) (blue line) respec-

tively. In (a) are reported cumulative functions and in (b) probability density functions; in both cases also

probability percentiles are plotted.
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Figure 39. Linear (green line) vs quantile (violet line) pooling rules comparison, assuming two experts with

equal weight and uncertainty distributions gaussian N (0, 1) (red line) and N (0, 7) (blue line) respectively. In

(a) are reported cumulative functions and in (b) probability density functions; in both cases also probability

percentiles are plotted.

Figure 40. Linear (green line) vs quantile (violet line) pooling rules comparison, assuming two experts

with equal weight and uncertainty distributions gaussian N (−10, 1) (red line) and N (3, 4) (blue line)

respectively. In (a) are reported cumulative functions and in (b) probability density functions; in both cases

also probability percentiles are plotted.
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5.3 The Box model dynamic system and its solution

In fluid dynamics, a gravity current occurs whenever fluid of one density flows primarily horizontally
in a gravitational field into fluid of a different density, hence gravity currents are sometimes also
called ‘density currents’. Gravity currents arise frequently in industrial, laboratory and natural
situations. Examples in nature include avalanches, dust storms, seafloor turbidity currents, lahars,
pyroclastic flows, and lava flows. A typical gravity current consists of a head and tail structure. The
head, which is the leading edge of the gravity current, is a region in which relatively large volumes
of ambient fluid are displaced. The tail is the bulk of fluid which follows the head. Immediately
after the head, intense mixing occurs between the gravity current and the ambient fluid. Turbulent
billows (Kelvin-Helmholtz instabilities) form in the wake of the head and engulf ambient fluid into
the tail, a process called ‘entrainment’.

The first analysis of the motion of a gravity current was carried out by von Kármán in 1940, in
response to an enquiry by the American military before World War II concerning the wind speeds
that would blow released nerve gas back onto friendly troops. Gravity currents can be either finite
in volume, such as the release from a dam break, or continuously supplied from a source, such as
in doorway. In the case of constant releases, the fluid in the head is constantly replaced and the
gravity current is in some approximation stationary in the time window considered, but most gravity
currents related to natural hazards anyways occur as a result of a finite-volume release of fluid and
a transient dynamics. In the case where the widths of the initial release and of the environment are
the same, one obtains what is usually referred to as a ‘lock-exchange’ flow. This refers to the flow
spreading along walls on both sides and effectively keeping a constant width whilst it propagates.
In this case the flow is effectively two-dimensional. Otherwise, if the flow spreads radially from
the source forms an ‘axisymmetric’ flow. In the case of a point release, an extremely rare event in
nature, the spread is perfectly axisymmetric, while in all other cases the current will form a sector,
with the angle of spread depending on the release conditions.

When a gravity current encounters a solid boundary, it can either overcome the boundary
by flowing around or over it, or be reflected by it. The actual outcome of the collision depends
primarily on the height and width of the obstacle. If the obstacle is shallow (part) of the gravity
current will overcome the obstacle by flowing over it. Similarly, if the width of the obstacle is small,
the gravity current will flow around it, just like a river flows around a boulder. In 1940 von Kármán
empirically established a law about the currents intruding along an horizontal base beneath a very
deep otherwise quiescent fluid, obtained from the Bernoulli equation for inviscid flows; the law was
made rigorous by Benjamin in 1968. The velocity of the front of the current u is related to the
depth h of the current just behind the head by

u = Fr (g′h)
1/2

where g′ := ρc−ρa

ρa
g is the reduced gravity acceleration defined in terms of the densities ρc and ρa of

the current and ambient respectively, and Fr is the Froude number, i.e. the square root of the ratio
between inertial and gravity forces: the greater is the Froude number, the greater is the inertial
resistance.

For a finite volume gravity current, perhaps the simplest modelling approach is via a box model,
where a ‘box’ (rectangle for 2D problems, cylinder for 3D) is used to represent the current. The
box does not rotate or shear, but changes in aspect ratio (i.e. stretches out) as the flow progresses.
Here, the dynamics of the problem are greatly simplified (i.e. the forces controlling the flow are
not direct considered, only their effects) and typically reduce to a condition dictating the motion
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of the front via a Froude number and an equation stating the global conservation of mass. The
model is not a good approximation in the early slumping stage of a gravity current, where h along
the current is not at all constant, or in the final viscous stage of a gravity current, where friction
becomes important and changes Fr. The model is a good in the stage between these, where the
Froude number at the front is constant and the shape of the current has a nearly constant height.
Additional equations can be specified for processes that would alter the density of the intruding
fluid such as through sedimentation. Let set u(t) the velocity of the front of the current, and l(t)
its position as a function of time. For simplicity this first example does not model the deposition
of mass. Entrainment of ambient fluid is assumed negligible, and the flow instantaneously released
and of fixed volume.

Rectangular geometry Consider a two dimensional or ‘lock exchange’ flow (with rectangular
‘cartesian’ geometry)

u =
dl

dt
= Fr(g′h)1/2,

lh = A,

where A the constant volume per unit width, or two dimensional area. The equation

l1/2dl = Fr(g′A)1/2dt = dt/τ,

where τ = (Fr2g′A)−1/2 represents the time scale of the dynamics, can be integrated with initial
condition l(0) = 0 to the function 2

3 l
3/2 = t/τ, and inverted as

l(t) =

(
3

2
t/τ

)2/3

.

Cylindrical geometry Assume a radially spreading flow: then instead of the bidimensional
condition lh = A it satisfies

l2h = V

where V the volume of collapsing mixture divided by π (it is possible to consider currents spreading
on circular sectors). Again without deposition of mass, the equation becomes

dl = Fr

(
gp

V

l2

)1/2

dt = l−1dt/τ,

where the time scale is again of the form τ = (Fr2g′V )−1/2. Integrating the equation ldl = dt/τ as
1
2 l

2 = t/τ the solution is

l(t) =
√

2t/τ .

Remark 63 (Shallow water equations) The Saint Venant equations, also called shallow water
equations, are derived from depth-integrating the Navier-Stokes equations, in the case where the
horizontal length scale is much greater than the vertical length scale, and they describe the flow below
a pressure surface in a fluid. Using the same geometric relations it is possible to obtain similarity
solutions to them that are identical to the box model solutions, but with a different multiplicative
constant (

27Fr2

12− 2Fr2

)1/3

.
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5.3.1 The deposition of mass

Suspended particles are fundamentally different from homogeneous single phase flows, because the
heavy particles continually settle down to the ground. The concentration of particles thus changes
with time and position, and the density ρc can be written as

ρc = ρpϕ+ ρa(1− ϕ),

where ρp is the density of the particles (the density of the interstitial fluid has been assumed equal
to that of the ambient). In this case the reduced gravity g′ is expressed as g′ = gpϕ, where

gp =
ρp − ρa

ρa
g,

so the front condition becomes
dl

dt
= Fr (gpϕh)

1/2
.

The evolution of particle concentration in the flow is governed by

dϕ

dt
= −ws

ϕ

h
,

where ws is the Stokes free-fall velocity given by

ws = 2gpa
2/(9ν)

with ν the kinematic viscosity and a the length scale of the particle.

Remark 64 (Sediment erosion term) In principle it is also possible to add a term F to the
equation

ϕ

dt
= −ws

ϕ

h
+ F

representing the total vertical turbulent flux of sediment at the bed and the capacity of the flow to
maintain sediment in suspension or rework newly deposed sediment. That sediment erosion term F
should become negligible within the body of the flow if the ratio ws/u is greater than sinβ where β
is the slope of the bed over which the current propagates.

Remark 65 (Interstitial fluid) It is possible to assume the fluid between the particles to have
a different density ρi from the ambient fluid density ρa: in such case the reduced gravity takes a
different form

g′ =
ρpϕ+ ρi(1− ϕ)− ρa

ρa
g

=

(
ϕ
ρp − ρi

ρa
+

ρi − ρa
ρa

)
g,

and if are defined ϕcr := ρa−ρi

ρp−ρi
and gp,i :=

ρp−ρi

ρa
then

g′ = gp,i(ϕ− ϕcr).
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The parameter ϕcr is the critical ratio of the density difference between the ambient and the inter-
stitial fluids to that between the particles and the interstitial fluid. When ϕcr = 0 it is ρi = ρa and
the standard case. If a gravity current with light interstitial fluid propagates below a denser ambient
fluid, it is ϕcr > 0 and when ϕ = ϕcr the flow becomes neutrally buoyant and a further loss of
driving buoyancy will result in the lift off of the current from the bed.

Rectangular geometry Let first assume again the ‘lock exchange’ fixed volume condition
lh = A, obtaining formally:

dϕ

dl
=

dϕ

dt

1
dl
dt

= −ws
ϕ

h

1

Fr (gpϕh)
1/2

= −ws
ϕ

A
l

l1/2

Fr (gpϕA)
1/2

= −λl3/2ϕ1/2,

where
λ :=

ws

Fr g
1/2
p A3/2

.

Consider the relation
ϕ−1/2dϕ = −λl3/2dl,

integrating it with starting conditions ϕ(0) = ϕ0, l(0) = 0 gives

ϕ1/2 = ϕ
1/2
0 − 1

5
λl5/2.

Impose ϕ = 0 to find when the current ceases:

lmax =

(
5ϕ

1/2
0

λ

)2/5

=

(
5ϕ

1/2
0 Fr g

1/2
p A3/2

ws

)2/5

.

Defining the non-dimensional variables Φ := ϕ
ϕ0

and ξ := l
lmax

it is possible to rewrite it as

Φ =
(
1− ξ5/2

)2
.

The front condition in non-dimensional variables, substituting the fixed volume condition in rect-
angular geometry is

dξ = Fr (gpϕ0A)
1/2

l−3/2
max

(
1− ξ5/2

ξ1/2

)
dt =

(
1− ξ5/2

ξ1/2

)
dt/τ,

where
τ =

(
Fr2gpϕ0A

)−1/2
l3/2max.

Setting

F(ξ) :=

∫ ξ

0

s1/2

1− s5/2
ds = t/τ,

gives ξ = F−1(t/τ).
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Cylindrical geometry Assuming again an axisymmetrical spread, the equation with deposition
of mass becomes

dl

dt
= Fr (gpϕV )

1/2
l−1,

in which it is substituted like above ϕ
dt = −ws

ϕ
h . With the fixed volume condition l2h = V , it is

formally:

dϕ

dl
=

dϕ

dt

1
dl
dt

= −ws
ϕ

h

1

Fr (gpϕh)
1/2

= −ws
ϕ

V
l2

l

Fr (gpϕV )
1/2

= −λl3ϕ1/2,

where λ is the same constant defined above, with V in place of A. Integrating the relation

ϕ−1/2dϕ = −λl3dl

with starting conditions ϕ(0) = ϕ0, l(0) = 0, it is obtained

ϕ1/2 = ϕ
1/2
0 − λl4/8.

It is imposed ϕ = 0 to find when the current ceases:

lmax =

(
8ϕ

1/2
0

λ

)1/4

=

(
8ϕ

1/2
0 Fr g

1/2
p V 3/2

ws

)1/4

.

If the non-dimensional variables Φ and ξ are considered (see above), then

Φ =
(
1− ξ4

)2
.

The front condition in non-dimensional variables, substituting the fixed volume condition, is

dξ = Fr (gpϕ0V )
1/2

l−2
max

(
1− ξ4

ξ

)
dt =

(
1− ξ4

ξ

)
dt/τ,

where in this case
τ =

(
Fr2gpϕ0V

)−1/2
l2max.

Let set

F(ξ) :=

∫ ξ

0

s

1− s4
ds = t/τ,

hence

F(ξ) =
1

4
log

(
1 + ξ2

1− ξ2

)
,

so e4t/τ = 1+ξ2

1−ξ2 . If is considered the function

ξ(t) = (tanh(2t/τ))
1/2

=

(
e2t/τ − e−2t/τ

e2t/τ + e−2t/τ

)1/2

,

then it is ξ = F−1(t/τ) and

l(t) = [tanh(2t/τ)]
1/2

lmax

solves the equation.
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Remark 66 From the expression of lmax in terms of the physical parameters is possible to write a
formula for the area A or the volume V of the flow. It is given that

lmax ∝ A3/5

and in particular

A =

(
l5maxw

2
s

ϕ0gpFr2

)1/3

/52/3

assuming rectangular geometry, while
lmax ∝ V 3/8

and

V =

(
l8maxw

2
s

ϕ0gpFr2

)1/3

/4

assuming cylindrical geometry. This estimate of the volume permits to state a simple estimate of
the mass: M = ρcV , where ρc = ϕ0ρp + (1− ϕ0)ρa.

5.3.2 The energy function

The ‘box model’ approximation permits a first approximation of the kinetic energy of the front of
the flow as a function of the distance l; following the idea behind the energy line approach, it is
easy to compare it with the potential energy associated to overcoming topographical barriers:

1

2
u2 = gH

where H is the height of the barrier, the mass of the flow front is simplified, and simple gravity g
is considered, also neglecting hydraulic effects associated with flow-obstacle interactions. It is given
that

H =
1

2g
u2,

where u is the front velocity.

Rectangular geometry Besides for box model dynamical system with rectangular geometry
it is not possible to exactly integrate the differential equation, anyways an expression for the decay
of the kinetic energy is obtained deriving its implicit integral form:

u(t) =
lmax

τF ′ (F−1(t/τ))
,

but F−1(t/τ) = l
lmax

and F ′(s) = s1/2

1−s5/2
hence

u(t(l)) =

(
1− x5/2

x1/2

)
lmax/τ,

where x = l
lmax

. In this case the decay function is

H =
1

2g

[
lmax/τ

1− x5/2

x1/2

]2
, (5.1)
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and it is also possible to simplify the equation, leaving an implicit dependence on A only through
lmax:

lmax/τ = (1/5)1/3
(
wsFr2ϕ0gp

)1/3
l1/3max = (8/5)1/3C l1/3max,

where
C :=

(
wsFr2ϕ0gp

)1/3
/2.

Cylindrical geometry In this case it is possible to derive explicitly l(t) obtaining that

u(t) =
lmax (tanh(2t/τ))

−1/2

τ cosh2(2t/τ)
,

but t = artanh
2τ

[(
l

lmax

)2]
, hence

u(t(l)) =
l2max

τ l cosh2
(
artanh

[(
l

lmax

)2])

=
lmax

τx cosh2 artanh(x2)
,

where x = l
lmax

. The function

H =
1

2g

[
lmax

τx cosh2 artanh(x2)

]2
(5.2)

replaces the straight line of the classical energy cone model (note that this one diverges in zero).
Also in this case it is possible to simplify the expression:

lmax/τ = (1/8)1/4
(
w2

sg
3
pϕ

3
0Fr6V

)1/8
=

= (1/8)1/3
(
wsFr2ϕ0gp

)1/3
l1/3max = C l1/3max,

where C has the same meaning as in the rectangular case.

Remark 67 Both the two functions 1
x cosh2 artanh(x2)

and 1−x5/2

x1/2 are decreasing in x so increasing

as functions of lmax once is fixed a distance l from the vent; hence in both the cases H(l, lmax)
is an increasing function of lmax for each l > 0 and so also the invaded area obtained by energy
comparison is an increasing function of it. This is a key property for inverting such function (in
general not even continuous) and obtaining an estimate of lmax, hence of the volume, from the areal
size invaded.

5.4 The doubly stochastic Hawkes processes

In many contexts, the observations of a system are represented as events associated with elements of
a given space, that arrive randomly through time but are not stochastically independent. Chapter 4
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was focused on the simulation of the eruptive activity in a volcanic field with multivariate counting
processes capable of re-producing clusters in time-space (see also [15]). The Hawkes process struc-
ture was adopted for implementing a self-excitement behavior: such class of processes finds wide
applications in many applied fields, including seismology for modelling earthquakes replicas, neuro-
science for modelling brain activity, genome analysis, financial contagion, market micro-structure,
social networks interactions, epidemiology (see [49] for some references).

In addition, the large uncertainty that affects the available data forced us to quantify it and
explore how it may affect the model. A well known class of processes capable to take into account
an uncertainty source on the parameters is called the Cox processes, or doubly stochastic Poisson
processes (see also [88], [89], [90] for examples in volcanology). Hence we developed a time space
mathematical model that takes into account both self-exciting and uncertainty sources: we called it
a Cox-Hawkes process. In the following we explain what a time non-homogeneous Poisson process
with a given intensity function is, focusing on the Hawkes processes and giving the maximum
likelihood (ML) expressions for the main parameters.

5.4.1 Cox processes

Definition 68 (Counting process) Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space. We say
that Z = (Zt)t≥0 is a counting process if it is non-decreasing, càdlàg, integer valued (and finite all
times), with all its jumps of height 1.

This wide class includes the Poisson processes (homogeneous and non-homogeneous), the renewal
processes and even non-stationary processes. The counting processes are representable as special
point processes (see e.g. [44]), assuming them as random measures supported on the points of the
real positive line.

Definition 69 (Point process) A boundedly finite measure is a measure µ on the Borel family
of a complete separable metric space X such that µ(A) < +∞ for all A ∈ B(X ) that is bounded. A
point process N is a boundedly finite and integer valued random measure. A simple point process
is a point process N∗ such that a.s. for each x ∈ X verifies N{x} = 0 or 1, and we have that
N∗ =

∑
i δxi , where δxi are the Dirac-delta for some family of points xi ∈ X

In particular each counting process Z can be associated to a simple point process N∗ on R+:
for each interval [0, t] we define N∗([0, t]) = Zt and extend the measure to the Borel σ-algebra.
Moreover, the same relation define uniquely a counting process Z for each given simple point
process N∗ on R+ (see [46]). In the sequel we will define Cox and Hawkes as counting processes,
but without loss of generality we can assume them as point processes. The average density of points
of a counting process is represented by its intensity function.

Proposition 70 (Intensity function) Let Z be a (Ft)-adapted counting process. There is a unique
non-decreasing predictable process (Λt)t≥0, called compensator of Z, such that (Zt − Λt)t≥0 is a
(Ft)t≥0-local martingale. The (distributional) time derivative (λt)t≥0 of the compensator is called
intensity function (or measure) of Z (see [46], [87]).

The homogeneous Poisson processes assume independent identically distributed exponential time
intervals between the events: they are ruled by a constant intensity parameter λ directly representing
the mean number of points extracted in each unit of time. Taking into account deterministic locally
integrable intensity functions λ(t) and still assuming exponentially distributed renewal times, leads
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to the class of non-homogeneous Poisson processes (NHPP). Sometimes this class is assumed to
include also the spatially non-homogeneous Poisson processes, which are point processes on a space-
time domain.

Definition 71 (Non-homogeneous Poisson process) Given a non-negative function λ defined
on R+ and such that λ ∈ L1([0, T ]) for all T > 0, we say that a counting process Z is a NHPP of
intensity λ(·) if it has independent increments and for all t > s it satisfies

P (Zt − Zs = n) = exp(−Λ(s, t))
Λ(s, t)n

n!
,

where Λ(s, t) =
∫ t

s
λ(u)du. The function Λt := Λ(0, t) is the compensator of the Poisson process (it

is easy to prove that the process Z − Λ is a martingale).

An immediate consequence of the definition is the trivial existence of such processes: if we take
Z a homogeneous Poisson process with intensity equal to 1 and Λ a continuous increasing function
defined on R+ such that Λ(0) = 0, then the process Yt = ZΛ(t) is a NHPP with compensator Λ.
This principle implies the following result.

Lemma 72 (Sample space) Let Z be a homogeneous Poisson process with intensity equal to 1,
that is defined on the probability space (Ω,F , P ). Then every NHPP may be defined on (Ω,F , P ).

We also state a fundamental principle that will be useful to simulate NHPPs from the outcomes
of an assigned homogeneous Poisson process; this is called the thinning property (see [46]).

Proposition 73 (Thinning property) Let N be a NHPP with intensity λ(·) and let I = (τi)i=1,...,n

the instants of its first n points in [0, T ]. Let λ′ is a positive function such that λ′(t) < λ(t) in [0, T ].
Then we define a subfamily I ′ ⊆ I eliminating the instant τi with probability 1−λ′(τi)/λ(τi). Then
I ′ contains the instants on the interval [0, T ] of the first points of a NHPP with intensity λ′(·).

A more general class of NHPP is obtained assuming the intensity functions as (nonnegative)
random variables themselves: both the Cox processes and the Hawkes processes belong to this class
(see [44], [46]).

Definition 74 (Cox process) Let Z be a counting process with a random intensity function λ(t, ω).
Assume that Z conditional on each trajectory of λ, i.e. Z|λ, is a NHPP. Then Z is called a Cox
process, or doubly stochastic Poisson process.

In particular the intensity can always be sampled before sampling the counting process. The
existence of such a process once given an arbitrary intensity process λ is straightforward on a
probability space Ω := Ω1 ×Ω2, where on the first space we extract the random intensity and then
on the second space we extract the trajectory as a NHPP of that intensity; we remark that using
Lemma 72 the space Ω2 can be fixed a priori.

5.4.2 Self-interacting processes

If we do not assume the independence of a random intensity from the previously observed events of
the counting process, we can implement a self-interaction behavior. Assuming to take an intensity
function λ(t, ω) that is a predictable process with respect to the filtration, we include also the
important class of Hawkes processes described in the following.
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Definition 75 (Conditional intensity) Let Z be a counting process with a random intensity
function λ(t, ω) which is a predictable process. A predictable process is always F− measurable, so
using the Doob lemma, we have that

λ(t, ω) = λ∗(t, t1(ω), . . . , tn(ω)(ω)),

where (ti(ω))0<i<n(ω) is the family of the instants of the points of the process before t, and λ∗(·)
is a function defined on the finite sequences of positive numbers. This function λ∗(·) is called the
conditional intensity of Z.

Remark 76 The concept that is behind the general definition of the conditional intensity of a
general point process is the Radon-Nikodym derivative of the so called Campbell measure associated.
Let Z be a non-exploding counting process: then we consider the associated simple point process
N(ω) defined above. If we take Ω as the metric space of all the boundedly finite measures on R+

with its Borel σ-algebra, and we define U := R+ × Ω, we can introduce the Campbell measure as
the measure N ⊗ P on U . Then it is possible to prove that the conditional intensity λ of Z is the
Radon-Nikodym derivative of this measure with respect to L⊗P (where L is the Lebesgue measure);
see more details in [46].

This leads to the possibility to define a priori the function λ∗ for representing the behaviour of
the process.

Definition 77 (Hazard functions) A counting process Z is called regular if for each sequence
of instants I = (t1 < · · · < tn−1) there exists a conditional density pn(t|t1, . . . , tn−1) associated to
the probability distribution of the instant of the nth point after n− 1 points on the given times. We
define Sn(t|t1, . . . , tn−1) as the survival function for this probability measure. For all n ∈ N the nth

hazard function of Z is

hn(t|t1, . . . , tn−1) :=
pn(t|t1, . . . , tn−1)

Sn(t|t1, . . . , tn−1)
.

In the simple case of a homogeneous Poisson process of intensity λ, we have

pn(t|t1, . . . , tn−1) = λ exp (−λ(t− tn−1)) ,

Sn(t|t1, . . . , tn−1) = exp (−λ(t− tn−1)) , hn(t|t1, . . . , tn−1) = λ

for each family I of instants before t. Moreover in general from the definition pn = − d
dtSn we obtain

that ∫ t

tn−1

hn(s|t1, . . . , tn−1)ds = − log (Sn(t|t1, . . . , tn−1)) ,

Sn(t|t1, . . . , tn−1) = exp

(
−
∫ t

tn−1

hn(s|t1, . . . , tn−1)ds

)
,

hence

pn(t|t1, . . . , tn−1) = hn(s|t1, . . . , tn−1) exp

(
−
∫ t

tn−1

hn(s|t1, . . . , tn−1)ds

)
.

Using the hazard functions we can give a more general definition for the conditional intensity
λ∗ given a sequence of instants I = (t1 < · · · < tM ):

λ∗(t|t1, . . . , tM ) =

{
h1(t), 0 < t ≤ t1;
hn(t|t1, . . . , tn−1), tn−1 < t ≤ tn.



CHAPTER 5. ADDENDUM 130

We remark that the choice of the hazard functions or of the conditional densities corresponds
to assume a density for the Janossy measures, a family of symmetrical distributions on Rn

+, char-
acterizing uniquely the law of the counting process (see [46]). The following is a simple existence
result for a counting process of given hazard functions (hn)n≥0. This is a local result: the counting
process is not bounded in general and could still explode after an arbitrarily small time τ(ω).

Theorem 78 (Local existence) Let (hn)n≥0 be a family of functions such that hn : Sn → R,
where Sn is the set of strictly increasing n-uples of positive real numbers. We will follow the notation
hn(t|t1, . . . , tn−1) where (t1 < · · · < tn−1 < t) ∈ Sn. Then there exists a possibly exploding counting
process N such that its intensity is well defined and coincides with

λ(t, ω) = hn(t|t1(ω), . . . , tn−1(ω))

for each n,t such that tn−1(ω) < t < tn, where we assumed t0 = 0 for simplicity. The trajectory
N(ω) will be finite at least for all the times in an interval [0, τ(ω)), where τ is a strictly positive
random variable.

Proof. Let N0 be a NHPP of intensity λ1(t) = h1(t), defined on a probability space Ω1. Let

τ1(ω1) = tN
0

1 (ω1) be the instant of its first point. For each ω1 ∈ Ω1 we define N1(ω1) on the space
Ω2, as a NHPP of intensity

λω1
2 (t) = h2(t|τ1(ω1))

for all t > τ1(ω1), and null otherwise. Let τ2(ω1, ω2) = t
N1(ω1)
1 (ω2) be the instant of its first point. In

general for each n ∈ N we assume a recursive definition for Nn(ω1, . . . , ωn) as a NHPP of intensity

λω1,...,ωn

n+1 (t) = hn+1(t|τ1(ω1), . . . , τn(ω1, . . . , ωn))

for all t > τn(ω1, . . . , ωn), and null otherwise. Using the notation N i|τi to call the process N i

arrested at a stopping time τi, we can define the counting process N :=
∑∞

i=0 N
i|τi+1 , on the

probability space Ω :=
∏∞

i=0 Ωi. Its intensity verifies the hypotheses. The process in general does
not explode before a time τ(ω) = supi τi(ωi). Moreover, thanks to Lemma 72, each space Ωi has
not to depend on the previous extractions and can be fixed a priori. �

A multivariate counting process is a family (Z1
t , . . . , Z

n
t )t≥0 of counting processes, and may be

considered as a point process on Rn
+. From a practical point of view each component Zi

t records
the number of events of the i-th component of a system during [0, t] or equivalently the time
stamps of the observed events. Under relatively weak assumptions (see [46]) a multivariate counting
process is characterized by its intensity process (λ1

t , . . . , λ
n
t )t≥0: this function is as usual defined as

the (distributional) derivative of the compensator of Z and heuristically satisfies the differential
expression

λi
tdt = P

(
Zi has a jump in [t, t+ dt]|Ft

)
, i = 1, . . . , n

where Ft denotes the sigma-algebra generated by (Zi)1≤i≤n up to time t.

5.4.3 Hawkes processes

Assuming the most general multivariate framework, following [49] we consider a countable directed
graph G = (S, E) with vertices i ∈ S and (directed) edges e ∈ E . We write e = (j, i) ∈ E for
the oriented edge. We also need to specify the following parameters: a kernel of causal functions
φ = (φij , (i, j) ∈ E) with φij : [0,+∞) 7→ R and a (possibly) nonlinear intensity component f =
(fi, i ∈ S) with fi : R 7→ [0,+∞). This is equivalent to impose the hazard functions of the process.
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Definition 79 A multivariate Hawkes process with parameters (G,φ, f) is a family of (Ft)t≥0-
adapted counting processes (Zi

t)i∈S,t≥0 such that

(i) almost surely, for all i ̸= j, (Zi
t)t≥0 and (Zj

t )t≥0 never jump simultaneously,

(ii) for every i ∈ S, the compensator (Λi
t)t≥0 of (Zi

t)t≥0 has the form Λi
t =

∫ t

0
λi
sds, where the

intensity process (λi
t)t≥0 is given by

λi
t = fi

∑
j→i

∫ t

0

φij(t− s)dZj
s

 ,

with the notation
∑

j→i for summation over {j : (j, i) ∈ E}.

We say that a Hawkes process is linear when fi(x) = µi + x for every x ∈ R, i ∈ S, with µi ≥ 0
and when φji ≥ 0. This is the case of Chapter 4, and µi can be interpreted as a baseline Poisson
intensity. In the degenerate case φij = 0, we actually retrieve homogeneous Poisson processes.

A multivariate Hawkes process (Zi
t)i∈S,t≥0 with parameters (G,φ, f) behaves as follows. For

each i ∈ S, the rate of jump of Zi is, at time t,

λi(t) = fi

∑
j→i

∑
k≥1

φji(t− T j
k )1{T j

k≤t}

 ,

where (T j
k )k≥1 are the jump times of Zj . In other words, each time one of the Zjs has a jump,

it excites its neighbors in that it increases their rate of jump (in the usual situation when f is
increasing and φ positive). If φ is positive and decreases to 0 the influence of a jump decreases and
tends to 0 as time evolves.

We will give an existence and uniqueness result for Hawkes processes reported from [49]. It is
based on the classical idea (see also [22]) of writing the process as the solution of a system of Poisson
driven SDEs and of finding a set of assumptions on the parameters under which we can prove the
pathwise existence and uniqueness for this system of SDEs. Consider, on a filtered probability space
(Ω,F , (Ft)t≥0, P ), a family (πi(dsdz), i ∈ S) of independent identically distributed (Ft)t≥0-Poisson
measures with intensity measure dsdz on [0,+∞)× [0,+∞).

Definition 80 A family (Zi
t)i∈S,t≥0 of càdlàg (Ft)t≥0-adapted processes is called a multivariate

Hawkes process with parameters (G,φ, f) is a.s., for all i ∈ S, all t ≥ 0

Zi
t =

∫ t

0

∫ ∞

0

1{z≤fi(
∑

j→i

∫ s−
0

φji(s−u)dZj
u)}π

i(dsdz).

This integral formulation is consistent with Definition 79.

Proposition 81 A Hawkes process in the sense of Definition 80 is also a Hawkes process in the
sense of Definition 79. Vice versa, for each Hawkes process Z = (Zi

t)i∈S,t≥0 in the sense of Defini-
tion 79 we can build (on a possibly enlarged space) a family of independent identically distributed
Poisson measures (πi(dsdz), i ∈ S) such that Z is a Hawkes process in the sense of Definition 80.
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Proof. The first point is straightforward: for a Hawkes process (Zi
t)i∈S,t≥0 in the sense of Definition

80, for every i ∈ S, the compensator of Zi is∫ t

0

∫ ∞

0

1{z≤fi(
∑

j→i

∫ s−
0

φji(s−u)dZj
u)}dsdz

with equals to ∫ t

0

fi

∑
j→i

∫ s−

0

φji(s− u)dZj
u

 ds.

The independence of the Poisson random measures guarantees that for all i ̸= j the processes
(Zi

t)t≥0 and (Zj
t )t≥0 a.s. never jump simultaneously. The vice versa is more delicate, and the proof

can be found in [46]: it is based on the construction algorithm of Lewis-Shedler, extended by Ogata.
�

Still following [49], the following set of assumptions will guarantee the well-posedness of Defini-
tion 80.

Definition 82 A set of parameters (G,φ, f) is regular if there are some non-negative constants
(ci)i∈S , some positive weights (pi)i∈S and a locally integrable function ϕ : [0,+∞) 7→ [0,+∞) such
that

(i) for every i ∈ S, every x, y ∈ R, |fi(x)− fi(y)| ≤ ci|x− y|,

(ii)
∑

i∈S fi(0)pi < +∞,

(iii) for every s ∈ [0,+∞), every j ∈ S,
∑

i,(i,j)∈E cipi|φji(s)| ≤ pjϕ(s).

We remark that if S is finite, the previous properties are satisfied (with pi = 1 for all i ∈ S) as
soon as fi is Lipshitz continuous for all i ∈ S and φji is locally integrable for all (j, i) ∈ E . We give
here some technical results about convolution equations.

Lemma 83 Let ϕ : [0,+∞) 7→ R be locally integrable and let α : [0,+∞) 7→ R have finite variations
on compact intervals and satisfy α(0) = 0. Then for all t ≥ 0,∫ t

0

∫ s−

0

ϕ(s− u)dα(u)ds =

∫ t

0

∫ s

0

ϕ(s− u)dα(u)ds =

∫ t

0

ϕ(t− s)α(s)ds.

Proof. First we clearly have that∫ s−

0

ϕ(s− u)dα(u) =

∫ s

0

ϕ(s− u)dα(u)

for almost every s ≥ 0, whence we obtain the first equality. Using twice the Fubini theorem,∫ t

0

(∫ s

0

ϕ(s− u)dα(u)

)
ds =

∫ t

0

(∫ t

u

ϕ(s− u)ds

)
dα(u) =

∫ t

0

(∫ t−u

0

ϕ(v)dv

)
dα(u) =

∫ t

0

(∫ t−v

0

dα(u)

)
ϕ(v)dv =

∫ t

0

α(t− v)ϕ(v)dv,

from which the conclusion follows, using the substitution s = t− v. �
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Lemma 84 Let ϕ : [0,+∞) 7→ [0,+∞) be locally integrable and g : [0,+∞) 7→ [0,+∞) be locally
bounded.

(i) Consider a locally bounded non-negative function u such that

ut ≤ gt +

∫ t

0

ϕ(t− s)usds

for all t ≥ 0. Then sup[0,T ] ut ≤ CT sup[0,T ] gt, for some constant CT depending only on T > 0
and ϕ.

(ii) Consider a sequence of locally bounded non-negative functions un such that

un+1
t ≤

∫ t

0

ϕ(t− s)un
t ds,

for all t ≥ 0, all n ≥ 0. Then sup[0,T ]

∑
n≥0 u

n
t ≥ CT , for some constant CT depending only

on T > 0, u0 and ϕ.

(iii) Consider a sequence of locally bounded non-negative functions un such that

un+1
t ≤ gt +

∫ t

0

ϕ(t− s)un
s ds,

for all t ≥ 0, all n ≥ 0. Then sup[0,T ] supn≥0 u
n
t ≤ CT , for all T ≥ 0 and for some constant

CT depending only on T > 0, u0, g and ϕ.

Proof. We start with point (i). Fix T > 0 and consider A > 0 such that
∫ T

0
ϕ(s)1{ϕ(s)≥A}ds ≤ 1/2.

Then for all t ∈ [0, T ],

ut ≤ gt +

∫ t

0

1{ϕ(t−s)≤A}ϕ(t− s)usds+

∫ t

0

1{ϕ(t−s)>A}ϕ(t− s)usds ≤ gt +A

∫ t

0

usds+ sup
[0,t]

us/2,

from which we deduce that

sup
[0,t]

us ≤ 2 sup
[0,t]

gs + 2A

∫ t

0

usds.

We then can apply the standard Grönwall Lemma to get

sup
[0,T ]

us ≤ 2

(
sup
[0,T ]

gs

)
e2AT .

To check point (iii), put vnt = supk=0,...,n u
k
t . One easily checks that

vnt ≤ u0
t + gt +

∫ t

0

ϕ(t− s)vns ds,

for all n ≥ 0. By point (i),
sup
[0,T ]

vnt ≤ CT sup
[0,T ]

(gt + u0
t ).
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Letting n increase to infinity concludes the proof. Point (ii) follows from point (iii), since vnt =∑n
k=0 u

k
t satisfies

vn+1
t ≤ u0

t +

∫ t

0

ϕ(t− s)vns ds.

�

The proof of the following Theorem is based on a Cauchy approximation of the solution, thanks
to Lemma 83 and 84.

Theorem 85 If the set of parameters (G,φ, h) is regular, then exists a pathwise unique multivariate
Hawkes process (Zi

t)i∈S,t≥0 such that
∑

i∈S piE[Zi
t ] < +∞ for all t ≥ 0.

Proof. We first prove uniqueness. Let thus (Zi
t)i∈S,t≥0 and (Z̃i

t)i∈S,t≥0 be two solutions satisfying
the conditions of Definition 80. Set

∆i
t :=

∫ t

0

|d(Zi
s − Z̃i

s)|, ∀i ∈ S, t ≥ 0,

that is the total variation norm of the signed measure d(Zi
s − Z̃i

s) on [0, t]. We also put δit := E[∆i
t]

and first prove that

δit ≤ ci

∫ t

0

∑
j→i

|φji(t− s)|δjsds.

Indeed we have

∆i
t =

∫ t

0

∫ ∞

0

∣∣∣1{z≤fi(
∑

j→i

∫ s−
0

φji(s−u)dZj
u)} − 1{z≤fi(

∑
j→i

∫ s−
0

φji(s−u)dZ̃j
u)}
∣∣∣πi(dsdz).

Taking expectations, we deduce that

δit =

∫ t

0

E

∣∣∣∣∣∣fi
∑

j→i

∫ s−

0

φji(s− u)dZj
u

− fi

∑
j→i

∫ s−

0

φji(s− u)dZ̃j
u

∣∣∣∣∣∣
 ds

≤ ci
∑
j→i

E

[∫ t

0

∫ s−

0

|φji(s− u)|d∆j
uds

]
by Definition 82-(i). Using Lemma 83 we see that∫ t

0

ds

∫ s−

0

|φji(s− u)|d∆j
u =

∫ t

0

|φji(t− u)|d∆j
udu

which, plugged into the previous expression yields the wanted inequality. Set δt :=
∑

i∈S piδ
i
t, where

the weights pi were introduced in Definition 82-(ii). By assumption, δt is well defined and finite.
We infer by the expression just proved that

δt ≤
∫ t

0

∑
i∈S

pici
∑
j→i

|φji(t− s)|δjsds.
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By Definition 82-(iii),

δt ≤
∫ t

0

∑
j∈S

∑
i,(j,i)∈E

cipi|φji(t− s)|ds ≤
∫ t

0

∑
j∈S

pjδ
j
sϕ(t− s)ds =

∫ t

0

ϕ(t− s)δsde.

Lemma 84-(i) thus implies that δt ≡ 0, from which uniqueness follows. We now prove existence. Let
Zi,0
t := 0 and , for n ≥ 0,

Zi,n+1
t :=

∫ t

0

∫ ∞

0

1{z≤fi(
∑

j→i

∫ s−
0

φji(s−u)dZj,n
u )}π

i(dsdz).

We define

δi,nt := E

[∫ t

0

∣∣dZi,n+1
s − dZi,n

s

∣∣]
and δnt :=

∑
i∈S piδ

i,n
t . As in the proof of uniqueness, we obtain, for n ≥ 0,

δn+1
t ≤

∫ t

0

ϕ(t− s)δns ds.

Next, we put mi,n
t := E[Zi,n

t ]. By Definition 82-(i), fi(x) ≤ fi(0) + ci|x|, whence

mi,n+1
t ≤ E

∫ t

0

fi(0) + ci
∑
j→i

∫ s−

0

|φji(s− u)|dZj,n
u

 ds


≤
∫ t

0

fi(0) + ci
∑
j→i

|φji(t− s)|mj,n
s

 ds,

where we used that, by Lemma 83,∫ t

0

∫ s−

0

|φji(s− u)|dZj,n
u ds =

∫ t

0

|φji(t− u)|Zj,n
u du

Setting un
t :=

∑
i∈S pim

i,n
t and using Definition 82-(ii,iii)

un+1
t ≤ t

∑
i∈S

fi(0)pi +

∫ t

0

∑
i∈S

pici
∑
j→i

|φji(s− u)|mj,n
s ds ≤ Ct+

∫ t

0

ϕ(t− s)un
s ds.

Since u0
t = 0 and ϕ is locally integrable, by induction we have that un is locally bounded for all

n ≥ 0. Consequently, δn is also locally bounded for all n ≥ 0. Lemma 84-(ii) implies that for all
T ≥ 0,

∑
n≥1 δ

n
T < +∞. This classically implies that the sequence is Cauchy and thus converges:

there exists a family (Zi
t)i∈S,t≥0 of càdlàg non-negative adapted processes such that for all T ≥ 0,

lim
n

∑
i∈S

piE

[∫ T

0

|dZi
s − dZi,n

s |

]
= 0.

Passing to the limit the recursive definition of Zn
t we deduce that the family of processes solves the

expression of Definition 80. Finally, Lemma 84-(iii) implies that supn u
n
t < +∞ for all t ≥ 0, from

which
∑

i∈S piE[Zi
t ] < +∞ as desired. �
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5.4.4 Galton-Watson formulation and likelihood expression

Now we will produce some quantitative estimates for a Hawkes process Z, based on the definition
of an auxiliary Galton-Watson process W representing the branching of Z. For simplicity we will
restrict to the case of a univariate linearly self-exciting counting process:

S = {x}, E = (x, x), hx = λ0 + x, φxx = φµ

that is the density of a measure ν called infectivity measure. The intensity becomes in this case

λ(t, ω) = λ0 +
∑

0<ti(ω)<t

φν(t− ti(ω)) =

∫ t

0

φν(t− u)dZu.

Definition 86 A Galton-Watson process (Wn)n≥0 with offspring distribution p = (pk)k≥0 is a
discrete-time Markov chain taking values in the set N whose transition probabilities are as follows:

P{Wn+1 = k|Wn = h} = (p∗h)k

Where p∗h denotes the hth convolution of the distribution p. The default initial state is W0 ≡ 1.

The recursive structure leads to a simple set of relations among the probability generating
functions of the random variables Wn:

Proposition 87 Denote by ηn(t) = E[tWn ] the probability generating function of the random vari-
able Wn, and by η(t) =

∑∞
k=0 pkt

k the probability generating function of the offspring distribution.
Then ηn is the n-fold composition of η by itself, that is

η0 = Id, ηn = η◦n, ∀n > 0.

Proof. We use the recursive structure directly to deduce that Wn+1 is the sum of W1 conditionally
independent copies of Wn . Thus,

ηn+1(t) = E[tWn+1 ] = E[ηW1
n ] = η(ηn(t)).

By induction on n, this is the (n+ 1)th iterate of the function η(t). �

Corollary 88 Let m :=
∑∞

k kpk < +∞ be the mean offspring; then the expected size of the nth

generation is E[Wn] = mn. Moreover if σ := V ar[W1] is the variance of the offspring, then the
variance of the size of the nth generation is V ar[Wn] = (σ +m2 +m) 1−mn

1−m mn−1 +mn −m2n.

Proof. From the properties of the generating functionals we have that

E[Wn] = lim
t→1−

η′n(t) = lim
t→1−

d

dt
η◦n(t) = mn.

In the same way we can calculate the second statement:

V ar[Wn] = E[W 2
n − E[Wn]

2] = lim
t→1−

η′′n(t) + η′n(t)− (η′n(t))
2
=

lim
t→1−

η′′(t)η′(t)n−1
n−1∑
k=0

η′(t)k + η′(t)n − η′(t)2n =
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(E[W 2
1 ]−m)

1−mn

1−m
mn−1 +mn −m2n = (σ +m2 +m)

1−mn

1−m
mn−1 +mn −m2n

that is the wanted expression. �

Hence if m < 1 the limit size of the process is the finite sum of the geometric series
∑∞

n mn =
1

1−m and the Galton-Watson process Wn is called subcritical, otherwise it tends to an infinite size
and the process is called supercritical if m > 1, critical if m = 1.

From a heuristic point of view, the points of a Hawkes process are of two types: ‘immigrants’
without ancestors in the process, and ‘offspring’ that are produced by existing points. The immi-
grants arrive according to a homogenous Poisson process with constant rate λ0 while the offspring
arise as elements of a NHPP that is associated with some point already constructed. Each immi-
grant has the potential to produce descendants whose numbers in successive generations constitute
a Galton-Watson branching process.

Definition 89 Let Z be a Hawkes process with intensity λ(t, ω) defined above. Let Zp be a NHPP
with intensity equal to φν(t). We define the related Galton-Watson process (WZ

n )n≥0, that has
offspring distribution equal to the law of

lim
t→+∞

Zp
t =

∫
R+

φν(t)dt = ν(R+).

To be more accurate we can trivially decompose the related point process measure N to the sum
of two random measures: N0 ruled by the intensity λ0 and representing the immigrants, and Nc :=
N−N0 representing the offspring. The related counting process are Z0 and Zc respectively. Because
of its definition it is straightforward to define the intensity function of the offspring conditional to
the outcome (tZ

0

i )i>0 of the process Z0

λZc

(t, ω) =
∑

0<tZ
0

i (ω)<t

φν(t− tZ
0

i (ω)) +
∑

0<tZ
c

j (ω)<t

φν(t− tZ
c

i (ω));

using this conditional decomposition it is possible to define

λZc,i

(t, ω) := φν(t− tZ
0

i (ω)) +
∑

0<tZ
c,i

j (ω)<t

φν(t− tZ
c,i

j (ω)),

and it is easy to see that λZc

(t, ω) =
∑

i λ
Zc,i

(t, ω). Each of these conditional sub-processes (Zc,i)i>0

represents the offspring of a single immigrant point and its random limit size 1+limt→+∞ Zc,i
t follows

the law of the total size of the related Galton-Watson process WZ . Passing to the point process
measures formulation, we can prove in the same way that for each Borel set A ∈ B(R+) we have

that E[N(A)] ≤ E[N0(A)]
1−m .

Proposition 90 Let Z be a Hawkes process with E[
∫
R+

φν(t)dt] = m < 1. Then the process is

almost surely finite, and for each t ∈ R+

E[Zt] ≤
E[Z0

t ]

1−m
.
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Proof. This inequality holds because the set R+ contains all the generations of the related branching
process W . We have that

E[Zt] = E[Z0
t + Zc

t ] = E[Z0
t ] + E

[∑
i

Zc,i
t

]
,

but because of the independence of Z0 and the family of identically distributed random variables
Zc,i, it is easy to obtain

= E[Z0
t ] + E[Z0

t ]E[Zc,1
t ] = E[Z0

t ](1 + E[Zc,1
t ]).

The expression

1 + E[Zc,1
t ] ≤ 1 + E

[
lim

t→+∞
Zc,1
t

]
=

1

1−m

that is the limit size of the related Galton-Watson process. Hence we obtain the wanted bound. �

Focusing on the parameters of an Hawkes process, we report the likelihood expression for an
arbitrary time record. We define a univariate model, based on a linear Hawkes process with an
exponential decay of self-exciting: we set

φν(t− s) = h exp(−k(t− s))

where h, k with λ0 are the three main parameters that drive the model. The multivariate case
implemented in Chapter 4 corresponds to assuming

G = (S, E) = ((1, . . . ,M), (j, j)j=1,...,M ) , hj(x) = h(x) = q(j)λ0 + x, φj,j = φν ,

where q(j) is a long-term (base rate) spatial probability of vent opening in the subset j of the caldera
partition in M zones (defined in Chapter 2). The time parameters have a simple interpretation with
the help of the related Galton-Watson process, explained in Chapter 4:

µ = h/k, T = ln(20)/k, n = λ0T0,

where µ is the mean offspring (the expected size of the first generation of a single element), T the
95th percentile of the infectivity measure (a threshold after whom only a 5% of the initial self-
exciting remains), and n the mean number of base rate eruptions on the time domain [0, T0]. We
conclude reporting a result about the likelihood of a time record for a univariate Hawkes process,
that it is easy to generalize for obtaining Proposition 30.

Proposition 91 Let ((ti)i=1,...,n, T0 = tn+1) be an increasing set of times, let Z be a Hawkes
process with intensity function λ, then the likelihood of (ti)i=1,...,n being the instants of the points
of Z is obtained by

L ((ti)i=1,...,n, T0) =
n∏

i=1

λ(ti) exp

(
−
∫ ti+1

ti

λ(s)ds

)
=

(
n∏

i=1

λ(ti)

)
exp

(
−
∫ T0

0

λ(s)ds

)
,

where ∫ T0

0

λ(s)ds = λ0T0 −
n∑

i=1

(
h

k
(exp(−k(T0 − ti))− 1)

)
,
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and

logL((ti)i=1,...,n, T0) =
n∑

i=1

log λ(ti)− λ0T0 +
n∑

i=1

h

k
(exp(−k(T0 − ti))− 1) .



Chapter 6

Supporting information

6.1 Summary

In this chapter we include additional material concerning some technical details of the study. First
it is reported the seed questionnaire that was adopted for obtaining the experts’ scores (from W.P
Aspinall, personal communication), the list of the true values is available on request. Then there is
the complete and anonymous response list given by each expert to the seed and the target questions,
including some range graphs of the results. After that are reported all the most important computer
codes that were implemented during this study: all of them have been developed in the R software
environment (e.g. [135]) and are referred as R-codes. At last there is a list of the principal symbols
adopted in this study.
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6.2 The expert judgment data on Campi Flegrei 

6.2.1 Seed questionnaire 
In the following it is reported a copy of the questionnaire that was adopted for obtaining the experts scores. 
 
These are the ‘seed’ questions for calibrating individual expert’s inputs, ‘informativeness’ and ‘expected relative 
frequency (ERF)’ in order to compute relative scores via EXCALIBUR and R software, to produce weightings for 
pooling responses in the elicitation of Logic Tree target items. Please provide both your ‘credible range’ of 
uncertainty (low value <-> high value), and your ‘central’ estimate of the median value.  The credible range should 
indicate the lowest and highest values you believe must encompass the ‘true’ answer with about 90% confidence 
(i.e. there is only a 5% chance the value falls below your lower value, and only a 5% chance it is higher than your 
upper value). For calibration and informativeness assessments your ‘central’ estimate should represent the median 
(50%ile) value of the uncertainty distribution - i.e. the value at which you judge there is an equal likelihood that the 
true realization will be above or below this value; instead for ERF calculation and Monte Carlo aggregation 
purposes the estimate is assumed as the mode, or most likely value. The distribution shape of your credible range 
need not be symmetric about the median. 
 
1. Given your knowledge of the frequency of activity since the Neapolitan Yellow Tuff eruption ~15ka, what is 

the mean recurrence interval of eruptions at Campi Flegrei volcano, in years, in the last 15 ka (Data source: 
De Vito et al. [1999] or Orsi et al. [2004]) 

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
2. At Campi Flegrei what percentage of eruptions in the last 15 ka has taken place from a vent located within a 

4 km radius from the Temple of Serapis in Pozzuoli?   
 

low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
3. What percentage of explosive eruptions at Campi Flegrei volcano in the last 15 ka generated 10 cm 

isopachs that covered an area more than 500 km2? (Source Orsi et al. [2004]). (As a percentage of the 22 
deposits measured)  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
4. A 350m borehole has been drilled into the Colli Albani volcanic district. Gas and water samples were taken 

during a blow-out.  From the water sample, what was the amount of HCO3, in meq/l ?  
 

low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
 
5. For violent strombolian type eruptions at Vesuvius what is the mean area in km2 enclosed by the 10 cm 

isopach (Data source: Arrighi et al. [2001])?  
 

low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 



6. At Vesuvius, what percentage of eruptions of that can be classified as ‘violent strombolian’ or larger in the 
last 20,000 years show evidence (either historical or geological) for Pyroclastic Density Currents (PDCs) 
with runouts > 2 km?  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
 

7. What percentage of eruptions of sub-Plinian magnitude or larger at Vesuvius in the last 20,000 years have 
involved magmas of trachytic composition?  (Data source: Cioni et al. [2008])  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
8. At Mt Etna, what was the total area in km2 covered by lava flows erupted during the 20th Century? Note this 

is not the actual proportion of the volcano that has been covered at any time but the total numerical area 
covered, when individual lava flow areas are summed (source Andronico and Lodato [2006])  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
9. What is the volume of magma (DRE) in millions of m3 erupted as lava flows during the 20th Century at Etna 

volcano? (i.e. if you believe the median value is 100 x 106 m3, then enter 100 as your response in the 
median box)  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
 

10. In km2, what is the area of the simplified structure of the outer Campi Flegrei caldera depression (e.g. as 
mapped by Acocella [2008])?   

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
 

11. Shinohara et al. [2008] report the results of using the Multi-GAS technique to measure gas compositions in 
plumes at Etna in 2005 and 2006. They ascribe GOOD quality to four sets of measurements from the 
Voragine crater in which measurements of all three ratios: H2O / CO2, H2O / SO2 and CO2 / SO2 were 
obtained.  For these four sets of measurements, if each pairing of H2O / CO2 ratio and H2O / SO2 ratio is 
combined to produce a counterpart pseudo-ratio estimate for CO2 / SO2, then differences are found with 
respect to the measured CO2 / SO2 ratio values.  If each of these differences is expressed as a percentage 
of the corresponding measured CO2 / SO2 ratio, then what is the overall range of these differences for all 
four cases? (I.e. what is the value of [highest numerical %age difference - lowest numerical %age 
difference] when, for example, given a highest value of +100% and a lowest value of -80%, respectively, 
would therefore represent a numerical range of 180).  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
 



12. In a recent work modelling the magma dynamics and collapse mechanisms during four well-known historic 
caldera-forming events, one model input was the time duration of magma evacuation before caldera block 
began to subside.  Based on previously reported data, what value, in hours, was used for this duration in the 
case of Katmai 1912?   

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
13. The same study quoted some values for the observed total downward surface displacement of the caldera 

block in certain caldera-forming eruptions. What was the reported downward displacement for Pinatubo 
1991, in metres?  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
14. A tiltmeter network in the Campi Flegrei area has been level surveyed several times in recent years.  One 

levelling point is within 1 km of a tiltmeter in a tunnel under Mount Olibano, Pozzuoli.  What was the change 
in height of that levelling point from November 2004 to December 2006, in mm [+ for up, - for down]?  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

   

15. Juvenile pumice clasts from a pyroclastic ow in the uppermost Onoda Formation (Chijimizawa-Tuff), 
Onikobe volcano, NE Japan, were classi ed by Nakamura et al. [2008] into three colour types: white, gray, 
and dark gray. They determined experimentally the evolution of the vesicularity-permeability relation during 
a single decompression of the white and gray pumices, and obtained a value for the critical vesicularity ( C - 
expressed as a percentage). This they compared with published power-law fits for C from data of various 
eruption products with different eruption styles from several different volcanoes. What is the ratio of the 
critical vesicularity for their Onoda white and gray pumices to the typical critical vesicularity value from the 
published power-law relations?  (e.g.  if you think C pumices = 75% and if C power-law = 50%, then your 
ratio equals 1.5;   if C pumices = 25% and if C power-law = 50%, the ratio equals 0.5).  

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 

 
16.  Starting in 2004, a network of Sacks-Evertson borehole strainmeters (dilatometers) were installed in Campi 

Flegrei and near Vesuvius. At one site, near Toiano, close to the Campi Flegrei uplift centre, the 
temperature at instrument depth (~120 m) was high (60ºC) on installation, and found to be increasing 
steadily over some months, perhaps due to hydrothermal fluid flows.  For the observed rate of increase, how 
long would it take for the hole temperature to increase by 1ºC?  Please state your time units (hours, days, 
weeks…years, decades).

 
low end value (5%ile)    median (50%ile)    high end value (95%ile) 



We remark that questions 14 and 16 were excluded from the analysis based on CM, because no one of the 
experts got values near the true answers. This with ERF method was not needed. The cut-off on the calibration 
score of CM was modulated for including at least 4 of the experts. We did not average informativeness globally, 
but instead we compared it separately for each question (item weights): this increased the DM score. 
 
 
6.2.2 Experts responses list 
In the sequel are reported all the expert responses to the seed and the target questions. Mover are also 
produced the range graphs for visualize their single uncertainty ranges on the seed questions. The true values 
are reported on the graphs with a # symbol. We remark that in the list have been also included the following 4 
additional questions that we did not implement in the analysis because they were not additionally informative. 
 
[Q7A] For defining the positional long-term probability of a new vent opening, and considering only the events of 
the III Epoch, what weights would you assign to a single vent which occurred before the AMS eruption? (11 
vents identified, including AMS) (%)  
 
[Q7B] For defining the positional long-term probability of a new vent opening, and considering only the events of 
the III Epoch, what weights would you assign to a single vent which occurred after the AMS eruption? (18 vents 
identified, including Monte Nuovo) (%)  
 
[Q13A] What is the probability that the next Campi Flegrei eruption involves two (or more?) different (i.e. located 
a few kilometres from each other) vents being simultaneously active (i.e. within a few weeks of each other, or 
less)? (%)  
 
[Q14A] Considering the areas that have been invaded by PDCs from Campi Flegrei in the three epochs and 
based on the information provided, what would be the typical linear percentage error on the radius of the 
invaded area (assumed as circular) in the underestimation of the PDC invasion areas (% of the radius)? 
 
In particular Q7A and Q7B did not highlight a remarkable difference on the relative importance of the event 
location before and after AMS for what concern the production of the vent opening probability map. The 
responses to Q13A were not different from the responses to Q13 (see Table 1), which focused on the frequency 
of simultaneous events in the past eruptions instead that on the probability of the next events to be 
simultaneous. The question Q14A were redundant with Q14, with the difference that the first asked an estimate 
in percentage underestimation whereas the second an absolute underestimation (in meters); this second 
approach was preferred. 



ELICITATION SESSION RESULTS
EXPERT 1 [CM=3.2% - ERF=11.9% - EW=12.5%]

SEED QUESTIONS
Exp1    1   CF_intervals log  1.50000E+0002  2.00000E+0002  2.60000E+0002
Exp1    2 %_vent_Serapis UNI  4.00000E+0001  6.00000E+0001  8.00000E+0001
Exp1    3      %isopachs UNI  9.90000E+0000  2.00000E+0001  4.00000E+0001
Exp1    4           HCO3 log  5.00000E-0002  5.00000E+0001  5.00000E+0003
Exp1    5 Ves_10cm_isoph UNI  3.00000E+0001  1.00000E+0002  3.00000E+0002
Exp1    6      %2km_PDCs UNI  1.50000E+0001  2.50000E+0001  4.00000E+0001
Exp1    7     %trachytic UNI  1.00000E+0001  2.00000E+0001  6.00000E+0001
Exp1    8 Area_lava_flow log  3.00000E+0002  5.00000E+0002  1.20000E+0003
Exp1    9      Vol_magma UNI  1.00000E+0002  3.00000E+0002  8.00000E+0002
Exp1   10 Area_CFc_depre UNI  1.00000E+0002  1.20000E+0002  1.50000E+0002
Exp1   11 Gas_ratio_diff UNI  5.00000E+0001  2.00000E+0002  5.00000E+0002
Exp1   12 Magma_Evac_tim UNI  6.00000E+0000  2.40000E+0001  4.00000E+0001
Exp1   13     Surf._drop UNI  5.00000E+0000  2.00000E+0001  6.00000E+0001
Exp1   14  Height_change UNI -2.00000E+0001  3.00000E+0001  1.00000E+0002
Exp1   15     Crit_vesic UNI  3.00000E-0001  1.00000E+0000  1.70000E+0000
Exp1   16    Time_+1degC UNI  3.00000E-0002  3.00000E-0001  1.00000E+0000

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l)             [--------*-------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)                             [---------------*---------------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U)     [------*--------------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l) [----------------------------------*-----------------------]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U)     [-----------------*------------------------------------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U)     [---------*-------------]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U) [-------*-----------------------------------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)                                                  [-------*-------------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U) [*]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)          [----*-------]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)       [---------------------*------------------------------------------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U)  [----------*---------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U) [-*-------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U) [----------------------------*-----------------------------------------]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U)  [----*----]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U) |
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp1   17 Q1Wt_5variable uni  7.00000E+0001  9.00000E+0001  9.50000E+0001
Exp1   18   Q2Wt_Uniform UNI  5.00000E+0000  1.00000E+0001  3.00000E+0001
Exp1   19 Q3Wt_vents_loc UNI  5.00000E+0001  7.00000E+0001  9.00000E+0001
Exp1   20 Q4Wt_structure UNI  1.00000E+0001  3.00000E+0001  5.00000E+0001
Exp1   21    Q5Wt_I_vent UNI  5.00000E+0000  2.00000E+0001  4.00000E+0001
Exp1   22   Q6Wt_II_vent UNI  1.00000E+0001  3.00000E+0001  5.00000E+0001
Exp1   23  Q7Wt_III_vent UNI  3.00000E+0001  5.00000E+0001  7.00000E+0001
Exp1   24    Q7a_pre-AMS UNI  3.00000E+0001  4.50000E+0001  6.00000E+0001
Exp1   25    Q7b_postAMS UNI  4.00000E+0001  5.50000E+0001  7.00000E+0001
Exp1   26    Q8Wt_faults UNI  3.00000E+0001  6.00000E+0001  8.00000E+0001
Exp1   27 Q9Wt_fractures UNI  2.00000E+0001  4.00000E+0001  7.00000E+0001
Exp1   28   Q10_missed_I UNI  5.00000E+0000  7.00000E+0000  1.50000E+0001
Exp1   29  Q11_missed_II UNI  1.00000E+0000  2.00000E+0000  3.00000E+0000
Exp1   30 Q12_missed_III UNI  1.00000E+0000  2.00000E+0000  4.00000E+0000
Exp1   31 Q13%_Multiples UNI  5.00000E+0000  1.00000E+0001  3.00000E+0001
Exp1   32 Q13a_PnextMult UNI  5.00000E+0000  1.00000E+0001  3.00000E+0001
Exp1   33 Q14a_SpatUncer uni  1.50000E+0002  3.00000E+0002  1.00000E+0003
Exp1   34 Q14RadiusError uni  5.00000E+0000  1.00000E+0001  2.50000E+0001



ELICITATION SESSION RESULTS
EXPERT 2 [CM=0.0% - ERF=7.8% - EW=12.5%]

SEED QUESTIONS
Exp2    1   CF_intervals log  1.75000E+0002  2.00000E+0002  2.25000E+0002 
Exp2    2 %_vent_Serapis UNI  5.00000E+0001  6.00000E+0001  7.00000E+0001 
Exp2    3      %isopachs UNI  5.00000E+0000  1.00000E+0001  3.00000E+0001 
Exp2    4           HCO3 log  1.00000E+0000  1.00000E+0001  1.00000E+0002 
Exp2    5 Ves_10cm_isoph UNI  1.00000E+0002  2.00000E+0002  3.00000E+0002 
Exp2    6      %2km_PDCs UNI  4.00000E+0001  5.00000E+0001  7.00000E+0001 
Exp2    7     %trachytic UNI  1.50000E+0001  3.00000E+0001  5.00000E+0001 
Exp2    8 Area_lava_flow log  2.00000E+0001  2.50000E+0001  4.00000E+0001 
Exp2    9      Vol_magma UNI  5.00000E-0002  1.00000E+0000  3.00000E+0000 
Exp2   10 Area_CFc_depre UNI  1.00000E+0002  1.50000E+0002  2.00000E+0002 
Exp2   11 Gas_ratio_diff UNI  3.00000E+0001  4.00000E+0001  1.00000E+0002 
Exp2   12 Magma_Evac_tim UNI  2.40000E+0001  4.80000E+0001  1.20000E+0002 
Exp2   13     Surf._drop UNI  1.00000E+0002  1.50000E+0002  2.00000E+0002 
Exp2   14  Height_change UNI  5.00000E+0000  1.50000E+0001  2.50000E+0001 
Exp2   15     Crit_vesic UNI  5.00000E-0001  1.00000E+0000  1.25000E+0000 
Exp2   16    Time_+1degC UNI  1.00000E-0002  3.30000E-0001  1.00000E+0000 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l)                  [---*---]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)                                     [-------*-------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U) [---*--------------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)                [-----------*-----------]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U)                       [------------------------*-----------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U)                             [---------*------------------]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U)     [------------*-----------------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)     [---*-------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U) |
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)          [------------*-----------]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)     [*--------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U)             [--------------*-------------------------------------------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)                  [--------*--------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)               [-----*-----]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U)   [---*-]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U) |
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp2   17 Q1Wt_5variable uni  8.50000E+0001  9.00000E+0001  9.50000E+0001 
Exp2   18   Q2Wt_Uniform UNI  5.00000E+0000  1.00000E+0001  1.50000E+0001 
Exp2   19 Q3Wt_vents_loc UNI  5.50000E+0001  6.50000E+0001  8.00000E+0001 
Exp2   20 Q4Wt_structure UNI  2.50000E+0001  3.50000E+0001  4.50000E+0001 
Exp2   21    Q5Wt_I_vent UNI  2.00000E+0001  2.50000E+0001  4.00000E+0001 
Exp2   22   Q6Wt_II_vent UNI  2.00000E+0001  3.50000E+0001  4.50000E+0001 
Exp2   23  Q7Wt_III_vent UNI  3.00000E+0001  4.00000E+0001  5.00000E+0001 
Exp2   24    Q7a_pre-AMS UNI  3.00000E+0001  4.00000E+0001  5.00000E+0001 
Exp2   25    Q7b_postAMS UNI  5.00000E+0001  6.00000E+0001  7.00000E+0001 
Exp2   26    Q8Wt_faults UNI  4.00000E+0001  6.00000E+0001  7.00000E+0001 
Exp2   27 Q9Wt_fractures UNI  3.00000E+0001  4.00000E+0001  5.00000E+0001 
Exp2   28   Q10_missed_I UNI  5.00000E+0000  6.00000E+0000  9.00000E+0000 
Exp2   29  Q11_missed_II UNI  0.00000E+0000  1.00000E+0000  2.00000E+0000 
Exp2   30 Q12_missed_III UNI  1.00000E+0000  2.00000E+0000  3.00000E+0000 
Exp2   31 Q13%_Multiples UNI  5.00000E+0000  1.50000E+0001  3.00000E+0001 
Exp2   32 Q13a_PnextMult UNI  5.00000E+0000  1.50000E+0001  3.00000E+0001 
Exp2   33 Q14a_SpatUncer uni  1.00000E+0002  4.00000E+0002  8.00000E+0002 
Exp2   34 Q14RadiusError uni  5.00000E+0000  1.50000E+0001  2.50000E+0001 



ELICITATION SESSION RESULTS
EXPERT 3 [CM=0.0% - ERF=7.3% - EW=12.5%]

SEED QUESTIONS
Exp3    1   CF_intervals log  2.20000E+0002  2.50000E+0002  2.70000E+0002 
Exp3    2 %_vent_Serapis UNI  4.00000E+0000  8.00000E+0000  1.30000E+0001 
Exp3    3      %isopachs UNI  9.90000E+0000  1.80000E+0001  3.00000E+0001 
Exp3    4           HCO3 log  5.00000E+0002  2.00000E+0003  2.50000E+0003 
Exp3    5 Ves_10cm_isoph UNI  9.00000E+0001  1.50000E+0002  2.00000E+0002 
Exp3    6      %2km_PDCs UNI  6.00000E+0001  8.00000E+0001  8.50000E+0001 
Exp3    7     %trachytic UNI  6.00000E+0001  7.00000E+0001  9.00000E+0001 
Exp3    8 Area_lava_flow log  1.50000E+0001  4.00000E+0001  6.00000E+0001 
Exp3    9      Vol_magma UNI  1.00000E+0000  3.00000E+0000  5.00000E+0000 
Exp3   10 Area_CFc_depre UNI  1.90000E+0002  2.00000E+0002  2.10000E+0002 
Exp3   11 Gas_ratio_diff UNI  2.50000E+0001  1.00000E+0002  2.00000E+0002 
Exp3   12 Magma_Evac_tim UNI  3.00000E+0001  5.00000E+0001  1.00000E+0002 
Exp3   13     Surf._drop UNI  1.00000E+0002  1.80000E+0002  2.00000E+0002 
Exp3   14  Height_change UNI  2.00000E+0001  5.00000E+0001  8.00000E+0001 
Exp3   15     Crit_vesic UNI  5.00000E-0001  2.00000E+0000  3.00000E+0000 
Exp3   16    Time_+1degC UNI  2.00000E-0002  8.00000E-0002  5.00000E-0001 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l)                         [---*--]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U) [--*---]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U)     [-----*--------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)                                                [-------*]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U)                    [--------------*------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U)                                                [-------------------*---]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U)                                             [--------*-----------------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l) [---------------*-----]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U) |
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)                                 [-*--]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)    [----------*-------------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U)                 [-----------*------------------------------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)                  [-------------*---]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)                        [-----------------*-----------------]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U)   [----------*-------]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U) |
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp3   17 Q1Wt_5variable uni  7.50000E+0001  8.50000E+0001  9.50000E+0001 
Exp3   18   Q2Wt_Uniform UNI  5.00000E+0000  1.50000E+0001  2.00000E+0001 
Exp3   19 Q3Wt_vents_loc UNI  5.50000E+0001  6.00000E+0001  7.00000E+0001 
Exp3   20 Q4Wt_structure UNI  3.50000E+0001  4.00000E+0001  5.00000E+0001 
Exp3   21    Q5Wt_I_vent UNI  2.50000E+0001  3.00000E+0001  3.50000E+0001 
Exp3   22   Q6Wt_II_vent UNI  2.50000E+0001  3.00000E+0001  3.50000E+0001 
Exp3   23  Q7Wt_III_vent UNI  3.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp3   24    Q7a_pre-AMS UNI  2.50000E+0001  3.00000E+0001  4.50000E+0001 
Exp3   25    Q7b_postAMS UNI  6.00000E+0001  7.00000E+0001  7.50000E+0001 
Exp3   26    Q8Wt_faults UNI  4.00000E+0001  4.50000E+0001  6.50000E+0001 
Exp3   27 Q9Wt_fractures UNI  5.00000E+0001  5.50000E+0001  6.50000E+0001 
Exp3   28   Q10_missed_I UNI  5.00000E+0000  7.00000E+0000  9.00000E+0000 
Exp3   29  Q11_missed_II UNI  0.00000E+0000  1.00000E+0000  2.00000E+0000 
Exp3   30 Q12_missed_III UNI  0.00000E+0000  1.00000E+0000  2.00000E+0000 
Exp3   31 Q13%_Multiples UNI  3.00000E+0000  5.00000E+0000  1.00000E+0001 
Exp3   32 Q13a_PnextMult UNI  2.00000E+0000  5.00000E+0000  1.00000E+0001 
Exp3   33 Q14a_SpatUncer uni  1.00000E+0002  3.00000E+0002  1.50000E+0003 
Exp3   34 Q14RadiusError uni  5.00000E+0000  1.00000E+0001  2.00000E+0001 



ELICITATION SESSION RESULTS
EXPERT 4 [CM=0.0% - ERF=8.8% - EW=12.5%]

SEED QUESTIONS
Exp4    1   CF_intervals log  3.00000E+0002  6.00000E+0002  1.00000E+0003
Exp4    2 %_vent_Serapis UNI  4.00000E+0001  7.50000E+0001  9.50000E+0001 
Exp4    3      %isopachs UNI  2.00000E+0001  3.00000E+0001  5.00000E+0001 
Exp4    4           HCO3 log  5.00000E+0002  3.00000E+0004  5.00000E+0004 
Exp4    5 Ves_10cm_isoph UNI  1.00000E+0002  1.50000E+0002  3.00000E+0002 
Exp4    6      %2km_PDCs UNI  1.50000E+0001  2.00000E+0001  2.50000E+0001 
Exp4    7     %trachytic UNI  1.50000E+0001  2.00000E+0001  3.00000E+0001 
Exp4    8 Area_lava_flow log  1.50000E+0002  2.50000E+0002  5.00000E+0002 
Exp4    9      Vol_magma UNI  3.00000E+0002  6.00000E+0002  1.20500E+0003 
Exp4   10 Area_CFc_depre UNI  1.20000E+0002  2.00000E+0002  3.50000E+0002 
Exp4   11 Gas_ratio_diff UNI  2.00000E+0001  1.10000E+0002  1.70000E+0002 
Exp4   12 Magma_Evac_tim UNI  4.00000E+0000  1.50000E+0001  2.80000E+0001 
Exp4   13     Surf._drop UNI  5.00000E+0001  1.00000E+0002  3.00000E+0002 
Exp4   14  Height_change UNI -1.00000E+0001  2.00000E+0001  5.00000E+0001 
Exp4   15     Crit_vesic UNI  5.00000E-0001  1.50000E+0000  3.00000E+0000 
Exp4   16    Time_+1degC UNI  3.00000E-0002  1.50000E-0001  3.00000E-0001 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l)                                   [---------------------*--------------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)                             [---------------------------*--------------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U)            [-------*--------------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)                                                [---------------------*-]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U)                       [-----------*------------------------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U)     [----*----]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U)     [---*--------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)                                      [--------*----------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U)  [*-]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)               [-------------------*------------------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)   [------------*--------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U) [------*-------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)         [--------*-----------------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)       [----------------*-----------------]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U)   [-------*----------]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U) |
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp4   17 Q1Wt_5variable uni  8.00000E+0001  9.00000E+0001  9.50000E+0001 
Exp4   18   Q2Wt_Uniform UNI  5.00000E+0000  1.00000E+0001  2.00000E+0001 
Exp4   19 Q3Wt_vents_loc UNI  5.50000E+0001  7.50000E+0001  8.50000E+0001 
Exp4   20 Q4Wt_structure UNI  1.50000E+0001  2.50000E+0001  4.50000E+0001 
Exp4   21    Q5Wt_I_vent UNI  1.00000E+0001  2.00000E+0001  3.00000E+0001 
Exp4   22   Q6Wt_II_vent UNI  2.00000E+0001  3.50000E+0001  5.00000E+0001 
Exp4   23  Q7Wt_III_vent UNI  3.00000E+0001  4.50000E+0001  7.50000E+0001 
Exp4   24    Q7a_pre-AMS UNI  3.00000E+0001  4.00000E+0001  5.50000E+0001 
Exp4   25    Q7b_postAMS UNI  4.50000E+0001  6.00000E+0001  7.00000E+0001 
Exp4   26    Q8Wt_faults UNI  4.00000E+0001  6.00000E+0001  7.00000E+0001 
Exp4   27 Q9Wt_fractures UNI  3.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp4   28   Q10_missed_I UNI  4.00000E+0000  6.00000E+0000  1.10000E+0001 
Exp4   29  Q11_missed_II UNI  0.00000E+0000  1.00000E+0000  2.00000E+0000 
Exp4   30 Q12_missed_III UNI  1.00000E+0000  2.00000E+0000  3.00000E+0000 
Exp4   31 Q13%_Multiples UNI  5.00000E+0000  1.00000E+0001  3.00000E+0001 
Exp4   32 Q13a_PnextMult UNI  5.00000E+0000  1.00000E+0001  3.00000E+0001 
Exp4   33 Q14a_SpatUncer uni  1.50000E+0002  3.00000E+0002  7.50000E+0002 
Exp4   34 Q14RadiusError uni  5.00000E+0000  1.00000E+0001  2.50000E+0001 



ELICITATION SESSION RESULTS
EXPERT 5 [CM=6.8% - ERF=19.4% - EW=12.5%]

SEED QUESTIONS
Exp5    1   CF_intervals log  1.30000E+0002  2.10000E+0002  2.50000E+0002 
Exp5    2 %_vent_Serapis UNI  3.00000E+0001  5.00000E+0001  6.00000E+0001 
Exp5    3      %isopachs UNI  6.00000E+0001  7.50000E+0001  9.00000E+0001 
Exp5    4           HCO3 log  2.00000E+0001  1.00000E+0002  3.00000E+0002 
Exp5    5 Ves_10cm_isoph UNI  3.00000E+0001  5.00000E+0001  1.50000E+0002 
Exp5    6      %2km_PDCs UNI  1.00000E+0001  3.00000E+0001  6.00000E+0001 
Exp5    7     %trachytic UNI  4.00000E+0001  5.00000E+0001  7.00000E+0001 
Exp5    8 Area_lava_flow log  1.00000E+0002  3.00000E+0002  7.00000E+0002 
Exp5    9      Vol_magma UNI  5.00000E+0003  1.00000E+0004  1.30000E+0004 
Exp5   10 Area_CFc_depre UNI  1.20000E+0002  1.30000E+0002  2.50000E+0002 
Exp5   11 Gas_ratio_diff UNI  2.00000E+0001  3.00000E+0001  5.00000E+0001 
Exp5   12 Magma_Evac_tim UNI  1.80000E+0001  2.40000E+0001  3.60000E+0001 
Exp5   13     Surf._drop UNI  5.00000E+0001  2.00000E+0002  3.00000E+0002 
Exp5   14  Height_change UNI  2.00000E+0001  3.00000E+0001  5.00000E+0001 
Exp5   15     Crit_vesic UNI  1.00000E-0001  1.00000E+0000  5.00000E+0000 
Exp5   16    Time_+1degC UNI  5.00000E-0001  1.00000E+0000  3.00000E+0000 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l)         [--------------*----]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)                     [---------------*-------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U)                                          [-----------*----------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)                                [-------*-----]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U)     [----*------------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U) [------------------*---------------------------]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U)                           [--------*-----------------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)                                [-----------------*-------------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U)                  [-----------------*----------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)               [--*-----------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)   [-*-]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U)          [--*-------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)         [--------------------------*-----------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)                        [-----*-----------]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U) [-----*----------------------------]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U) *]
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp5   17 Q1Wt_5variable uni  6.50000E+0001  8.00000E+0001  9.50000E+0001 
Exp5   18   Q2Wt_Uniform UNI  5.00000E+0000  2.00000E+0001  3.50000E+0001 
Exp5   19 Q3Wt_vents_loc UNI  5.00000E+0001  6.50000E+0001  8.00000E+0001 
Exp5   20 Q4Wt_structure UNI  2.00000E+0001  3.50000E+0001  5.00000E+0001 
Exp5   21    Q5Wt_I_vent UNI  1.00000E+0001  2.50000E+0001  4.00000E+0001 
Exp5   22   Q6Wt_II_vent UNI  2.00000E+0001  5.00000E+0001  6.00000E+0001 
Exp5   23  Q7Wt_III_vent UNI  2.00000E+0001  3.50000E+0001  6.00000E+0001 
Exp5   24    Q7a_pre-AMS UNI  2.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp5   25    Q7b_postAMS UNI  4.00000E+0001  6.00000E+0001  8.00000E+0001 
Exp5   26    Q8Wt_faults UNI  4.00000E+0001  6.00000E+0001  8.00000E+0001 
Exp5   27 Q9Wt_fractures UNI  2.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp5   28   Q10_missed_I UNI  4.00000E+0000  7.00000E+0000  1.00000E+0001 
Exp5   29  Q11_missed_II UNI  0.00000E+0000  1.00000E+0000  2.00000E+0000 
Exp5   30 Q12_missed_III UNI  1.00000E+0000  2.00000E+0000  4.00000E+0000 
Exp5   31 Q13%_Multiples UNI  5.00000E+0000  1.00000E+0001  2.00000E+0001 
Exp5   32 Q13a_PnextMult UNI  5.00000E+0000  1.00000E+0001  2.00000E+0001 
Exp5   33 Q14a_SpatUncer uni  1.00000E+0002  5.00000E+0002  1.00000E+0003 
Exp5   34 Q14RadiusError uni  5.00000E+0000  1.50000E+0001  2.00000E+0001 



ELICITATION SESSION RESULTS
EXPERT 6 [CM=0.0% - ERF=13.3% - EW=12.5%]

SEED QUESTIONS
Exp6    1   CF_intervals log  2.00000E+0002  2.50000E+0002  3.00000E+0002 
Exp6    2 %_vent_Serapis UNI  7.00000E+0001  9.00000E+0001  9.50000E+0001 
Exp6    3      %isopachs UNI  4.50000E+0000  9.00000E+0000  1.35000E+0001 
Exp6    4           HCO3 log  5.00000E+0000  5.00000E+0001  1.00000E+0002 
Exp6    5 Ves_10cm_isoph UNI  5.00000E+0001  1.00000E+0002  2.00000E+0002 
Exp6    6      %2km_PDCs UNI  4.00000E+0001  6.00000E+0001  7.00000E+0001 
Exp6    7     %trachytic UNI  5.00000E+0001  8.00000E+0001  9.00000E+0001 
Exp6    8 Area_lava_flow log  2.00000E+0001  8.00000E+0001  1.50000E+0002 
Exp6    9      Vol_magma UNI  2.00000E+0000  8.00000E+0000  1.50000E+0001 
Exp6   10 Area_CFc_depre UNI  1.10000E+0002  1.30000E+0002  1.45000E+0002 
Exp6   11 Gas_ratio_diff UNI  1.00000E+0001  5.00000E+0001  1.00000E+0002 
Exp6   12 Magma_Evac_tim UNI  1.50000E+0001  3.00000E+0001  5.00000E+0001 
Exp6   13     Surf._drop UNI  3.00000E+0001  5.00000E+0001  1.00000E+0002 
Exp6   14  Height_change UNI  5.00000E+0000  1.50000E+0001  3.00000E+0001 
Exp6   15     Crit_vesic UNI  1.00000E-0001  5.00000E-0001  1.50000E+0000 
Exp6   16    Time_+1degC UNI  2.40000E+0000  4.80000E+0000  1.20000E+0001 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l)                      [------*-----]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)                                                     [---------------*--]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U) [--*--]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)                        [-----------*---]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U)          [------------*------------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U)                             [------------------*---------]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U)                                    [--------------------------*--------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)     [----------------------*---------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U) |
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)             [----*---]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)  [----*-------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U)        [--------*-----------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)     [---*--------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)               [-----*--------]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U) [-*-------]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U)  [*----]
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp6   17 Q1Wt_5variable uni  6.50000E+0001  7.00000E+0001  8.00000E+0001 
Exp6   18   Q2Wt_Uniform UNI  2.00000E+0001  3.00000E+0001  3.50000E+0001 
Exp6   19 Q3Wt_vents_loc UNI  4.50000E+0001  5.00000E+0001  5.50000E+0001 
Exp6   20 Q4Wt_structure UNI  4.50000E+0001  5.00000E+0001  5.50000E+0001 
Exp6   21    Q5Wt_I_vent UNI  1.50000E+0001  2.00000E+0001  2.50000E+0001 
Exp6   22   Q6Wt_II_vent UNI  1.50000E+0001  2.00000E+0001  2.50000E+0001 
Exp6   23  Q7Wt_III_vent UNI  5.50000E+0001  6.00000E+0001  7.00000E+0001 
Exp6   24    Q7a_pre-AMS UNI  4.50000E+0001  5.00000E+0001  5.50000E+0001 
Exp6   25    Q7b_postAMS UNI  4.50000E+0001  5.00000E+0001  5.50000E+0001 
Exp6   26    Q8Wt_faults UNI  6.00000E+0001  6.50000E+0001  7.00000E+0001 
Exp6   27 Q9Wt_fractures UNI  3.00000E+0001  3.50000E+0001  4.00000E+0001 
Exp6   28   Q10_missed_I UNI  5.00000E+0000  6.00000E+0000  7.00000E+0000 
Exp6   29  Q11_missed_II UNI  1.00000E+0000  2.00000E+0000  3.00000E+0000 
Exp6   30 Q12_missed_III UNI  3.00000E+0000  4.00000E+0000  5.00000E+0000 
Exp6   31 Q13%_Multiples UNI  5.00000E+0000  1.00000E+0001  1.50000E+0001 
Exp6   32 Q13a_PnextMult UNI  5.00000E+0000  1.00000E+0001  1.50000E+0001 
Exp6   33 Q14a_SpatUncer uni  2.50000E+0002  3.00000E+0002  4.00000E+0002 
Exp6   34 Q14RadiusError uni  8.00000E+0000  1.00000E+0001  2.00000E+0001 



ELICITATION SESSION RESULTS
EXPERT 7 [CM=89.9% - ERF=20.9% - EW=12.5%]

SEED QUESTIONS
Exp7    1   CF_intervals log  1.00000E+0002  2.10000E+0002  3.00000E+0002
Exp7    2 %_vent_Serapis UNI  1.00000E+0001  5.00000E+0001  7.00000E+0001 
Exp7    3      %isopachs UNI  1.00000E+0001  8.00000E+0001  1.00000E+0002 
Exp7    4           HCO3 log  1.00000E-0001  3.00000E+0002  5.00000E+0003 
Exp7    5 Ves_10cm_isoph UNI  1.00000E+0001  4.50000E+0001  2.00000E+0002 
Exp7    6      %2km_PDCs UNI  1.00000E+0001  3.00000E+0001  7.00000E+0001 
Exp7    7     %trachytic UNI  1.00000E+0001  5.00000E+0001  7.00000E+0001 
Exp7    8 Area_lava_flow log  5.00000E+0001  3.00000E+0002  9.00000E+0002 
Exp7    9      Vol_magma UNI  3.00000E+0003  9.00000E+0003  2.00000E+0004 
Exp7   10 Area_CFc_depre UNI  6.00000E+0001  1.50000E+0002  3.00000E+0002 
Exp7   11 Gas_ratio_diff UNI  2.00000E+0000  2.00000E+0001  7.00000E+0001 
Exp7   12 Magma_Evac_tim UNI  5.00000E+0000  2.00000E+0001  4.80000E+0001 
Exp7   13     Surf._drop UNI  2.00000E+0001  1.50000E+0002  3.00000E+0002 
Exp7   14  Height_change UNI  5.00000E+0000  3.00000E+0001  6.00000E+0001 
Exp7   15     Crit_vesic UNI  1.00000E-0001  1.00000E+0000  1.00000E+0001 
Exp7   16    Time_+1degC UNI  3.00000E-0002  1.00000E+0000  6.00000E+0000 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l) [----------------------*----------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)     [-------------------------------*---------------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U)     [---------------------------------------------------*--------------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)    [-----------------------------------------*-------------]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U) [-------*--------------------------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U) [------------------*-------------------------------------]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U) [----------------------------------*-----------------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)                    [-----------------------------*-----------------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U)           [---------------------*--------------------------------------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U) [---------------------*------------------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U) [-*------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U)  [--------*----------------]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)   [-----------------------*--------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)               [--------------*-----------------]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U) [-----*----------------------------------------------------------------]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U) *--]
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp7   17 Q1Wt_5variable uni  5.00000E+0001  8.00000E+0001  9.50000E+0001 
Exp7   18   Q2Wt_Uniform UNI  5.00000E+0000  2.00000E+0001  5.00000E+0001 
Exp7   19 Q3Wt_vents_loc UNI  4.00000E+0001  6.00000E+0001  9.00000E+0001 
Exp7   20 Q4Wt_structure UNI  2.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp7   21    Q5Wt_I_vent UNI  1.00000E+0001  3.30000E+0001  5.00000E+0001 
Exp7   22   Q6Wt_II_vent UNI  1.00000E+0001  3.30000E+0001  5.00000E+0001 
Exp7   23  Q7Wt_III_vent UNI  2.00000E+0001  3.40000E+0001  7.00000E+0001 
Exp7   24    Q7a_pre-AMS UNI  2.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp7   25    Q7b_postAMS UNI  4.00000E+0001  6.00000E+0001  8.00000E+0001 
Exp7   26    Q8Wt_faults UNI  3.00000E+0001  6.00000E+0001  8.00000E+0001 
Exp7   27 Q9Wt_fractures UNI  2.00000E+0001  4.00000E+0001  6.00000E+0001 
Exp7   28   Q10_missed_I UNI  5.00000E+0000  7.00000E+0000  1.00000E+0001 
Exp7   29  Q11_missed_II UNI  0.00000E+0000  1.00000E+0000  2.00000E+0000 
Exp7   30 Q12_missed_III UNI  1.00000E+0000  2.00000E+0000  4.00000E+0000 
Exp7   31 Q13%_Multiples UNI  5.00000E+0000  1.00000E+0001  2.00000E+0001 
Exp7   32 Q13a_PnextMult UNI  5.00000E+0000  1.00000E+0001  2.00000E+0001 
Exp7   33 Q14a_SpatUncer uni  1.50000E+0002  5.00000E+0002  1.00000E+0003 
Exp7   34 Q14RadiusError uni  5.00000E+0000  1.50000E+0001  3.00000E+0001 



ELICITATION SESSION RESULTS
EXPERT 8 [CM=0.1% - ERF=10.5% - EW=12.5%]

SEED QUESTIONS
Exp8    1   CF_intervals log  1.00000E+0002  2.50000E+0002  6.00000E+0002 
Exp8    2 %_vent_Serapis UNI  5.00000E+0001  6.00000E+0001  8.00000E+0001 
Exp8    3      %isopachs UNI  9.90000E+0000  1.50000E+0001  2.00000E+0001 
Exp8    4           HCO3 log  1.00000E-0001  1.00000E+0000  1.00000E+0001 
Exp8    5 Ves_10cm_isoph UNI  1.00000E+0001  5.00000E+0001  2.00000E+0002 
Exp8    6      %2km_PDCs UNI  2.00000E+0001  3.00000E+0001  5.00000E+0001 
Exp8    7     %trachytic UNI  1.00000E+0001  2.00000E+0001  5.00000E+0001 
Exp8    8 Area_lava_flow log  2.00000E+0002  4.00000E+0002  8.00000E+0002 
Exp8    9      Vol_magma UNI  2.00000E+0002  1.00000E+0003  5.00000E+0003 
Exp8   10 Area_CFc_depre UNI  6.50000E+0001  1.00000E+0002  2.00000E+0002 
Exp8   11 Gas_ratio_diff UNI  4.00000E+0001  2.00000E+0002  5.00000E+0002 
Exp8   12 Magma_Evac_tim UNI  3.00000E+0000  5.00000E+0000  1.00000E+0001 
Exp8   13     Surf._drop UNI  1.50000E+0001  8.00000E+0001  2.50000E+0002 
Exp8   14  Height_change UNI  2.00000E-0001  1.00000E+0000  5.00000E+0000 
Exp8   15     Crit_vesic UNI  7.00000E-0001  1.00000E+0000  1.30000E+0000 
Exp8   16    Time_+1degC UNI  6.00000E+0000  2.40000E+0001  1.20000E+0002 

EXPERT-WISE RANGE GRAPHS OF THE SEED QUESTIONS RESPONSES
  1(l) [---------------------------*---------------------------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  2(U)                                     [-------*---------------]
Real   ::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::

  3(U)     [--*---]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  4(l)    [-----------*-----------]
Real   :::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::::::

  5(U) [--------*-------------------------------------]
Real   :::::::::#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

  6(U)          [---------*------------------]
Real   ::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::

  7(U) [-------*--------------------------]
Real   ::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::

  8(l)                                           [----------*-----------]
Real   ::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::::

  9(U) [--*-------------]
Real   ::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 10(U)  [-------*------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::#::::::::::::::::::::::::::

 11(U)      [----------------------*------------------------------------------]
Real   :#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 12(U) [*--]
Real   ::::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::

 13(U)  [-----------*------------------------------]
Real   :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::#

 14(U)             *-]
Real   ::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::::::

 15(U)     [-*-]
Real   ::::::::::::::::#:::::::::::::::::::::::::::::::::::::::::::::::::::::::

 16(U)    [----------*--------------------------------------------------------]
Real   ::::::::::::::::::::::::::::::::::::::::#:::::::::::::::::::::::::::::::

TARGET QUESTIONS
Exp8   17 Q1Wt_5variable uni  3.00000E+0001  7.00000E+0001  9.00000E+0001 
Exp8   18   Q2Wt_Uniform UNI  1.00000E+0001  3.00000E+0001  7.00000E+0001 
Exp8   19 Q3Wt_vents_loc UNI  5.00000E+0001  7.00000E+0001  9.00000E+0001 
Exp8   20 Q4Wt_structure UNI  2.00000E+0001  3.00000E+0001  5.00000E+0001 
Exp8   21    Q5Wt_I_vent UNI  3.00000E+0001  5.00000E+0001  8.00000E+0001 
Exp8   22   Q6Wt_II_vent UNI  2.00000E+0001  3.00000E+0001  5.00000E+0001 
Exp8   23  Q7Wt_III_vent UNI  1.00000E+0001  2.00000E+0001  3.00000E+0001 
Exp8   24    Q7a_pre-AMS UNI  5.00000E+0000  5.00000E+0001  9.50000E+0001 
Exp8   25    Q7b_postAMS UNI  5.00000E+0000  5.00000E+0001  9.50000E+0001 
Exp8   26    Q8Wt_faults UNI  5.00000E+0000  5.00000E+0001  9.50000E+0001 
Exp8   27 Q9Wt_fractures UNI  5.00000E+0000  5.00000E+0001  9.50000E+0001 
Exp8   28   Q10_missed_I UNI  4.00000E+0000  7.00000E+0000  1.40000E+0001 
Exp8   29  Q11_missed_II UNI  0.00000E+0000  1.00000E+0000  3.00000E+0000 
Exp8   30 Q12_missed_III UNI  1.00000E+0000  2.00000E+0000  4.00000E+0000 
Exp8   31 Q13%_Multiples UNI  5.00000E+0000  5.00000E+0001  9.50000E+0001 
Exp8   32 Q13a_PnextMult UNI  5.00000E+0000  5.00000E+0001  9.50000E+0001 
Exp8   33 Q14a_SpatUncer uni  1.50000E+0002  3.00000E+0002  1.00000E+0003 
Exp8   34 Q14RadiusError uni  5.00000E+0000  1.00000E+0001  2.50000E+0001 



ITEM-WISE RANGE GRAPHS OF TARGET QUESTIONS RESPONSES
 Item no.:  17 Item name: Q1Wt_5variable 

Experts
  1                                               [----------------------*----]
  2                                                                [-----*----]
  3                                                    [-----------*----------]
  4                                                          [-----------*----]
  5                                         [----------------*----------------]
  6                                         [-----*----------]
  7                        [---------------------------------*----------------]
  8 [---------------------------------------------*----------------------]
CM                         [==================================*===============]
ERF                                      [=====================*============]
EW                   [===========================================*============]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    30                                                                      95

 Item no.:  18 Item name: Q2Wt_Uniform 
Experts
  1 [----*----------------------]
  2 [----*-----]
  3 [----------*-----]
  4 [----*-----------]
  5 [----------------*----------------]
  6                  [----------*-----]
  7 [----------------*---------------------------------]
  8      [----------------------*---------------------------------------------]
CM  [===============*==================================]
ERF   [=============*=======================]
EW  [============*===========================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      70

 Item no.:  19 Item name: Q3Wt_vents_loc 
Experts
  1               [-----------------------------*-----------------------------]
  2                       [--------------*---------------------]
  3                       [------*--------------]
  4                       [-----------------------------*--------------]
  5               [----------------------*---------------------]
  6        [------*-------]
  7 [----------------------------*--------------------------------------------]
  8               [-----------------------------*-----------------------------]
CM  [================================*========================================]
ERF            [=======================*======================] 
EW         [===========================*===================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    40                                                                      90

 Item no.:  20 Item name: Q4Wt_structure 
Experts
  1 [----------------------------*-----------------------------]
  2                       [--------------*--------------]
  3                                      [------*--------------]
  4        [--------------*-----------------------------]
  5               [----------------------*---------------------]
  6                                                     [------*-------]
  7               [-----------------------------*-----------------------------]
  8               [--------------*-----------------------------]
CM               [==============================*=============================]
ERF                   [===================*=========================]
EW          [===============================*==========================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    10                                                                      60

 Item no.:  21 Item name: Q5Wt_I_vent 
Experts
  1 [-------------*-------------------]
  2               [----*--------------]
  3                    [----*----]
  4     [---------*---------]
  5     [--------------*--------------]
  6          [----*----]
  7     [----------------------*----------------]
  8                         [-------------------*-----------------------------]
CM      [======================*================] 
ERF           [============*=============]
EW     [=================*=======================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      80



 Item no.:  22 Item name: Q6Wt_II_vent 
Experts
  1 [----------------------------*-----------------------------]
  2               [----------------------*--------------]
  3                       [------*-------]
  4               [----------------------*---------------------]
  5               [--------------------------------------------*--------------]
  6        [------*-------]
  7 [---------------------------------*------------------------]
  8               [--------------*-----------------------------]
CM  [==================================*==============================]
ERF        [============================*======================]
EW      [==========================*====================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    10                                                                      60

 Item no.:  23 Item name: Q7Wt_III_vent 
Experts
  1                        [----------------------*----------------------]
  2                        [----------*-----------]
  3                        [----------*----------------------]
  4                        [----------------*---------------------------------]
  5            [----------------*----------------------------]
  6                                                    [-----*-----------]
  7            [---------------*-----------------------------------------]
  8 [----------*-----------]
CM             [================*========================================]
ERF                    [===============*========================]
EW      [===============================*===============================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    10                                                                      75

 Item no.:  24 Item name: Q7a_pre-AMS 
Experts
  1                     [------------*-----------]
  2                     [--------*-------]
  3                 [---*------------]
  4                     [--------*-----------]
  5             [----------------*---------------]
  6                                  [---*---]
  7             [----------------*---------------]
  8 [------------------------------------*------------------------------------]
CM              [================*===============]
ERF                 [=============*==============]
EW           [====================*==============================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      95

 Item no.:  25 Item name: Q7b_postAMS 
Experts
  1                              [-----------*------------]
  2                                      [-------*--------]
  3                                              [--------*---]
  4                                  [-----------*--------]
  5                              [---------------*----------------]
  6                                  [---*---]
  7                              [---------------*----------------]
  8 [------------------------------------*------------------------------------]
CM                               [===============*================] 
ERF                              [=============*=============]
EW               [==============================*====================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      95

 Item no.:  26 Item name: Q8Wt_faults 
Experts
  1                     [------------------------*----------------]
  2                              [---------------*--------]
  3                              [---*---------------]
  4                              [---------------*--------]
  5                              [---------------*----------------]
  6                                              [---*----]
  7                     [------------------------*----------------]
  8 [------------------------------------*------------------------------------]
CM                      [========================*================] 
ERF                          [==================*===============]
EW              [================================*===================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      95



 Item no.:  27 Item name: Q9Wt_fractures 
Experts
  1             [----------------*------------------------]
  2                     [--------*-------]
  3                                      [---*-------]
  4                     [--------*---------------]
  5             [----------------*---------------]
  6                     [---*----]
  7             [----------------*---------------]
  8 [------------------------------------*------------------------------------]
CM              [================*=================]
ERF                [==============*================]
EW           [===================*===============================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      95

 Item no.:  28 Item name: Q10_missed_I 
Experts
  1       [-------------*-----------------------------------------------------]
  2       [------*--------------------]
  3       [-------------*-------------]
  4 [------------*---------------------------------]
  5 [-------------------*-------------------]
  6       [------*------]
  7       [-------------*-------------------]
  8 [-------------------*-----------------------------------------------]
CM       [==============*=====================]
ERF     [=============*====================]
EW   [===============*============================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     4                                                                      15

 Item no.:  29 Item name: Q11_missed_II 
Experts
  1                         [------------------------*------------------------]
  2 [-----------------------*------------------------]
  3 [-----------------------*------------------------]
  4 [-----------------------*------------------------]
  5 [-----------------------*------------------------]
  6                         [------------------------*------------------------]
  7 [-----------------------*------------------------]
  8 [-----------------------*-------------------------------------------------]
CM  [========================*============================]
ERF       [========================*==========================]
EW  [==============================*=======================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    1E-005                                                                   3

 Item no.:  30 Item name: Q12_missed_III 
Experts
  1               [--------------*-----------------------------]
  2               [--------------*--------------]
  3 [-------------*--------------]
  4               [--------------*--------------]
  5               [--------------*-----------------------------]
  6                                             [--------------*--------------]
  7               [--------------*-----------------------------]
  8               [--------------*-----------------------------]
CM                [==============*==============================]
ERF                  [===============*=======================]
EW       [========================*=====================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    1E-005                                                                   5

 Item no.:  31 Item name: Q13%_Multiples 
Experts
  1  [---*----------------]
  2  [-------*------------]
  3 [*---]
  4  [---*----------------]
  5  [---*-------]
  6  [---*---]
  7  [---*-------]
  8  [------------------------------------*-----------------------------------]
CM   [===*==========]
ERF  [=======*============]
EW  [=====*==================================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     3                                                                      95



 Item no.:  32 Item name: Q13a_PnextMult 
Experts
  1   [---*---------------]
  2   [-------*-----------]
  3 [-*---]
  4   [---*---------------]
  5   [---*-------]
  6   [---*---]
  7   [---*-------]
  8   [-----------------------------------*-----------------------------------]
CM    [===*==========]
ERF   [======*============]
EW  [=====*==================================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     2                                                                      95

 Item no.:  33 Item name: Q14a_SpatUncert 
Experts
  1   [-------*-------------------------------------]
  2 [---------------*--------------------]
  3 [---------*---------------------------------------------------------------]
  4   [-------*-----------------------]
  5 [--------------------*--------------------------]
  6         [-*-----]
  7   [------------------*--------------------------]
  8   [-------*-------------------------------------]
CM    [==================*==========================]
ERF   [===========*=============================]
EW  [============*==========================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    100                                                                   1500

 Item no.:  34 Item name: Q14RadiusError 
Experts
  1 [-------------*--------------------------------------------]
  2 [----------------------------*-----------------------------]
  3 [-------------*-----------------------------]
  4 [-------------*--------------------------------------------]
  5 [----------------------------*--------------]
  6         [-----*-----------------------------]
  7 [----------------------------*--------------------------------------------]
  8 [-------------*--------------------------------------------]
CM  [===========================*===========================================]
ERF   [===================*==================================]
EW  [====================*=========================================]
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     5                                                                      30



6.3 Implemented R codes
In the following are reported the numerical codes implemented for this study. For each script will be provided a short description
(highlighted with a # symbol). Some of the codes are reported on two or more columns. The names of the scripts are reported in
bold black, the input parameters are reported in blue, and the calls for other scripts are reported in red. The codes are available
upon request, and should be acknowledged as Bevilacqua [2015], Doubly stochastic models for volcanic vent opening probability
and pyroclastic density current hazard at Campi Flegrei caldera, PhD Thesis SNS.

6.3.1 Experts elicitation and triangular distributions
#Sampling of a maximum entropy distribution of given 5th, 50th, 95th percentiles and range.
max_entropy=function(incm,mid,incM,rA,rB){
x=runif(1); y=runif(1,mid,incM)
if(x>0.95){y=runif(1,incM,rB)}; if(x<0.5){y=runif(1,incm,mid); if(x<0.05){y=runif(1,rA,incm)}}
return(y)}

#Calculation of equal weights DM percentiles, given the arrays of 5th, 50th and 95th percentiles chosen by the experts.
Monte Carlo simulation assumed n=105 samples.
poolDM_mixtEW=function(V_incm,V_mid,V_incM,K){
N=length(V_incm[1,]); Ne= length(V_incm[,1])
quan05=quan50=quan95=numeric(N)
for(i in 1:N){
incm=V_incm[,i]; mid=V_mid[,i]; incM=V_incM[,i]
rA=min(incm); rB=max(incM)
R=rB rA; rA=rA R/10; rB=rB+R/10
risp=numeric(n)
for(j in 1:n){

s=ceiling(runif(1)*Ne)
risp[j]=max_entropy(incm[s],mid[s],incM[s],rA,rB)}
quan05[i]=quantile(risp,0.05)
quan50[i]=quantile(risp,0.5)
quan95[i]=quantile(risp,0.95)
print(i); flush.console()}
outp=matrix(0,N,3)
outp[,1]=quan05; outp[,2]=quan50; outp[,3]=quan95
return(outp)}

#Calculation of the ERF weights of the experts, given seed questions
#true values; arrays of 5th, 50th and 95th percentiles by the experts.
generate_ERF=function(true_seed,mseed,seed,Mseed){
Ne=length(mseed[,1]); Nq=length(mseed[1,])
pERF=numeric(Ne); p_single=numeric(Nq)
for(i in 1:Ne){for(j in 1:Nq){
p_single[j]=ERFweight(true_seed[j],mseed[i,j],seed[i,j],Mseed[i,j])}
pERF[i]=mean(p_single)}
return(pERF/sum(pERF))}

#Defining an ordered list of DM responses.
reOrderAns=function(DM_ans){
reDM=NULL
reDM$A1=DM_ans[c(1,3,9,12:10,7:5),2]/100
reDM$A2=DM_ans[c(2,4,8),2]/100
reDM$M1=DM_ans[c(1,3,9,12:10,7:5),3]/100
reDM$M2=DM_ans[c(2,4,8),3]/100
reDM$m1=DM_ans[c(1,3,9,12:10,7:5),1]/100
reDM$m2=DM_ans[c(2,4,8),1]/100; return(reDM)}

#ERF calculation, given a true answer and its elicitated percentiles.
ERFweight=function(x,a,b,c){
S=NewRap(a,b,c); a=S[1]; c=S[2]
A=min(max(0.95*x,a),c); B=max(min(1.05*x,c),a)
p=((A c)^2 (B c)^2)/((c a)*(c b))
if(A<b){p=1 (B c)^2/((c a)*(c b)) (A a)^2/((b a)*(c a))
if(B<b){p=((B a)^2 (A a)^2)/((b a)*(c a))}}
return(p)}

#Quantile pooling of the answers; three percentiles.
poolDM_quantile=function(V_incm,V_mid,V_incM,wERF){
N=length(V_incm [1,]); outp=matrix(0,N,3)
outp[,1]=wERF%*%V_incm
outp[,2]=wERF%*%V_mid
outp[,3]=wERF%*%V_incM
return(outp)}

#Random sample assuming a triangular distribution,
#given mode and 5th, 95th percentiles.
rtrian=function(a,b,c){
if(a==c){R=b}
else {R=rtrian_inner(NewRap(a,b,c)[1],b,NewRap(a,b,c)[2])}
return(R)}

#Random sample assuming a triangular distribution,
# given mode and range.
rtrian_inner=function(a,b,c){
u=runif(1)
if(u<((b a)/(c a))){x=sqrt(u*(b a)*(c a))+a}
else{x=c sqrt((1 u)*(c a)*(c b))}; return(x)}

#Newton Raphson approximation of triangular distribution range, givenmode and 5th, 95th percentiles.
NewRap=function(a,b,c){
x0=a (c a)/6; y0=c+(c a)/6; x=c(x0,y0)
for(i in 1:5){
x=x crossprod(InvJac(x[1],x[2],a,b,c),FunRap(x[1],x[2],a,b,c))}
return(x)}

FunRap=function(x,y,a,b,c){
A1=(a x)^2 0.05*(y x)*(b x); A2=(y c)^2 0.05*(y x)*(y b)
return(c(A1,A2))}

InvJac=function(x,y,a,b,c){
A=1.9*x+0.05*y 2*a+0.05*b
B=0.05*(x b); C=0.05*(y b)
D=1.9*y+0.05*x 2*c+0.05*b
M=matrix(0,2,2)
M[1,1]=D; M[2,2]=A
M[1,2]= B; M[2,1]= C
return(M/(A*D B*C))}



6.3.2 Vent opening probability
#Assembling a map given the array of probabilities of the zones of the caldera partition. We assumed dimensions 100x100 and Z as matrix whose
columns contain the indicator functions of the zones.
create_MapVents=function(Z,v){
M=matrix(0,100,100); nZ=length(Z[1,])
for(i in 1:nZ){ Ms=matrix(Z[,i],100,100); M=M+v[i]*Ms/sum(Ms)}
return(M/(sum(M)))}

#Convolution of matrix M with a gaussian kernel whose standard deviation is the average minimum distance of n points. We assumed Mc as a
matrix whose columns contain the indicator functions of such points.
spread_gauss=function(M,Mc,n){
sigma=multi_sigma(Mc,n); m=matrix(0,100,100)
for(h in 1:100){for(k in 1:100){
if(M[h,k]>0){for( i in 1:100){

for(j in 1:100){
R=sqrt((h i)^2+(k j)^2)
m[i,j]=m[i,j]+M[h,k]*dnorm(R,0,sigma)}}}}}
return(m/sum(m))}

#Calculation of the distance between a point and a family of other points. We assume M as the indicator function of the first point, and CC the sum
of the indicator functions of all the points.
find_sigma=function(M,Cnt){
s=which.max(M); k=ceiling(s/100)
h=s (k 1)*100; Cnt=Cnt sign(M); d=10000
for(i in 1:100){for(j in 1:100){

if(Cnt[i,j]>0){
R=(h i)^2+(k j)^2
if(d>R){d=R}}}}
return(sqrt(d))}

#Calculation of the distance between a point and the nth closest of a family of other points. We assume M as the indicator function of the first point,
and Cnt the sum of the indicator functions of all the points.
find_sigma_v2=function(M,n,Cnt){
s=which.max(M); k=ceiling(s/100)
h=s (k 1)*100; Cnt=Cnt sign(M)
d=numeric(sum(Cnt) 1);flag=0
for(i in 1:100){for(j in 1:100){

X=Cnt[i,j]; if(X>0){
R=(h i)^2+(k j)^2; flag=flag+1
d[flag]=R; while((X 1)>0){
flag=flag+1; d[flag]=R; X=X 1}}}}
d=sort(d); d=d[n]; return(sqrt(d))}

#Calculation of the average minimum distance of n points.
multi_sigma=function(Mc,n){
d=0; for(i in 1:n){cE=matrix(Mc[,i],100,100); d=d+find_sigma(cE)}
return(d/n)}

#Calculation of the probabilities on the nodes of the logic tree, given a list of DM responses.
sampleWeightsTree=function(DM_ans){
A1=DM_ans$A1; A2=DM_ans$A2
M1=DM_ans$M1; m1=DM_ans$m1
M2=DM_ans$M2; m2=DM_ans$m2
P=A1; Q=A2
for(j in 1:3){P[j]=rtrian(m1[j],A1[j],M1[j])
if(P[j]<0){P[j]=0}; if(P[j]>1){P[j]=1}
Q[j]=rtrian(m2[j],A2[j],M2[j])
if(Q[j]<0){Q[j]=0}; if(Q[j]>1){Q[j]=1}
if((1 P[j])*(1 Q[j])==1){
P[j]=0.5; Q[j]=0.5}}
P[1:3]=P[1:3]/(P[1:3]+Q[1:3])
for(j in 4:6){P[j]=rtrian(m1[j],A1[j],M1[j])
if(P[j]<0){P[j]=0}}

Nv=P[4:6]*100+c(29,8,33)
P[4:6]=c(29,8,33)/Nv[1:3]
for(j in 7:9){P[j]=rtrian(m1[j],A1[j],M1[j])
if(P[j]<0){P[j]=0}; if(P[j]>1){P[j]=1}}
P[7:9]=P[7:9]*Nv[1:3]
if(((1 P[7])*(1 P[8])*(1 P[9]))==1){
P[7:9]=1/3}; S=P[7]+P[8]+P[9]
P[7:9]=P[7:9]/S; p=numeric(12)
p[1]=P[1]; p[2]=1 P[1]; p[3]=P[1]*P[2]
p[4]=P[1]*(1 P[2]); p[5]=P[1]*P[2]*P[7]*P[4]
p[6]=P[1]*P[2]*P[8]*P[5]; p[7]=P[1]*P[2]*P[9]*P[6]
p[8]=P[1]*(1 P[2])*P[3]; p[9]=P[1]*(1 P[2])*(1 P[3])
p[10]=P[1]*P[2]*P[7]*(1 P[4]); p[11]=P[1]*P[2]*P[8]*(1 P[5])
p[12]=P[1]*P[2]*P[9]*(1 P[6]); return(p)}

#Calculation of uncertainty percentiles of the linear weights;
#Monte Carlo assuming n=5x104 samples.
stat_weighs=function(DM_ans,n){
vect_p=matrix(0,7,n)
for(i in 1:n){vect_p[,i]=sampleWeights(DM_ans)
print(i); flush.console()}; quantW=matrix(0,7,4)
return(quant_pesi=seek_quantile(vect_p,7))}

#Calculation of the linear weights, given a list of DM responses.
sampleWeights=function(DM_ans){
if(length(DM_ans==1){return(DM_ans)}
E=sampleWeightsTree(DM_ans); p=numeric(7)
p[1:5]=E[c(5:9,2)]; p[7]=E[10]+E[11]+E[12]; return(p)}



#Monte Carlo for plotting the probability distribution of each of the weights. N=106.
plot_weights=function(DM_ans,N){
P=numeric(7); P=weightMode(DM_ans); vect_p=matrix(0,N,7)
for(i in 1:N){vect_p[i,]= sampleWeights (DM_ans); print(i); flush.console()}
Fvent3=vect_p[,1]*100; Fvent2=vect_p[,2]*100; Fvent1=vect_p[,3]*100
DFract=vect_p[,4]*100; DFaults=vect_p[,5]*100
Homog=vect_p[,6]*100; Homog_lostvents=vect_p[,7]*100
plot(density(Fvent2,from=0),col='red', lwd=2,xlim=c(0,80), ylim=c(0,0.3))
points(P[2]*100,0,col='red',pch=19)
lines(density(Fvent3,from=0),col='darkgreen', lwd=2)
points(P[1]*100,0,col='darkgreen',pch=19)
lines(density(Fvent1,from=0),col='blue', lwd=2)
points(P[3]*100,0,col='blue',pch=19)
lines(density(DFract,from=0),col='darkviolet', lwd=2)
points(P[4]*100,0,col='darkviolet',pch=19)

lines(density(DFaults,from=0),col='darkorange3', lwd=2)
points(P[5]*100,0,col='darkorange3',pch=19)
lines(density(Homog_lostvents,from=0),col='grey55', lwd=2)
points(P[7]*100,0,col='grey55',pch=19)
lines(density(Homog,from=0), lwd=2)
points((P[6])*100,0,pch=19)}

#Sampling of a vent opening map given a list of DM responses and the maps to combine linearly. maskA2 is a uniform map on the whole NYT
caldera, maskB2 only inland. (v1, v2, v3) are matrices containing probability maps based on past vents distributions.
single_sample=function(DM_ans,v1,v2,v3){
p=sampleWeights(DM_ans); return(p[3]*v1+p[2]*v2+p[1]*v3+p[4]*vfractures+p[5]*vfaults+p[6]*maskA2+p[7]*maskB2)}

#Monte Carlo simulation of average maps of vent opening and their uncertainty percentiles. Assuming dimension 100x100 and n=5x104 samples.
MonteCarlo_VO=function(DM_ans,v1,v2,v3,n){
V_average=matrix(0,100,100); V_tot=matrix(0,10000,n)
for(i in 1:n){V_average=single_sample(DM_ans,v1,v2,v3,vfractures,vfaults,maskA2,maskB2)
V_tot[,i]=matrix(V_average,10000,1); print(i); flush.console()}
return(seek_quantile(V_tot,10000))}

#Calculation of mean and 5th, 50th and 95th uncertainty percentiles from a sample population of N dimensional arrays.
seek_quantile=function(V_tot,N){
i05Quantile= i95Quantile=i50Quantile=imean=numeric(N)
for(j in 1:N){i05Quantile[j]=quantile(V_tot[j,],0.05)
i95Quantile[j]=quantile(V_tot [j,],0.95)
i50Quantile[j]=quantile(V_tot [j,],0.50)

imean[j]=mean(V_tot [j,])}
outp=matrix(0,N,4); outp[,1]=i05Quantile
outp[,2]=i95Quantile; outp[,3]=i50Quantile
outp[,4]=imean
return(outp)}

#Integration of the probability M on the zone of the partition.
calculate_probZone=function(M){
nZ=length(Z[1,]); vect1=numeric(nZ)
for(i in 1:nZ){vect1[i]=sum(M*matrix(Z[,i],100,100))}
return(vect1)}

#Calculation of the mean and 5th, 95th percentiles of the distance of two independent samples on land. maskHD is the indicator function of the land.
distance_double_vents=function(DM_ans,v1,v2,v3,n){
R=numeric(n)
for(i in 1:n){M=maskHD*single_sample(DM_ans,v1,v2,v3)
M=M/sum(M); u=runif(1); S=0
for(h1 in 1:100){for(k1 in 1:100){
S=S+M[h1,k1]; if(S>u){break}}
u=runif(1); S=0

for(h2 in 1:100){for(k2 in 1:100){
S=S+M[h2,k2]; if(S>u){break}}
R[i]=sqrt((h1 h2)^2+(k1 k2)^2)*0.250
print(i); flush.console()}
R1=quantile(R,0.05); R2=mean(R); R3=quantile(R,0.95)
print(c(R1,R2,R3)); flush.console()}

#Calculation of mean, 5th, 50th, 95th percentiles of the integrated probabilities on the zones of the partition.
MonteCarlo_Table=function(DM_ans,v1,v2,v3,n){
nZ=length(Z[1,]); vW=matrix(0,nZ,n)
for(i in 1:n){M=single_sample(DM_ans,v1,v2,v3)
vW[,i]=calculate_probZone(M)
print(i); flush.console()}
return(seek_quantile(vW,nZ))}



#Calculation of mean, 5th, 50th, 95th percentiles of the integrated vent opening probabilities on CF Eastern/Western sectors, or on land. The div
parameter imposes a subdivision for the outer caldera integrated probability.
MonteCarlo_Sectors= function(N,DM_ans,v1,v2,v3){
vW=matrix(0,5,N)
for(i in 1:N){M= single_sample(DM_ans,v1,v2,v3)
vW[1,i]=sum(M*maskHD)*100; Zeast=matrix(0,100,100)
for(i in 6:13){Zeast=Zeast+matrix(Z[,i],100,100)}
Zeast=Zeast+ matrix(Z[,17],100,100)+ matrix(Z[,14]+Z[16,],100,100)*div
vW[2,i]=sum(M*Zeast)*100; print(i); flush.console()}
return(seek_quantile(vW,2))}

#Calculation of uncertainty quantifications (relative errors between mean and percentiles), inside CI caldera. Dimensions 100x100.
indicative_unc=function(outp){
mask=maskCI
a=quantile(vectorize_caldera(matrix(1 outp[1,]/outp[4,],100,100),mask),0.95)
b=mean(vectorize_caldera(matrix(1 outp[1,]/outp[4,],100,100),mask))
c=quantile(vectorize_caldera(matrix(1 outp[1,]/outp[4,],100,100),mask),0.05)
print( c(a,b,c)*100); flush.console()
a=quantile(vectorize_caldera(matrix(outp[2,]/outp[4,] 1,100,100),mask),0.95)
b=mean(vectorize_caldera(matrix(outp[2,]/outp[4,] 1,100,100),mask))
c=quantile(vectorize_caldera(matrix(outp[2,]/outp[4,] 1,100,100),mask),0.05)
print(c(a,b,c)*100); flush.console()}

#Calculation of uncertainty quantifications (relative errors between mean and percentiles), non zero values inside CI caldera. Dimensions 50x50.
indicative_unc_flux=function(outp){
mask=(1 sign(change_size(maskCI)))*abs(sign(matrix(outp[,4],50,50)))
a=quantile(vectorize_caldera(matrix(1 outp[,1]/outp[,4],50,50),mask),0.95)
b=mean(vectorize_caldera(matrix(1 outp[,1]/outp[,4],50,50),mask))
c=quantile(vectorize_caldera(matrix(1 outp[,1]/outp[,4],50,50),mask),0.05)
print( c(a,b,c)*100); flush.console()
a=quantile(vectorize_caldera(matrix(outp[,2]/outp[,4] 1,50,50),mask),0.95)
b=mean(vectorize_caldera(matrix(outp[,2]/outp[,4] 1,50,50),mask))
c=quantile(vectorize_caldera(matrix(outp[,2]/outp[,4] 1,50,50),mask),0.05)
print(c(a,b,c)*100); flush.console()}

#Compilation of the array of the elements of M that belong to a given set whose indicator function is M2.
vectorize_caldera=function(M,M2){
N=100; if(length(M)==2500){N=50}
vect=numeric(sum(M2)); k=1

for(i in 1:N){for(j in 1:N){
if(mask[i,j]==1){vect[k]=M[i,j]; k=k+1}}}
return(vect)}

#Calculation of mean, 5th, 50th, 95th uncertainty percentiles of area size where probability density exceeds assigned thresholds.
MonteCarlo_Contour=function(N){
A=matrix(0,4,N); A0=sum(mascheraCI)/16
for(i in 1:N){
M=single_sample(DM_ans,v1,v2,v3)*1600
A[1,i]=sum(sign(sign(M 0.5)+1))

A[2,i]=sum(sign(sign(M 1)+1))
A[3,i]=sum(sign(sign(M 2)+1))
print(i); flush.console()}
A=A/16; AQ= outp=seek_quantile(A,3)
return(round(AQ/A0*100,1))}



6.3.3 PDC areal size probability
#Calculation of the maximum likelihood lognormal parameters fitted on a sample w.r.t. epistemic uncertainty sources affecting past PDC dataset.
Flag parameter choses the dataset between 5ka and 15ka, Cooke_flux contains underestimation uncertainty estimate.
samplePDC=function(flag){
E=Cooke_flux; E=rtrian(E[1],E[2],E[3])
if(E<0){E=0}; if(flag==1){
A=aug_flux(area_ENL5ka,E); ML0=fitdistr(A,'lognormal')
return(fitdistr(c(A,sample_small_PDC(7,ML0$estimate[1],ML0$estimate[2],0.3)),'lognormal'))}
if(flag==2){A=aug_flux(area_ENL15ka,E)
ML0=fitdistr(A,'lognormal')
f1=sample_small_PDC (12,ML0$estimate[1],ML0$estimate[2],0.3)
f2=sample_small_PDC (9,ML0$estimate[1],ML0$estimate[2],0.75)
return(fitdistr(c(A,f1,f2),'lognormal'))}}

#Random sampling of N lost deposits areal sizes, with a lognormal dist. of mean m and sd s, conditional on being lesser of qth quantile.
sample_small_PDC =function(N,m,s,q){
X=rlnorm(N,m,s); for(i in 1:N){while(X[i]>qlnorm(q,m,s)){X[i]=rlnorm(1,m,s)}}
return(X)}

#Conversion of radial underestimation E to areal size underestimation, for an area A.
aug_flux=function(A,E){E=E/1000; return(A+2*sqrt(pi*A)*E+E^2*pi)}

#Monte Carlo simulation for plotting the pdf and the survival function of PDC areal size, with uncertainty estimates and histograms of past events
dataset; number of samples n=105.
plot_lognorm=function(flag,n){
x=seq(1,2000)/5
X=matrix(0,2000,n); Y=X
for(i in 1:n){ML=samplePDC(flag)
X[,i]=dlnorm(x, ML$estimate[1], ML$estimate[2])
Y[,i]=1 plnorm(x, ML$estimate[1], ML$estimate[2])
print(i); flush.console()}
Xmax=Xmin=Xmean= Ymax=Ymin=Ymean=numeric(2000)
for(i in 1:2000){
Xmax[i]=quantile(X[i,],0.95); Xmin[i]=quantile(X[i,],0.05)
Xmean[i]=mean(X[i,]); Ymax[i]=quantile(Y[i,],0.95)
Ymin[i]=quantile(Y[i,],0.05); Ymean[i]=mean(Y[i,])}

if(flag==1){
plot(x,Xmean,'l',ylim=c(0,0.06), xlim=c(0,400),lwd=2)
lines(x,Xmax,col='red',lwd=2); lines(x,Xmin,col='red',lwd=2)
hist(area_ENL5ka,breaks=seq(0,40)*10,add=TRUE,freq=FALSE)
dev.new(); plot(x,Ymean,'l',ylim=c(0,1), xlim=c(0,400),lwd=2)
lines(x,Ymax,col='red',lwd=2); lines(x,Ymin,col='red',lwd=2)}
if(flag==2){
plot(x,Xmean,'l',ylim=c(0,0.06), xlim=c(0,400),lwd=2)
lines(x,Xmax,col='blue',lwd=2); lines(x,Xmin,col='blue',lwd=2)
hist(area_ENL15ka,breaks=seq(0,40)*10,add=TRUE,freq=FALSE)
dev.new(); plot(x,Ymean,'l',ylim=c(0,1), xlim=c(0,400),lwd=2)
lines(x,Ymax,col='blue',lwd=2); lines(x,Ymin,col='blue',lwd=2)}}

#Plotting of bars of past events dataset areaENL, for adding information to the survival function plot.
plot_BarSurvival=function(areaENL){
area=c(sort(areaENL),Inf)
L=length(area) 1; l=1/L; j=1
ascis=seq(1,10000)*0.04
ordinat=ascis; flag=1
for(i in 1:10000){

if(ascis[i]>=area[j]){j=j+1; flag=flag l}
ordinat[i]=flag}
lines(ascis,ordinat,xlim=c(0,400))
lines(rep(0,1000),seq(1,1000)/1000)
lines(seq(1,1000)*0.4,rep(0,1000))
for(j in 1:L){lines(seq(1,1000)*aree[j]/1000,rep(1 j*l,1000))}}

#Calculation of L1 distance between empirical and maximum likelihood cumulative functions; flag parameters choses between weibull and
lognormal classes.
calculate_dist=function(Data,flag){
plot.ecdf(Data)
if(flag==0){F=function(x){pweibull(x,a,s)}
a=fitdistr(Data,'weibull')$estimate[1]
s=fitdistr(Data,'weibull')$estimate[2]}
if(flag==1){F=function(x){plnorm(x,m,s)}
m=fitdistr(Data,'lognormal')$estimate[1]
s=fitdistr(Data,'lognormal')$estimate[2]}
L=length(Data); Data.ord=sort(Data)

Int=numeric(L+1)
Int[1]=integrate(F, Inf,Data.ord[1])$value
F.end=function(x){1 F(x)}
Int[L+1]=integrate(F.end, Data.ord[L], Inf)$value
for(k in 1:(L 1)){F.k=function(x){abs(F(x) (k 0.5)/L)}
Int[k+1]=integrate(F.k, Data.ord[k], Data.ord[k+1])$value}
I=sum(Int); Range=max(Data) min(Data)
E1=100*I/Range; print(E1); flush.console()
return(I)}

#Calculates p value of a test based on L1 distance of cumulative functions.
test_dist=function(Data,flag){
if(flag==0){Ran=function(x){rweibull(x,a,s)}}
if(flag==1){Ran=function(x){rlnorm(x,m,s)}}
N=1000; I=calculate_dist(Data,flag)
I.rand=numeric(N)

for(n in 1:N){Data.rand=Ran(L)
I.rand[n]=calculate_dist(Data.rand,flag)}
I.rand.ord=sort(I.rand)
p.value=1 which.min(abs(I.rand.ord I))/N
p.value}



6.3.4 Box Model inverse algorithm and Monte Carlo simulation
#Monte Carlo simulation for PDC invasion hazard. N samples for epistemic uncertainty, M samples for physical variability of areal sizes; flag
parameter choses the 5ka or the 15ka dataset; dem500 is a 50x50 digital elevation matrix of the CF zone.
MonteCarlo_PDC=function(N,M,v1,v2,v3,flag){X=Y=matrix(0,2500,N); Ysom=numeric(2500)
for(k in 1:N){Y[,k]=matrix(change_size(maskHD*single_sample(DM_ans,v1,v2,v3)),2500,1)
Y[,k]=Y[,k]/sum(Y[,k]); m.est=matrix(0,50,50); ML=samplePDC(flag)
for(c in 1:M){for(i in 1:50){for(j in 1:50){if(Y[i+50*(j 1),k]>0){p=Y[i+50*(j 1),k]
m.est=m.est+BM_spread(i,j,dem500,p,ML$estimate[1],ML$estimate[2])}}}; print('S'); flush.console()}
m.est=m.est/M; print(k); flush.console(); v.est=matrix(m.est,2500,1); X[,k]=v.est}; return(seek_quantile(X,2500))}

#Scale reduction of matrix M from 100x100 matrix to 50x50 matrix.
change_size=function(M){m=matrix(0,50,50); for( i in 1:50){for( j in 1:50){m[i,j]=(M[2*i,2*j]+M[2*i 1,2*j]+M[2*i,2*j 1]+M[2*i 1,2*j 1])}}; return(m)}

#Calculation of a single PDC invasion through an algorithm based on Box Model. (x,y) is the vent location, dem is the digital elevation map, p is a
value multiplied to the cells invaded, mNew and SNew are parameters of the lognormal dist. of areal sizes; alpha is the energy line initial angle.
BM_spread=function(x,y,dem,p,mNew,sNew){
dem=dem/50000; A=rlnorm(1,mNew,sNew)
while(plnorm(A,mNew,sNew)>Q){A=rlnorm(1,mNew,sNew)}
A=4*A; H=sqrt(A); area.int=min(ceiling(A),2304)
DEM=dem/tan(alpha); lx=find_cone(x,y,DEM,area.int,H)
rappv=find_first(x,y,dem,p,area.int,lx)
A1=rappv[1]; rapp1=rappv[2]; lx1=lx; if(abs(1 rapp1)<0.005){
return(matrix(rappv[3:length(rappv)],50,50))}

Flag=0; if(A1>area.int){Flag=1}; lx=lx1*sqrt(rapp1)
rappv=find_second(x,y,dem,p,area.int,lx,Flag)
lx=rappv[1]; A2=rappv[2]; rapp2=rappv[3]; lx2=lx
if(abs(1 rapp2)<0.005){
return(matrix(rappv[4:length(rappv)],50,50))}
if(Flag){rappv=find_root(x,y,dem,p,area.int,lx2,lx1,A2,A1)}
if(!Flag){rappv=find_root(x,y,dem,p,area.int,lx1,lx2,A1,A2)}
matrix(rappv,50,50)}

#Box model direct approach, area.int is a target areal size, lx is a tentative maximum run out from an energy line approximation).
find_first=function(x,y,DEM,p,area.int,lx){m.est=single_spread(x,y,DEM,lx); eps=1/10^10
m.est2=(sign(m.est eps)+1)*(1/2);m.est=m.est2*p; A1=sum(m.est2); rapp=area.int/A1; return(c(A1,rapp,m.est))}

#Box model direct approach; lx is an adjusted tentative maximum run out from the previous approximation; flag choses if we want to find an
approximation of the target areal size from above or from below.
find_second=function(x,y,DEM,p,area.int,lx,Flag){
track=0; Flag2=1; while(Flag2){m.est=single_spread(x,y,DEM,lx)
eps=1/10^10; m.est2=(sign(m.est eps)+1)*(1/2)
m.est=m.est2*p; A2=sum(m.est2)
rapp=area.int/A2; if(!track){R=sqrt(rapp)}

Flag2=0; track=track+1
if(abs(1 rapp)<0.005){return(c(lx,A2,rapp,m.est))}
if(Flag){if(A2>area.int){Flag2=1; lx=lx*R^(min(3,track))}}
if(!Flag){if(A2<area.int){Flag2=1; lx=lx*R^(min(3,track))}}}
c(lx,A2,rapp,m.est)}

#Box model inverse approach, based on the secant method; (a,b) are maximum run out starting points, one approximation from above and the other
from below; (Aa,Ab) are the associated areal sizes.
find_root=function(x,y,DEM,p,area.int,a,b,Aa,Ab){
step=1;while(step>0.05){lx=a+(b a)*(area.int Aa)/(Ab Aa)
m.est=single_spread(x,y,DEM,lx)
eps=1/10^10;m.est2=(sign(m.est eps)+1)*(1/2)

m.est=m.est2*p; A3=sum(m.est2); rapp3=area.int/A3
if(abs(1 rapp3)<0.005){return(m.est)}
if(A3>area.int){Ab=A3; step=abs(b lx); b=lx}
if(A3<area.int){Aa=A3; step=abs(a lx); a=lx}}; return(m.est)}

#Energy line inverse approach, DEM is a rescaled digital elevation map, H is an arbitrary column height (rescaled by tan(alpha)).
find_cone=function(x,y,DEM,area.int,H){m.est=matrix(Inf,50,50); m.est[x,y]=DEM[x,y]; c=1; c2=sqrt(2)
m.est[x+1,y]=DEM[x+1,y]+c; m.est[x+1,y+1]=DEM[x+1,y+1]+c2; m.est[x,y+1]=DEM[x,y+1]+c
m.est[x 1,y]=DEM[x 1,y]+c; m.est[x 1,y 1]=DEM[x 1,y 1]+c2; m.est[x,y 1]=DEM[x,y 1]+c
m.est[x+1,y 1]=DEM[x+1,y 1]+c2; m.est[x 1,y+1]=DEM[x 1,y+1]+c2; L1=min(2*max(1,floor(H)),50); for(i in 2:L1){c=I; c2=sqrt(2)*i
if(x+i<50){m.est[x+i,y]=max(DEM[x+i,y]+c,m.est[x+i 1,y])}; if(x i>1){m.est[x i,y]=max(DEM[x i,y]+c,m.est[x i+1,y])}
if(y+i<50){m.est[x,y+i]=max(DEM[x,y+i 1]+c,m.est[x,y+i 1])}; if(y i>1){m.est[x,y i]=max(DEM[x,y i+1]+c,m.est[x,y i+1])}
for(j in 1:(i 1)){if(i^2+j^2<4*ceiling(H^2)){; c=sqrt(i^2+j^2)
if(x+i<50){if(y+j<50){m.est[x+i,y+j]=max(DEM[x+i,y+j]+c,min(m.est[x+i 1,y+j],m.est[x+i 1,y+j 1]))}}
if(x+j<50){if(y+i<50){m.est[x+j,y+i]=max(DEM[x+j,y+i]+c,min(m.est[x+j,y+i 1],m.est[x+j 1,y+i 1]))}}
if(x+i<50){if(y j>1){m.est[x+i,y j]=max(DEM[x+i,y j]+c,min(m.est[x+i 1,y j],m.est[x+i 1,y j+1]))}}
if(x+j<50){if(y i>1){m.est[x+j,y i]=max(DEM[x+j,y i]+c,min(m.est[x+j,y i+1],m.est[x+j 1,y i+1]))}}
if(x i>1){if(y+j<50){m.est[x i,y+j]=max(DEM[x i,y+j]+c,min(m.est[x i+1,y+j],m.est[x i+1,y+j 1]))}}
if(x j>1){if(y+i<50){m.est[x j,y+i]=max(DEM[x j,y+i]+c,min(m.est[x j,y+i 1],m.est[x j+1,y+i 1]))}}
if(x i>1){if(y j>1){m.est[x i,y j]=max(DEM[x i,y j]+c,min(m.est[x i+1,y j],m.est[x i+1,y j+1]))}}
if(x j>1){if(y i>1){m.est[x j,y i]=max(DEM[x j,y i]+c,min(m.est[x j,y i+1],m.est[x j+1,y i+1]))}}}}
if(i<2*ceiling(H/sqrt(2))){if(x+i<50){if(y+i<50){m.est[x+i,y+i]=max(DEM[x+i,y+i]+c2,m.est[x+i 1,y+i 1])}}
if(y i>1){if(x+i<50){m.est[x+i,y i]=max(DEM[x+i,y i]+c2,m.est[x+i 1,y i+1])}}; if(x i>1){if(y i>1){m.est[x i,y i]=max(DEM[x i,y i]+c2,m.est[x i+1,y i+1])}}
if(y+i<50){if(x i>1){m.est[x i,y+i]=max(DEM[x i,y+i]+c2,m.est[x i+1,y+i 1])}}}}
eps=1/10^7; vect=sort.int(m.est, area.int); true.H=vect[area.int]+eps; m.est=(sign(true.H m.est)+1)*(1/2); return(vect[area.int]))}



6.3.5 Dirichlet uncertainty and simultaneous eruptions
#Monte Carlo simulation for PDC invasion hazard, Dirichlet uncertainty model based on Selva et al. [2012].
MonteCarlo_PDCdirichlet=function(N,M){
X=Y=matrix(0,2500,N); Ysom=numeric(2500)
for(k in 1:N){
Y[,k]=matrix(change_size (maskHD *trasfGrid(matrix(sampleDirichlet(),28,25))),2500,1)
Y[,k]=Y[,k]/sum(Y[,k]); m.est=matrix(0,50,50); ML=samplePDC(flag)
for(c in 1:M){for(i in 1:50){for(j in 1:50){
if(Y[i+50*(j 1),k]>0){p=Y[i+50*(j 1),k]
m.est=m.est+BM_spread(i,j,dem500,p,ML$estimate[1],ML$estimate[2])
print(c(i,j,c,k)); flush.console()}}}}
m.est=m.est/M; v.est=matrix(m.est,2500,1); X[,k]=v.est}
return(seek_quantile(X,2500))}

#Transformation of M from Selva et al. [2012] coordinates to Bevilacqua et al. [2015] coordinates.
trasfGrid=function(M){
M1=matrix(0,50,50)
for(i in 12:39){for(j in 7:31){
M1[i,j]=M[i 11,j 6]}}; M2=matrix(0,100,100)
for(i in 1:100){for(j in 1:99){
M2[i,j]=M1[ceiling((i)/2),ceiling((j+1)/2)]}}
return(M2)}

#Dirichlet distribution sample, assuming 700 dimensions and
coefficients in A.post.
generaDirichlet=function(){
T.inc=numeric(700)
for(j in 1:700){T.inc[j]=rgamma(1,A.post[j])}
T.inc=T.inc/sum(T.inc)
return(T.inc)}

#Vent opening sample assuming only past vents dataset.
single_sampleOnlyVents=function(DM_ans,vents1,vents2,vents3){
p=sampleWeights(DM_ans)
S=p[1]+p[2]+p[3]; p=p/S
V_average =p[3]*vents1+p[2]*vents2+p[1]*vents3
return(V_average)}

#Monte Carlo simulation for PDC invasion hazard, double eruptions; Cooke_double is the elicited probability (with uncertainty percentiles) of a
double eruption conditioned to an eruption.
MonteCarlo_PDCdouble=function(N,M,v1,v2,v3,flag){
X=Y=matrix(0,2500,N); Ysom=numeric(2500)
for(k in 1:N){Y[,k]=matrix(change_size(maskHD*single_sample(DM_ans,v1,v2,v3)),2500,1)
Y[,k]=Y[,k]/sum(Y[,k]); m.est=matrix(0,50,50); ML=samplePDC(flag)
E=rtrian(Cooke_double[1], Cooke_double[2], Cooke_double[3])/100; if(E<0){E=0}
for(c in 1:M){for(i in 1:50){for(j in 1:50){
if(Y[i+50*(j 1),k]>0){p=Y[i+50*(j 1),k]
m.est=m.est+BM_spread (i,j,dem500,p,ML$estimate[1],ML$estimate[2])}}}
print('S'); flush.console()}
m.est=m.est/M; m.est2=matrix(0,50,50)
for(c in 1:M){for(i in 1:50){for(j in 1:50){
if(Y[i+50*(j 1),k]>0){p=Y[i+50*(j 1),k]
add.mat=BM_spread(i,j,dem500,p,ML$estimate[1],ML$estimate[2])
m.est2=m.est2+add.mat+p*((1 sign(add.mat))*m.est)}}}
print('D'); flush.console()}
m.est=m.est2/M*E+m.est*(1 E)
print(k);flush.console()
v.est=matrix(m.est,2500,1); X[,k]=v.est}
return(seek_quantile(X,2500))}



6.3.6 Box model parameters statistics
#Plotting of the mass estimates in function of the maximum run out (without topography). w is the settling velocity, phi0 the starting volume
fraction, F the Froude number, gp is the reduced gravity.
plot_mass=function(lmax){
w=seq(1,1000)/1000*(2 0.01)+0.01; phi0=seq(1,1000)/1000*(0.02 0.0005)+0.0005; mass=matrix(0,1000,1000)
for(i in 1:1000){for(j in 1:1000){
mass[i,j]=pi*(1.22+phi0[i]*998.78)*volume(w[j],F,gp,phi0[i],lmax); contour(mass)
C=1; lines(seq(1,1000)/1000,(8*C^3)/(11329*phi0),col='blue', lwd=2, lty=2)
C=1.8; lines(seq(1,1000)/1000,(8*C^3)/(11329*phi0),col='darkviolet', lwd=2, lty=2)
C=2; lines(seq(1,1000)/1000,(8*C^3)/(11329*phi0),col='red', lwd=2)
C=2.4; lines(seq(1,1000)/1000,(8*C^3)/(11329*phi0),col='red', lwd=2,lty=2)}

#Volume estimation for each radiant.
volume=function(w,F,gp,f,lx){return((lx^8*w^2/f/F^2/gp)^(1/3)/4)}

#Plotting of the energy estimates in function of the distance from the vent (without topography).
plot_energy=function(lmax){
x=seq(1,1000)/1000*lmax
C=1; plot(x,(C*(lmax)^(1/3)/(x/lmax*cosh(atanh((x/lmax)^2))^2))^2/(2*g),col='blue', lwd=2, 'l',ylim=c(0,1000) )
C=1.8; lines(x,(C*(lmax)^(1/3)/(x/lmax*cosh(atanh((x/lmax)^2))^2))^2/(2*g),col='darkviolet', lwd=2, lty=2)
C=2; lines(x,(C*(lmax)^(1/3)/(x/lmax*cosh(atanh((x/lmax)^2))^2))^2/(2*g),col='red', lwd=2)
C=2.4; lines(x,(C*(lmax)^(1/3)/(x/lmax*cosh(atanh((x/lmax)^2))^2))^2/(2*g),col='red', lwd=2, lty=2)}

#Generic function for plotting matrix H.
plotta=function(H){image( H,col=heat.colors(1000))}

#plotting of the C constant probability distribution.
distributionC=function(N){
C=numeric(N); for(i in 1:N){
w=runif(1)*(1.2 0.05)+0.05; F=runif(1)*(1.19 1)+1
f=runif(1)*(0.015 0.005)+0.005; r=runif(1)*(1000 700)+700
g=(r 1.22)/1.22*9.81; C[i]= costantC(w,F,g,f)
print(i); flush.console()}
print(c(quantile(C,0.05),mean(C),quantile(C,0.95))); flush.console()
print(quantile(C,0.5)); flush.console()
plot.density(density(C), lwd=2)
lines(rep(1,10000),seq(1,10000)/10000*1.5, lty=2, col='blue', lwd=2)
lines(rep(1.8,10000),seq(1,10000)/10000*1.5, lty=2, col='darkviolet', lwd=2)
lines(rep(2,10000),seq(1,10000)/10000*1.5, col='red', lwd=2)
lines(rep(2.4,10000),seq(1,10000)/10000*1.5, lty=2, col='red', lwd=2)}

#C constant calculation.
constantC=function(w,F,g,f){return((w*F^2*g*f)^(1/3)/2)}



6.3.7 Box model direct propagation algorithm
#Simple circular direct propagation.
circle_spread=function(x,y,p){
r=rlnorm(1,m,s); m.est=matrix(0,50,50)
while(plnorm(r,m,s)>Q){r=rlnorm(1,m,s)}
r=sqrt(r/pi); R=r/0.5; i=0
for(i in 0:floor(R)){j=0; while ((i^2+j^2)<(R^2)){

if(x+i<51){if(y+j<51){m.est[x+i,y+j]=m.est[x+i,y+j]+p}
if(y j>0){if(j>0){m.est[x+i,y j]=m.est[x+i,y j]+p}}}
if(x i>0){if(i>0){if(y+j<51){m.est[x i,y+j]=m.est[x i,y+j]+p}
if(y j>0){if(j>0){m.est[x i,y j]=m.est[x i,y j]+p}}}}
j=j+1}}; return(m.est)}

#Box model direct propagation algorithm, contiguous cells approach (cells crossed by the line from the actual position to the vent). Size parameter is
the length of each cell aside (Method 1).
single_spread=function(x,y,DEM,lx){
S=25000/size; m.est=matrix( Inf,S,S); m.est[x,y]=Inf; c=decay(1,lx); c2=decay(sqrt(2),lx)
m.est[x+1,y]=c DEM[x+1,y]; m.est[x+1,y+1]=c2 DEM[x+1,y+1]; m.est[x,y+1]=c DEM[x,y+1]
m.est[x 1,y]=c DEM[x 1,y]; m.est[x 1,y 1]=c2 DEM[x 1,y 1]; m.est[x,y 1]=c DEM[x,y 1]
m.est[x+1,y 1]=c2 DEM[x+1,y 1]; m.est[x 1,y+1]=c2 DEM[x 1,y+1]; L2=min(max(1,floor(lx)),S)
for(i in 2:L2){c=decay(i,lx)
if(x+i<S){m.est[x+i,y]=min(c DEM[x+i,y],m.est[x+i 1,y])}
if(x i>1){m.est[x i,y]=min(c DEM[x i,y],m.est[x i+1,y])}
if(y+i<S){m.est[x,y+i]=min(c DEM[x,y+i 1],m.est[x,y+i 1])}
if(y i>1){m.est[x,y i]=min(c DEM[x,y i+1],m.est[x,y i+1])}
for(j in 1:(i 1)){if(i^2+j^2<ceiling(lx^2)){c=decay(sqrt(i^2+j^2),lx)
if((x+i<S)*(y+j<S)){m.est[x+i,y+j]=min(c DEM[x+i,y+j],max(m.est[x+i 1,y+j],m.est[x+i 1,y+j 1]))}}
if((x+j<S)*(y+i<S)){m.est[x+j,y+i]=min(c DEM[x+j,y+i],max(m.est[x+j,y+i 1],m.est[x+j 1,y+i 1]))}}
if((x+i<S)*(y j>1)){m.est[x+i,y j]=min(c DEM[x+i,y j],max(m.est[x+i 1,y j],m.est[x+i 1,y j+1]))}}
if((x+j<S)*(y i>1)){m.est[x+j,y i]=min(c DEM[x+j,y i],max(m.est[x+j,y i+1],m.est[x+j 1,y i+1]))}}
if((x i>1)*(y+j<S)){m.est[x i,y+j]=min(c DEM[x i,y+j],max(m.est[x i+1,y+j],m.est[x i+1,y+j 1]))}}
if((x j>1)*(y+i<S)){m.est[x j,y+i]=min(c DEM[x j,y+i],max(m.est[x j,y+i 1],m.est[x j+1,y+i 1]))}}
if((x i>1)*(y j>1)){m.est[x i,y j]=min(c DEM[x i,y j],max(m.est[x i+1,y j],m.est[x i+1,y j+1]))}}
if((x j>1)*(y i>1)){m.est[x j,y i]=min(c DEM[x j,y i],max(m.est[x j,y i+1],m.est[x j+1,y i+1]))}}}}
c2=decay(sqrt(2)*i,lx); if(i<ceiling(lx/sqrt(2))){
if((x+i<S)*(y+i<S)){m.est[x+i,y+i]=min(c2 DEM[x+i,y+i],m.est[x+i 1,y+i 1])}}
if((y i>1)*(x+i<S)){m.est[x+i,y i]=min(c2 DEM[x+i,y i],m.est[x+i 1,y i+1])}}
if((x i>1)*(y i>1)){m.est[x i,y i]=min(c2 DEM[x i,y i],m.est[x i+1,y i+1])}}
if((y+i<S)*(x i>1)){m.est[x i,y+i]=min(c2 DEM[x i,y+i],m.est[x i+1,y+i 1])}}}}
return(m.est)}

#Alternative contiguous cells assumption (any cell having its centre closer to the vent than the actual position).
single_spread_v2=function(x,y,DEM,lx){
S=25000/size; m.est=matrix( Inf,S,S); m.est[x,y]=Inf; c=decay(1,lx); c2=decay(sqrt(2),lx)
m.est[x+1,y]=c DEM[x+1,y]; m.est[x+1,y+1]=c2 DEM[x+1,y+1]; m.est[x,y+1]=c DEM[x,y+1]
m.est[x 1,y]=c DEM[x 1,y]; m.est[x 1,y 1]=c2 DEM[x 1,y 1]; m.est[x,y 1]=c DEM[x,y 1]
m.est[x+1,y 1]=c2 DEM[x+1,y 1]; m.est[x 1,y+1]=c2 DEM[x 1,y+1]; L2=min(max(1,floor(lx)),S)
for(i in 2:L2){c=decay(i,lx)
if(x+i<S){m.est[x+i,y]=min(c DEM[x+i,y],max(m.est[x+i 1,y],m.est[x+i 1,y 1],m.est[x+i 1,y+1]))}
if(x i>1){m.est[x i,y]=min(c DEM[x i,y],max(m.est[x i+1,y],m.est[x i+1,y 1],m.est[x i+1,y+1]))}
if(y+i<S){m.est[x,y+i]=min(c DEM[x,y+i 1],max(m.est[x,y+i 1],m.est[x 1,y+i 1],m.est[x+1,y+i 1]))}
if(y i>1){m.est[x,y i]=min(c DEM[x,y i+1],max(m.est[x,y i+1],m.est[x 1,y i+1],m.est[x+1,y i+1]))}
for(j in 1:(i 1)){if(i^2+j^2<ceiling(lx^2)){c=decay(sqrt(i^2+j^2),lx)
if((x+i<S)*(y+j<S)){m.est[x+i,y+j]=min(c DEM[x+i,y+j],max(m.est[x+i 1,y+j],m.est[x+i 1,y+j 1],m.est[x+i,y+j 1],m.est[x+i 1,y+j+1]))}}
if((x+j<S)*(y+i<S)){m.est[x+j,y+i]=min(c DEM[x+j,y+i],max(m.est[x+j,y+i 1],m.est[x+j 1,y+i 1],m.est[x+j 1,y+i],m.est[x+j+1,y+i 1]))}}
if((x+i<S)*(y j>1)){m.est[x+i,y j]=min(c DEM[x+i,y j],max(m.est[x+i 1,y j],m.est[x+i 1,y j+1],m.est[x+i,y j+1],m.est[x+i 1,y j 1]))}}
if((x+j<S)*(y i>1)){m.est[x+j,y i]=min(c DEM[x+j,y i],max(m.est[x+j,y i+1],m.est[x+j 1,y i+1],m.est[x+j 1,y i],m.est[x+j+1,y i+1]))}}
if((x i>1)*(y+j<S)){m.est[x i,y+j]=min(c DEM[x i,y+j],max(m.est[x i+1,y+j],m.est[x i+1,y+j 1],m.est[x i,y+j 1],m.est[x i+1,y+j+1]))}}
if((x j>1)*(y+i<S)){m.est[x j,y+i]=min(c DEM[x j,y+i],max(m.est[x j,y+i 1],m.est[x j+1,y+i 1],m.est[x j+1,y+i],m.est[x j 1,y+i 1]))}}
if((x i>1)*(y j>1)){m.est[x i,y j]=min(c DEM[x i,y j],max(m.est[x i+1,y j],m.est[x i+1,y j+1],m.est[x i,y j+1],m.est[x i+1,y j 1]))}}
if((x j>1)*(y i>1)){m.est[x j,y i]=min(c DEM[x j,y i],max(m.est[x j,y i+1],m.est[x j+1,y i+1],m.est[x j+1,y i],m.est[x j 1,y i+1]))}}}}
c2=decay(sqrt(2)*i,lx); if(i<ceiling(lx/sqrt(2))){
if((x+i<S)*(y+i<S)){m.est[x+i,y+i]=min(c2 DEM[x+i,y+i],max(m.est[x+i 1,y+i 1],m.est[x+i,y+i 1],m.est[x+i 1,y+i]))}}
if((y i>1)*(x+i<S)){m.est[x+i,y i]=min(c2 DEM[x+i,y i],max(m.est[x+i 1,y i+1],m.est[x+i,y i+1],m.est[x+i 1,y i]))}}
if((x i>1)*(y i>1)){m.est[x i,y i]=min(c2 DEM[x i,y i],max(m.est[x i+1,y i+1],m.est[x i,y i+1],m.est[x i+1,y i]))}}
if((y+i<S)*(x i>1)){m.est[x i,y+i]=min(c2 DEM[x i,y+i],max(m.est[x i+1,y+i 1],m.est[x i,y+i 1],m.est[x i+1,y+i]))}}}}
return(m.est)}



#Decay energy function calculation.
decay=function(x,lx){decad=0; if(x<lx){decad=(C*(size*lx)^(1/3)/(x/lx*cosh(atanh((x/lx)^2))^2))^2/(2*g)/size}; return(decad)}

#Direct PDC propagation, shading alternative approach (Method 2).
single_spread_shade=function(x,y,DEM,lx){
S=25000/size; L2=min(max(1,floor(lx)),S)+1; m.est=matrix( Inf,S,S)
A1=max(x L2,1); A2=min(x+L2,S); B1=max(y L2,1); B2=min(y+L2,S)
m.est_red=m.est[A1:A2,B1:B2]; DEMr=DEM[A1:A2,B1:B2]
xred=x A1; yred=y B1; M1=A2 A1+1; M2=B2 B1+1
for(i in 1:M1){for(j in 1:M2){
m.est_red[i,j]=decay(sqrt((i xred)^2+(j yred)^2),lx) DEMr[i,j]}
print(i); flush.console()}; m.est_redFIX=m.est_red

for(i in 1:M1){for(j in 1:M2){
if(m.est_redFIX[i,j]<0){
m.est_red=shade(xred,yred,i,j,M1,M2,m.est_red)}}
print(i); flush.console()}
m.est[A1:A2,B1:B2]=m.est_red
m.est[x,y]=Inf; eps=1/10^12
m.est=(sign(m.est eps)+1)*(1/2)
return(m.est)}

#Shading alg. on the submatrix M1xM2 of M, centered on (x,y).
shade=function(x,y,i,j,M1,M2,M){
A=i x; B=j y; if((A*B)==0){
if(A>0){M[i:M1,]=M[i:M1,]*produce_shade2(A,B,M1 i+1,M2,j)}
if(B>0){M[,j:M2]=M[,j:M2]*produce_shade2(A,B,M1,M2 j+1,i)}
if(A<0){M[1:i,]=M[1:i,]*produce_shade2(A,B,i,M2,j)}

#Simple conversion of digital elevation map data.
modDEM=function(){
DEMtrue=DEM10m
for(i in 1:2500){for(j in 1:2500){
if(DEM10m[i,j]== 9999){DEMtrue[i,j]=0}}}
return(DEMtrue)}

if(B<0){M[,1:j]=M[,1:j]*produce_shade2(A,B,M1,j,i)}}
if(A*B!=0){if(A>0){if(B>0){M[i:M1,j:M2]=M[i:M1,j:M2]*produce_shade(A,B,M1 i+1,M2 j+1)}
if(B<0){M[i:M1,1:j]=M[i:M1,1:j]*produce_shade(A,B,M1 i+1,j)}}
if(A<0){if(B>0){M[1:i,j:M2]=M[1:i,j:M2]*produce_shade(A,B,i,M2 j+1)}
if(B<0){M[1:i,1:j]=M[1:i,1:j]*produce_shade(A,B,i,j)}}}; return(M)}

#angular shade (case 1)
produce_shade=function(x,y,H,K){
flag=2*sign(x)+sign(y)
if(flag==3){R1=(x+0.5)/(y 0.5); R2=(x 0.5)/(y+0.5)
M=matrix(1,H,K); for(i in 1:H){for(j in 1:K){R=(i+x 1)/(j+y 1)
if((R1>R)*(R2<R)){M[i,j]=0}}}}}
if(flag== 1){R1=( x+0.5)/(y 0.5);R2=( x 0.5)/(y+0.5)
M=matrix(1,H,K); for(i in 1:H){for(j in 1:K){R=(i x 1)/(j+y 1)
if((R1>R)*(R2<R)){M[H i+1,j]=0}}}}}
if(flag==1){R1=(x+0.5)/( y 0.5); R2=(x 0.5)/( y+0.5)
M=matrix(1,H,K); for(i in 1:H){for(j in 1:K){R=(i+x 1)/(j y 1)
if((R1>R)*(R2<R)){M[i,K j+1]=0}}}}}
if(flag== 3){R1=( x+0.5)/( y 0.5); R2=( x 0.5)/( y+0.5)
M=matrix(1,H,K); for(i in 1:H){for(j in 1:K){R=(i x 1)/(j y 1)
if((R1>R)*(R2<R)){M[H i+1,K j+1]=0}}}}}; return(M)}

#central shade (case 2)
produce_shade2=function(x,y,H,K,I){
flag=2*sign(x)+sign(y)
if(flag==2){R1=0.5/(x 0.5); R2=( 0.5)/(x 0.5)
M=matrix(1,H,K); for(i in 1:H){for(j in 1:K){R=(I j)/(x+i 1)
if((R1>R)*(R2<R)){M[i,j]=0}}}}}
if(flag== 2){R1=0.5/( x 0.5); R2=( 0.5)/( x 0.5)
M=matrix(1,H,K); for(i in 1:H){for(j in 1:K){R=(I j)/( x+i 1)
if((R1>R)*(R2<R)){M[H i+1,j]=0}}}}}
if(flag==1){R1=0.5/(y 0.5); R2=( 0.5)/(y 0.5)
M=matrix(1,H,K); for(i in 1:K){for(j in 1:H){R=(I j)/(y+i 1)
if((R1>R)*(R2<R)){M[j,i]=0}}}}}
if(flag== 1){R1=0.5/( y 0.5); R2=( 0.5)/( y 0.5)
M=matrix(1,H,K); for(i in 1:K){for(j in 1:H){R=(I j)/( y+i 1)
if((R1>R)*(R2<R)){M[j,K i+1]=0}}}}}; return(M)}

#Direct PDC propagation on radial sectors (Method 3), size=50m.
single_spread_slices=function(x,y,lx){
M=matrix(0,500,500); L2=min(max(1,floor(lx)),500)+1
A1=max(x L2,1); A2=min(x+L2,500)
B1=max(y L2,1); B2=min(y+L2,500)
M_red=M[A1:A2,B1:B2]
M1=A2 A1+1; M2=B2 B1+1
xred=x A1; yred=y B1
C1=500 xred+1; C2=500+M1 xred
D1=500 yred+1; D2=500+M2 yred
M_sr=M_slices[C1:C2,D1:D2]; M_tr=M_circles[C1:C2,D1:D2]
for(i in 0:359){j=i/360*2*pi; d=0; X=x*5 2; Y=y*5 2; K=1
while(K>0){X=X+2.5*cos(j); Y=Y+2.5*sin(j); d=d+0.5
if((X<1)+(Y<1)+(X>2500)+(Y>2500)){break}
K=decay(d,lx) DEMtrue[X,Y]/5000}
M.est=(1 abs(sign(M_sr i)))*(sign(sign(d 1 M_tr)+1))
print(i); flush.console(); M_red=M_red+M.est}
M[A1:A2,B1:B2]=M_red
return(M)}

#Definition of matrix containing Euclidean distances from vent.
CreateCircles=function(){
M=matrix(0,999,999)
for(i in 1:999){for(j in 1:999){
x=i 500; y=j 500
M[i,j]=sqrt(x^2+y^2)}}
return(round(M))}

# Definition of matrix containing angles w.r.t. a clockwise rotation
#around the vent (in position [500,500]).
CreateSlices=function(){
M=matrix(0,999,999)
for(i in 1:999){for(j in 1:999){
x=i 500; y=j 500; k=atan(y/x)
if(x>=0){if(y>=0){M[i,j]=k}
if(y<0){M[i,j]=2*pi+k}}
if(x<0){if(y>=0){M[i,j]=pi+k}
if(y<0){M[i,j]=pi+k}}}}
M=round(M/(2*pi)*360); M[500,500]=0
for(i in 1:999){for(j in 1:999){
if(M[i,j]==360){M[i,j]=0}}}
return(M)}



6.3.8 Temporal uncertainty modelling
#random sampling of epistemic uncertainties affecting past events record (order time volume localization); T data frame contains the information
about ordered events, u about the most uncertain events.
sampleTemp=function(T,u){
L=length(T$Id)
Times=numeric(L)
for(i in 1:L){
if(!length(T)){return(NULL)}
#stratigraphic record
A=T$Swap[i]
if(A>0){
if(A<1){
a=runif(1)
if(a<A){
T$Id[i:(i+1)]=T$Id[(i+1):i]
T$Loc[i:(i+1)]=T$Loc[(i+1):i]
T$V[i:(i+1)]=T$V[(i+1):i]
T$Tmin[i:(i+1)]=T$Tmin[(i+1):i]
T$Tmax[i:(i+1)]=T$Tmax[(i+1):i]
T$EW[i:(i+1)]=T$EW[(i+1):i]}
T$Swap[i:(i+1)]=c(0,0)}}
if(A==1){T$Swap[i]= 1}
#spatial location
A=T$Loc[i]
if(floor(A)<A){
a=runif(1)*100
if(T$Id[i]=='AMS'){
Av=c(23,77)
Bv=c(8,9)}
if(T$Id[i]=='PP'){
Av=c(48,41,11)
Bv=c(8,9,10)}
if(T$Id[i]=='S4_s31'){
Av=c(41,42,17)
Bv=c(8,9,10)}
if(T$Id[i]=='S4_s32'){
Av=c(42,33,25)
Bv=c(8,9,10)}
if(T$Id[i]=='CASA'){
Av=c(7,42,51)
Bv=c(6,9,12)}
if(T$Id[i]=='PIGN1'){
Av=c(13,4,35,38,10)
Bv=c(6,7,8,9,12)}
j=1
S=0
while(a>Av[j]+S){
S=Av[j]+S
j=j+1}
T$Loc[i]=Bv[j]}
#most uncertain VDRE (unif)
A= T$V[i]
if(A>0){
a=runif(1)
if(A==100){
B=10+a*90}
if(A==300){
B=100+a*200}

if(A==10){
B=a*10}
T$V[i]=round(B)}
#other VDRE (trian)
if(A<0){
a=rtrian(0.5,1,1.5)
B= A*a
T$V[i]=round(B)}}

#uncertain times (trian2)
flag1=0
while(flag1==0){
flag1=1
B0=Inf
for(i in 1:L){
A=T$Tmin[i]
if(A>0){
C=T$Tmax[i]
B=rtrian2(A,(A+C)/2,C)
Times[i]=round(B)
if(B>B0){flag1=0}
B0=B}}}

#simultaneous events
for(i in 1:L){
if(T$Swap[i]== 1){
Times[i]=Times[i 1]}}

#other times (small unif)
i=1
while(i<(L+1)){
D=Times[i]
if(D==0){
C=0
j=i
while(C==0){
j=j+1
C=Times[j]
if(j>L){C=Times[i 1] runif(1)*100*(j i)}
}
if(i>1){
A=Times[i 1]}
if(i==1){
A=C+runif(1)*100*(j i)}
B=C
U=sort(round(runif(j i,B,A)),TRUE)
Times[i:(j 1)]=U
i=j}
if(D>0){i=i+1}}

#most uncertain times (large trian2)
nId=c(Inf,as.vector(T$Id), Inf)
nLoc=c(Inf,T$Loc, Inf)
nEW=c(Inf,T$EW, Inf)
nT=c(Inf,Times, Inf)

nV=c(Inf,T$V, Inf)
l=length(nId) 1
if(length(u)!=0){
l=length(u$Id)
uTimes=numeric(l)
flag=0
B0=Inf
while(flag==0){
flag=1
for(i in 1:l){
A=u$Tmin[i]
C=u$Tmax[i]
B=rtrian2(A,(A+C)/2,C)
uTimes[i]=round(B)
if(B>B0){flag=0}
B0=B}}
for(i in 1:l){
A= u$V[i]
if(A>0){
a=runif(1)
if(A==100){
B=10+a*90}
if(A==300){
B=100+a*200}
if(A==10){
B=a*10}
u$V[i]=round(B)}
if(A<0){
a=rtrian(0.5,1,1.5)
B= A*a
u$V[i]=round(B)}}
for(i in 1:l){
j=1
S=0
A=nT[j]
while(uTimes[i]<A){
A=nT[j+1]
j=j+1}
l=length(nId)
nId=c(nId[1:(j 1)],u$Id[i],nId[j:l])
nLoc=c(nLoc[1:(j 1)],u$Loc[i],nLoc[j:l])
nEW=c(nEW[1:(j 1)],u$EW[i],nEW[j:l])
nT=c(nT[1:(j 1)],uTimes[i],nT[j:l])
nV=c(nV[1:(j 1)],u$V[i],nV[j:l])}}

T=NULL
T$Id=nId[2:l]
T$Loc=nLoc[2:l]
T$EW=nEW[2:l]
T$T=nT[2:l]
T$V=nV[2:l]
T= as.data.frame(T)
T$Id=as.vector(T$Id)
return(T)}



#Monte Carlo simulation for computing the duration of epochs and inter epochs with uncertainty; N samples.
DuratEpo=function(TI,TII,TIII,N,uI,uIII){
l1=length(TI$Id); l2=length(TII$Id); l3=length(TIII$Id)
vDm=c(TIII$Tmin[c(l3,1)],TII$Tmin[c(l2,2)],TI$Tmin[c(l1 1,3)])
vDm[4]=vDm[4]+runif(1)*100
vDm[5]=vDm[5] runif(1)*100
vDm[6]=vDm[6]+2*runif(1)*100
vDM=c(TIII$Tmax[c(l3,1)],TII$Tmax[c(l2,2)],TI$Tmax[c(l1 1,3)])
vDM[4]=vDM[4]+runif(1)*100
vDM[5]=vDM[5] runif(1)*100
vDM[6]=vDM[6] 2*runif(1)*100
Ebounds=numeric(6)
Eduration=matrix(0,5,N)

for(j in 1:N){for(i in 1:6){
Ebounds[i]=c(rtrian2(vDm[i],(vDM[i]+vDm[i])/2,vDM[i]))}
A=rtrian2(uI$Tmin[1],(uI$Tmin[1]+uI$Tmax[1])/2,uI$Tmax[1])
B=rtrian2(uI$Tmin[2],(uI$Tmin[2]+uI$Tmax[2])/2,uI$Tmax[2])
C=rtrian2(uIII$Tmin[1],(uIII$Tmin[1]+uIII$Tmax[1])/2,uIII$Tmax[1])
Ebounds[1]=min(Ebounds[1],C)
Ebounds[5]=min(Ebounds[5],A,B)
Ebounds[6]=max(Ebounds[6],A,B)
Eduration[,j]=Ebounds[2:6] Ebounds[1:5]
if(j/100==floor(j/100)){print(j); flush.console()}}
return(round(seek_quantile(Eduration,5)))}

#Simple Monte Carlo sampling for computing time between Nisida and Monte Nuovo eruptions.
Inter3=function(N){
Times=numeric(N)
for(i in 1:N){Times[i]=rtrian2(3213,(3213+4188)/2,4188) 477
if((i/100)==floor(i/100)){print(i); flush.console()}}
A=c(quantile(Times,0.05),mean(Times),quantile(Times,0.95))
print(A);flush.console()}

#Random sampling with a triangular distribution, Newton Raphson approximation of range, given mode and 2.5th, 97.5th percentiles.
rtrian2=function(a,b,c){if(a==c){R=b}
else {R=rtrian_inner(NewRap2(a,b,c)[1],b,NewRap2(a,b,c)[2])}
return(R)}

InvJac2=function(x,y,a,b,c){
A=1.95*x+0.025*y 2*a+0.025*b
B=0.025*(x b); C=0.025*(y b)
D=1.95*y+0.025*x 2*c+0.025*b
M=matrix(0,2,2); M[1,]=c(D, B)
M[2,]=c( C,A); return(M/(A*D B*C))}

NewRap2=function(a,b,c){
x0=a (c a)/6; y0=c+(c a)/6
x=c(x0,y0); for(i in 1:5){
x=x crossprod(InvJac2(x[1],x[2],a,b,c),FunRap2(x[1],x[2],a,b,c))}
return(x)}

FunRap2=function(x,y,a,b,c){
A1=(a x)^2 0.025*(y x)*(b x)
A2=(y c)^2 0.025*(y x)*(y b)
return(c(A1,A2))}

#random new eruption times sampling
sample_timesHawk=function(T,mu,l0,DL){
DataSample=matrix(0,DL,16)
zV=SpaFreHawk(NULL,NULL,NULL)
for(i in 1:16){if(zV[i]>0){
l0_loc=l0*zV[i]
k=3/T; h=mu*k; l_clust=0
if(i==3){l_clust=h}
tau=0; while(tau<DL){
l_ini=l_clust; test=1; dt=0
while(test>(l_clust+l0_loc)){
dt=dt+rexp(1,l_ini+l0_loc)
l_clust=l_ini*exp( k*dt)
test=runif(1)*(l_ini+l0_loc)}
tau=tau+dt; l_clust=l_clust+h
if(tau<DL){
DataSample[floor(tau),i]=1}}}}
Y=seq(1,DL)
plot(rep(1,DL),Y,'l',xlim=c(1,13),lwd=2)
for(i in 2:13){lines(rep(i,DL),Y,lwd=2)}
for(j in 1:13){for(i in 1:DL){
if(DataSample[i,j]>0){
points(j,i,col='red',pch=3,lwd=2)}}}
return(sum(DataSample))}

#random past eruption times sampling,
#optional T time window start and DL duration.
sample_pastTimes=function(mT,u,T=0,DL=0){
TM=sampleTemp(mT,u)
N=length(TM$Id)
if(!DL){DL=TM$T[1] TM$T[N]+5}
DataSample=matrix(0,DL,13)
if(!T){T=TM$T[1]+1}
TM$T= TM$T+T
if(TM$T[1]<0){return(0)}
for(i in 1:13){
vM=LocDatHawk(TM,i,0)
if(length(vM)>0){
for(k in 1:length(vM)){
if(vM[k]<DL){DataSample[vM[k],i]=1}}}}
Y=seq(1,DL)
plot(rep(1,DL),Y,'l',xlim=c(1,13),lwd=2)
for(i in 2:13){
lines(rep(i,DL),Y,lwd=2)}
for(j in 1:13){for(i in 1:DL){
if(DataSample[i,j]>0){
if(N==33){points(j,i,col='blue',pch=3,lwd=2)}
if(N==28){points(j,i,col='darkgreen',pch=3,lwd=2)}}}}
sum(DataSample)}



6.3.9 Volume sampling and plotting
#Monte Carlo and plotting of volume estimates with uncertainty; N samples, localized in n1:n2 zones, X1 and X2 parameter set bounds (if 0 default),
flag1=0 if create new plot and 1,2 if we add to the current. If flag=1 plots events, if flag=0 volumes estimates.
volPlot=function(N,T,n1,n2,X1,X2,u,flag1,flag){
Out=CrQuant(T,u,N,n1,n2,flag)
S=Out$S; x=Out$x; L=Out$L
if(X1==0){X1=max(x)}; if(X2==0){X2=min(x)}
l=n2 n1; if(flag1==0){if(L==28){
plot( x,S[,2],'l',col='darkgreen',lty=2,xlim=c( X1, X2))
lines( x,S[,1],col='darkgreen',lty=2)
lines( x,S[,4],lwd=2,col='darkgreen'); lines( x,S[,4])
if(l==15){lines( x,S[,3],col='darkgreen')}}
if(L==8){; plot( x,S[,2],'l',col='red',lty=2,xlim=c( X1, X2))
lines( x,S[,1],col='red',lty=2)
lines( x,S[,4],lwd=2,col='red'); lines( x,S[,4])
if(l==15){lines( x,S[,3],col='red')}}
if(L==33){plot( x,S[,2],'l',col='blue',lty=2,xlim=c( X1, X2))
lines( x,S[,1],col='blue',lty=2)
lines( x,S[,4],lwd=2,col='blue'); lines( x,S[,4])
if(l==15){lines( x,S[,3],col='blue')}}}
if(flag1==1){if(L==28){

lines( x,S[,2],col='forestgreen',lty=2)
lines( x,S[,1],col='forestgreen',lty=2)
lines( x,S[,4],lwd=2,col='forestgreen'); lines( x,S[,4])}
if(L==8){lines( x,S[,2],lty=2,col='indianred')
lines( x,S[,1],col='indianred',lty=2)
lines( x,S[,4],lwd=2,col='indianred'); lines( x,S[,4])}
if(L==33){lines( x,S[,2],col='dodgerblue3',lty=2)
lines( x,S[,1],col='dodgerblue3',lty=2)
lines( x,S[,4],lwd=2,col='dodgerblue3'); lines( x,S[,4])}}
if(flag1==2){if(L==28){lines( x,S[,2],col='green3',lty=2)
lines( x,S[,1],col='green3',lty=2)
lines( x,S[,4],lwd=2,col='green3'); lines( x,S[,4])}
if(L==8){lines( x,S[,2],lty=2,col='chocolate')
lines( x,S[,1],col='chocolate',lty=2)
lines( x,S[,4],lwd=2,col='chocolate'); lines( x,S[,4])}
if(L==33){lines( x,S[,2],col='deepskyblue',lty=2)
lines( x,S[,1],col='deepskyblue',lty=2)
lines( x,S[,4],lwd=2,col='deepskyblue'); lines( x,S[,4])}}}

#Monte Carlo and plotting of total volume estimates or event number with uncertainty; N samples, flag=1 plots events, flag=0 volumes estimates.
# n1:n2 for localizing in zones, flag1=0 if create new plot and 1 if we add to the current.
volPlot2=function(N,T1,T2,T3,u1,u3,flag,n1= Inf,n2=Inf, flag1=0){
Out=CrQuant(T1,u1,N, Inf,Inf,flag); S1=Out$S; x1=Out$x; Out=CrQuant(T2,NULL,N, Inf,Inf,flag); S2=Out$S; x2=Out$x
Out=CrQuant(T3,u3,N, Inf,Inf,flag); S3=Out$S; x3=Out$x; F1=min(x1); F2=min(x2); F3=min(x3); I2=max(x2); I3=max(x3)
X1=seq(0,1000)/1000*(I2 F1)+F1; X2=seq(0,1000)/1000*(I3 F2)+F2; X3=seq(0,1000)/1000*(477 F3)+F3; X3bis=seq(0,1000)/1000*(0 477)+477
v=c(0,0,0); if(n1<4){if(n2>2){v=c(15,30,45)/1000}}; if(flag){v=rep(1,3)}; A1='blue'; A2='red'; A3='darkgreen'
if(!flag1){plot( X1,rep(max(S1[,4]),1001),ylim=c(0,max(S1[,2])+max(S2[,2])+max(S3[,2])+v[3]),xlim=c( max(x1),0),'l',lty=2)}
if(flag1){lines( X1,rep(max(S1[,4]),1001),lty=2); A1='dodgerblue3'; A2='indianred'; A3='forestgreen'}
lines( X1,rep(max(S1[,2]),1001),lty=2); lines( X1,rep(max(S1[,1]),1001),lty=2); lines( X2,rep(max(S2[,4])+max(S1[,4]),1001),lty=2)
lines( X2,rep(max(S2[,1])+max(S1[,1]),1001),lty=2); lines( X2,rep(max(S2[,2])+max(S1[,2]),1001),lty=2)
lines( X3,rep(max(S3[,1])+max(S2[,1])+max(S1[,1]),1001),lty=2); lines( X3,rep(max(S3[,2])+max(S2[,2])+max(S1[,2]),1001),lty=2)
lines( X3,rep(max(S3[,4])+max(S2[,4])+max(S1[,4]),1001), lty=2); lines( X3bis,rep(max(S3[,4])+max(S2[,4])+max(S1[,4])+v[2],1001),lty=2)
lines( X3bis,rep(max(S3[,1])+max(S2[,1])+max(S1[,1])+v[1],1001),lty=2); lines( X3bis,rep(max(S3[,2])+max(S2[,2])+max(S1[,2])+v[3],1001),lty=2)
lines( x1,S1[,1],col=A1,lty=2); lines( x1,S1[,2],col=A1,lty=2); lines( x1,S1[,4],lwd=2, col=A1); lines( x1,S1[,4]); lines( x1,S1[,3], col=A1)
lines( x2,S2[,1]+max(S1[,1]),col=A2, lty=2); lines( x2,S2[,2]+max(S1[,2]),col=A2, lty=2)
lines( x2,S2[,4]+max(S1[,4]),lwd=2,col=A2); lines( x2,S2[,4]+max(S1[,4])); lines( x2,S2[,3]+max(S1[,3]),col=A2)
lines( x3,S3[,1]+max(S1[,1])+max(S2[,1]),col=A3, lty=2); lines( x3,S3[,2]+max(S1[,2])+max(S2[,2]),col=A3, lty=2)
lines( x3,S3[,4]+max(S1[,4])+max(S2[,4]),lwd=2,col=A3); lines( x3,S3[,4]+max(S1[,4])+max(S2[,4]))
lines( x3,S3[,3]+max(S1[,3])+max(S2[,3]),col=A3); v1=seq(0,100)/100*v[1]; v2=seq(0,100)/100*v[3]; v3=seq(0,100)/100*v[2]
if(n1<4){if(n2>2){lines(rep( 477,101),v2+max(S3[,2])+max(S1[,2])+max(S2[,2]),lty=2,col='darkviolet')
lines(rep( 477,101),v1+max(S3[,1])+max(S1[,1])+max(S2[,1]),lty=2,col='darkviolet')
lines(rep( 477,101),v3+max(S3[,4])+max(S1[,4])+max(S2[,4]),lwd=2,col='darkviolet')
lines(rep( 477,101),v3+max(S3[,3])+max(S1[,3])+max(S2[,3]),col='darkviolet')
lines(rep( 477,101),v3+max(S3[,4])+max(S1[,4])+max(S2[,4]))}}}

#Calculating the time domain and the volume quantiles.
CrQuant=function(T,u,N,n1,n2,flag1){
L=length(T$Id)+length(u$Id); Vol=matrix(0,L,N)
Time=Vol; for(i in 1:N){MT=sampleTemp(T,u)
for(j in 1:L){if(MT$Loc[j]<=n2){if(MT$Loc[j]>=n1){
Vol[j,i]=MT$V[j]}}}; Time[,i]=MT$T
if(flag1){Vol[,i]=rep(1,L)}
print(i); flush.console()}
xlim1=max(Time[1,]); xlim2=min(Time[L,])
x= seq(0,10000)/10000*(xlim1 xlim2)+xlim1
y=matrix(0,10001,N)

for(k in 1:N){i=1; s=0
flag=1; for(j in 1:10001){y[j,k]=s
if(x[j]<Time[i,k]){if((i*flag)==L){
s=Vol[i,k]+s; y[j,k]=s; flag=0}
if(i<L){s=Vol[i,k]+s; y[j,k]=s; i=i+1}}}
print(k); flush.console()}
S=seek_quantile(y,10001)/1000
if(flag1){S=S*1000}
Out=NULL; Out$x=x; Out$S=S
Out$L=L; return(Out)}



6.3.10 Maximum likelihood parameters for Hawkes processes
#Calculating optimal (n,T) in [n1,n2] x [T1,T2], double iteration scales, if MC=0 printing more info;
#mT are data sample of epoch zV; example zV=3 for epoch III, zV=1 for epoch I
#option EW=1 for considering only Western sector, EW=2 for Eastern sector. Option Split=1 for considering only events before AMS/PP.
#optionally given also mT2 and mT3 for merging with mT, changing zV example zV=12 for merging epoch I and II
MaxLikHawk=function(n1,n2,T1,T2,mT,sT,sn,zV,MC=0,f=1,EW=0,Split=0,mT2=NULL,mT3=NULL,MN=NULL){
if(Split*EW==1){return(NULL)}; if(Split*length(mT3)){return(NULL)}
if(length(mT2)){mT=MergeHawk(mT,mT2,mT3,MN)}
if(Split){for(i in 1:length(mT$Id)){if(mT$Id[i]=='PP'){Split=i}
if(mT$Id[i]=='AMS'){Split=i}}
if(Split==1){Split=0}}
zT=TotDatHawk(mT,Split); A=calcEHawk(mT,EW,Split)
N=A[1]; E=A[2]; a=A[3]; b=A[4]; I=A[5]; if(!E){return(NULL)}
zV=SpatGlobHawk(zV,mT,mT2,mT3,a,b);
return(InnLikHawk(n1,n2,T1,T2,zT,mT,sT,sn,f,E,a,b,I,N,zV,MC))}

#Merging of the data in a single epoch
MergeHawk=function(mT1,mT2=NULL,mT3=NULL,MN=NULL){
mT=NULL; mT$Id=c(mT1$Id,mT2$Id,mT3$Id,MN$Id)
mT$Loc=c(mT1$Loc,mT2$Loc,mT3$Loc,MN$Loc)
mT$EW=c(mT1$EW,mT2$EW,mT3$EW,MN$EW)
mT$T=c(mT1$T,mT2$T,mT3$T,MN$T)
mT$V=c(mT1$V,mT2$V,mT3$V,MN$V)
return(as.data.frame(mT))}

#Defining a matrix with all past localized event times before event L
TotDatHawk=function(T,L=0){
if(!length(T$Id)){return(NULL)}
data=matrix(NA,16,40)
for(i in 1:16){
S=LocDatHawk(T,i,L)
if(length(S)){
data[i,1:length(S)]=S}}
return(data)}

#Defining a vector with localized event times in zone n before event L
LocDatHawk=function(T,n,L){
if(!L){L=length(T$Id)}
data=NULL; j=1
for(i in 1:L){
if(T$Loc[i]==n){
data[j]=T$T[i]
j=j+1}}
return(data)}

#Defining the random spatial frequencies
SpatGlobHawk=function(zV,mT,mT2=NULL,mT3=NULL,a=1,b=16){
if(min(zV)==1){zV=SpaFreHawk(mT,NULL,NULL)}
if(min(zV)==2){zV=SpaFreHawk(NULL,mT,NULL)}
if(min(zV)==3){zV=SpaFreHawk(NULL,NULL,mT)}
if(min(zV)==12){zV=SpaFreHawk(mT,mT2,NULL)}
if(min(zV)==123){zV=SpaFreHawk(mT,mT2,mT3)}
if(min(zV)==1234){zV=SpaFreHawk(mT,mT2,mT3)
zV=zV/70*69; zV[3]=zV[3]+1/70}
zV=c(rep(0,a 1),zV[a:b],rep(0,16 b))
zV=zV/sum(zV); return(zV)}

#Calculating local frequencies, optional fixed samples
SpaFreHawk=function(T1,T2,T3){
if(!length(T1)){T1=sampleTemp(TI,uI)}
if(!length(T2)){T2=sampleTemp(TII,uII)}
if(!length(T3)){T3=sampleTemp(TIII,uIII)}
S=c(T1$Loc,T2$Loc,T3$Loc)
N=numeric(16)
for(i in 1:length(S)){
N[S[i]]=N[S[i]]+1}
return(N/sum(N))}

#Inner algorithm for repeating two iterations at different scales
InnLikHawk=function(n1,n2,T1,T2,zT,mT,sT,sn,f,E,a,b,I,N,zV,MC){
if(n1<0){n1=0}; if(n2>N){n2=N}
dom_T=(seq((T2 T1)/sT+1) 1)*sT+T1; if(!E){return(NULL)}
dom_n=(seq((n2 n1)/sn+1) 1)*sn+n1
dom=(n2 n1)/sn+1; nn=(T2 T1)/sT+1; L= Inf
for(m in 1:dom){l0=dom_n[m]/E; L2= Inf
for(j in 1:nn){k_act=3/dom_T[j]; h_act=(N dom_n[m])/N*k_act
L1=LikHawk_zones(zT,mT,zV,l0,k_act,h_act,E,a,b,I)
if(L1>L){L=L1; T=dom_T[j]; n=dom_n[m]; k=k_act; h=h_act}
if(!MC){if(L1>L2){L2=L1}}}
if(!MC){print(c(dom_n[m],L2)); flush.console()}}
if(!f){if(!MC){print(c('n =',round(n,1)),quote=F); flush.console()

#Calculating epoch duration restricted to eastern or western sector
calcEHawk=function(mT,EW,N=0){
if(!N){N=length(mT$Id)}
if(!length(mT)){return(c(0,0,1,16,1))}
if(!EW){return(c(N,mT$T[1] mT$T[N],1,16,1))}
n=0; S=0
for(i in 1:N){
if(mT$EW[i]==EW){n=n+1; S=i}}
I=1; while(mT$EW[I]==EW){I=I+1}
a=1; b=5
if(EW==2){a=6;b=16}
return(c(n,mT$T[I] mT$T[S],a,b,I))}

print(c('T =',round(T)), quote=F); flush.console()
print(c('mu =',round((N n)/N,2)), quote=F); flush.console()
print(c('1/l0 =',round(1/l0,2)), quote=F); flush.console()}
return(c(n,T,(N n)/N,l0,k,h,E))}
if(f){if(T>sT){return(InnLikHawk(n sn,n+sn,T sT,T+sT,zT,mT,sT/20,sn/10,0,E,a,b,I,N,zV,MC))}
if(T==sT){return(InnLikHawk(n sn,n+sn,T (sT*9/10),T+(sT*9/10),zT,mT,sT/20,sn/10,0,E,a,b,I,N,zV,MC))}}}



#Calculating log likelihood with given parameters; zones a:b.
LikHawk_zones=function(zT,mT,zV,l0,k_act,h_act,E,a,b,I=1){
if(!E){return(0)}; L1=0
for(i in a:b){time_z=zT[i,]
time_z=time_z[!is.na(time_z)]
nz=length(time_z); dataT= time_z+(mT$T[I])
if(nz>1){dt=dataT[2:nz] dataT[1:(nz 1)]}
if(nz<2){dt=0}
l0_act=zV[i]*l0
L1_act=seekLikeHawk(l0_act,k_act,h_act,dataT,dt,E)
L1=L1+L1_act}
return(L1)}

#Localized log likelihood calculation with fixed l0, k, h parameters;
#dataT are increasing times, dt are time intervals, E epoch duration
seekLikeHawk=function(l0,k,h,dataT,dt,E){
n=length(dataT)
if(n==0){return( E*l0)}
L1= h/k*n E*l0+h/k*sum(exp( k*(E dataT)))
L2=l0; l_clust=0
if(n>1){for(i in 1:(n 1)){
l_clust=(l_clust+h)*exp( dt[i]*k)
L2=L2*(l0+l_clust)}}
L2=log(L2); return(L1+L2)}

#Version for maximize combined likelihoods of the IxIIxIII epochs (or IxIII epochs); mu and E are referred to the third epoch;
#option Merge=1 for merging epochs I and II, and then calculating the likelihood of (I*II)xIII epochs.
MaxLikHawk2=function(n1,n2,T1,T2,mT1,mT2,mT3,sT,sn,zV=0,f=1,EW=0,Split=0,Merge=0){
if(Split*EW==1){return(NULL)}; S1=S3=0; if(Merge){mT1=MergeHawk(mT1,mT2); mT2=NULL}
if(Split){for(i in 1:length(mT1$Id)){if(mT1$Id[i]=='PP'){S1=i}}
for(i in 1:length(mT3$Id)){if(mT3$Id[i]=='AMS'){S3=i}}}
zT1=TotDatHawk(mT1,S1); zT2=TotDatHawk(mT2); zT3=TotDatHawk(mT3,S3);
A=calcEHawk(mT1,EW,S1); N1=A[1]; E1=A[2]; a=A[3]; b=A[4]; I1=A[5]
A=calcEHawk(mT2,EW); N2=A[1]; E2=A[2]; I2=A[5]; if(f){zV=SpatGlobHawk(123,mT1,mT2,mT3,a,b)}
A=calcEHawk(mT3,EW,S3); N3=A[1]; E3=A[2]; I3=A[5]; if(!E3){return(NULL)}
return(InnLikHawk2(n1,n2,T1,T2,zT1,mT1,zT2,mT2,zT3,mT3,sT,sn,f,E1,E2,E3,a,b,I1,I2,I3,N1,N2,N3,zV))}

#Inner algorithm for repeating two iterations at different scales
InnLikHawk2=function(n1,n2,T1,T2,zT1,mT1,zT2,mT2,zT3,mT3,sT,sn,f,E1,E2,E3,a,b,I1,I2,I3,N1,N2,N3,zV){
if(n1<0){n1=0}; if(n2>N3){n2=N3}; dom_T=(seq((T2 T1)/sT+1) 1)*sT+T1
dom_n=(seq((n2 n1)/sn+1) 1)*sn+n1; dom=(n2 n1)/sn+1; nn=(T2 T1)/sT+1; L= Inf
for(m in 1:dom){l0=dom_n[m]/E3
for(j in 1:nn){k_act=3/dom_T[j]; h_act=(N3 dom_n[m])/N3*k_act
L11=LikHawk_zones(zT1,mT1,zV,l0,k_act,h_act,E1,a,b,I1)
L12=LikHawk_zones(zT2,mT2,zV,l0,k_act,h_act,E2,a,b,I2)
L13=LikHawk_zones(zT3,mT3,zV,l0,k_act,h_act,E3,a,b,I3)
if(L11+L12+L13>L){L=L11+L12+L13; T=dom_T[j]; n=dom_n[m]; k=k_act; h=h_act}}}
if(!f){return(c(n,T,(N3 n)/N3,l0,k,h,E3))}
if(f){if(T>sT){return(InnLikHawk2(n sn,n+sn,T sT,T+sT,zT1,mT1,zT2,mT2,zT3,mT3,sT/20,sn/10,0,E1,E2,E3,a,b,I1,I2,I3,N1,N2,N3,zV))}
if(T==sT){return(InnLikHawk2(n sn,n+sn,T (sT*9/10),T+(sT*9/10),zT1,mT1,zT2,mT2,zT3,mT3,sT/20,sn/10,0,E1,E2,E3,a,b,I1,I2,I3,N1,N2,N3,zV))}}}



6.3.11 Cox Hawkes processes Monte Carlo simulations
#Monte Carlo (MC) simulation, N=2500 samples; inputs described in the sequel
#output contains number n of base rate events, time T of decay, mean offspring mu, base rate value l0, parameters k and h, epoch duration E.
MonteCarloHawk=function(N,n1,n2,T1,T2,mT,u,sT,sn,zV,EW=0,Split=0,mT2=NULL,u2=NULL,mT3=NULL,u3=NULL,MN=NULL){
A=matrix(0,7,N); for(i in 1:N){
A[,i]=MaxLikHawk(n1,n2,T1,T2,sampleTemp(mT,u),sT,sn,zV,1,1,EW,Split,sampleTemp(mT2,u2),sampleTemp(mT3,u3),sampleTemp(MN,NULL))
print(i); flush.console()}; outp=seek_quantile(A,7)[,c(1,4,2)]
print(c('n =',round(outp[1,],1)),quote=F); flush.console()
print(c('T =',round(outp[2,])),quote=F); flush.console()
print(c('mu =',round(outp[3,],2)),quote=F); flush.console()
print(c('1/l0 =',round(1/outp[4,c(3,2,1)],2)),quote=F); flush.console(); return(outp)}

#MC simulation combined likelihood of more epochs, N=2500 samples
MonteCarloHawk2=function(N,n1,n2,T1,T2,mT1,u1,mT2,u2,mT3,u3,sT,sn,EW=0,Split=0,Merge=0){
A=matrix(0,7,N); for(i in 1:N){
A[,i]=MaxLikHawk2(n1,n2,T1,T2,sampleTemp(mT1,u1),sampleTemp(mT2,u2),sampleTemp(mT3,u3),sT,sn,0,1,EW,Split,Merge)
print(i); flush.console()}
outp=seek_quantile(A,7)[,c(1,4,2)]
print(c('n =',round(outp[1,],1)),quote=F); flush.console()
print(c('T =',round(outp[2,])),quote=F); flush.console()
print(c('mu =',round(outp[3,],2)),quote=F); flush.console()
print(c('1/l0 =',round(1/outp[4,c(3,2,1)],2)),quote=F); flush.console()
return(outp)}

#MC on N=500000 samples offspring probability
MC_offspringHawk=function(N,T,Vmu){
S=numeric(3)
for(i in 1:N){
S[1]=S[1]+erupt01hawk(T,Vmu[1])
S[2]=S[2]+erupt01hawk(T,Vmu[2])
S[3]=S[3]+erupt01hawk(T,Vmu[3])
if(i/100==floor(i/100)){
print(i); flush.console()}}
return(round(S/N,2))}

#Sampling of indicator 0 1 if the eruption has offspring
erupt01hawk=function(T,mu){
D=T/3*7; k=3/T; h=mu*k
l_clust=h; test=1; dt=0
while(test>l_clust){
dt=dt+rexp(1,h)
if(dt>D){return(0)}
l_clust=h*exp( k*dt)
test=runif(1)*h}
return(1)}

#Sample of cluster sizes
clustDistHawk=function(T,mu){
D=T/3*7; k=3/T; h=mu*k
l_clust=h; L=1; DL=h*exp( k*D)
while(l_clust>=DL){
l_ini=l_clust; test=1; dt=0
while(test>l_clust){dt=dt+rexp(1,l_ini)
l_clust=l_ini*exp( k*dt)
if(l_clust<DL){return(L)}

test=runif(1)*l_ini}
L=L+1; l_clust=l_clust+h}
print('FAIL'); flush.console()}

#Clusters counting
NclustHawk=function(Vn,VP){
S=numeric(3); S[1]=Vn[1]*VP[1]
S[2]=Vn[2]*VP[2]; S[3]=Vn[3]*VP[3]
return(round(S,1))}

#Clusters size (not considering ‘clusters’ of
#one element)
size_clustHawk=function(mu,P){
size=1/(1 mu)
trusize=(size 1+P)/P
return(round(trusize,1))}

#MC on N samples – clusters distribution
MC_clustDistHawk=function(N,T,Vmu){
S1=S2=S3=numeric(N)
for(i in 1:N){
S1[i]=clustDistHawk(T,Vmu[1])
S2[i]=clustDistHawk(T,Vmu[2])
S3[i]=clustDistHawk(T,Vmu[3])
if(i/100==floor(i/100)){
print(i); flush.console()}}

L=max(S1); Vs=numeric(L)
for(i in 1:N){
Vs[S1[i]]=Vs[S1[i]]+1}
Vs=Vs/sum(Vs)*100
A=round(Vs[1:10],1)
L=max(S2); Vs=numeric(L)
for(i in 1:N){
Vs[S2[i]]=Vs[S2[i]]+1}
Vs=Vs/sum(Vs)*100

B=round(Vs[1:10],1)
L=max(S3); Vs=numeric(L)
for(i in 1:N){
Vs[S3[i]]=Vs[S3[i]]+1}
Vs=Vs/sum(Vs)*100
C=round(Vs[1:10],1)
D=matrix(0,10,3)
D[,1]=A; D[,2]=B; D[,3]=C
return(as.data.frame(D))}

#Nested MC on NxM samples – MN offspring
MC_MNoffspringHawk=function(N,M,VT,Vmu,t0){
Vs=numeric(M); for(j in 1:M){mu=rtrian(Vmu[1],Vmu[2],Vmu[3])
T=rtrian(VT[1],VT[2],VT[3]); S=0
for(i in 1:N){S=S+MNerupt01hawk(T,mu,t0)}
Vs[j]=S/N; if(j/10==floor(j/10)){print(j); flush.console()}}
Vs1=quantile(Vs,0.05); Vsm=mean(Vs); Vs2=quantile(Vs,0.95)
return(round(c(Vs1,Vsm,Vs2)*100,2))}

#Sampling of indicator 0 1 if Monte Nuovo (MN) will have offspring
MNerupt01hawk=function(T,mu,t0){
if(mu<=0){return(0)}; if(T<=0){return(0)}
D=T/3*10; k=3/T; h=mu*k; l_clust=h*exp( k*t0)
l_ini=l_clust; test=1; dt=0
while(test>l_clust){dt=dt+rexp(1,h)
if(dt>D){return(0)}; l_clust=l_ini*exp( k*dt)
test=runif(1)*h}; return(1)}



#Nested MC on NxM samples – probability of no events after MN.
MC_IVepoHawk=function(N,M,VT,Vmu,Vl0){
Vs=numeric(M); for(j in 1:M){S=0
mu=rtrian(Vmu[1],Vmu[2],Vmu[3])
T=rtrian(VT[1],VT[2],VT[3]); l0=rtrian(Vl0[1],Vl0[2],Vl0[3])
for(i in 1:N){S=S+IVerupt01hawk(T,mu,l0)}
Vs[j]=S/N; print(Vs[j]); flush.console()
if(j/10==floor(j/10)){print(j); flush.console()}
Vs1=quantile(Vs,0.05); Vsm=mean(Vs); Vs2=quantile(Vs,0.95)
return(round(c(Vs1,Vsm,Vs2)*100,2))}

#Sampling of indicator 0 1 that CF had no events for D years after
#MN; if f=1 samples an hypothesized repose time after MN,
#subtracting D years to the result; if f=2 samples next eruption time.
IVerupt01hawk=function(T,mu,l0,f=0,D=477){
if(mu<=0){mu=0}; if(T<=1){T=1}; k=3/T; h=mu*k
l_clust=h; if(f==2){ l_clust=h*exp( k*D)}
l_ini=l_clust; test=1; dt=0; while(test>(l_clust+l0)){
dt=dt+rexp(1,l_ini+l0); if(!f){if(dt>D){return(1)}}
l_clust=l_ini*exp( k*dt); test=runif(1)*(l_ini+l0)}
if(f==1){return(dt D)}; if (f==2){return(dt)}; return(0)}

#Calculating uncertainty ranges
rangesHawk=function(a,b,c,f=0){
if(f){a=1/a; b=1/b; c=1/c}
A=(b a)/b; B=(c b)/b
print(round(100*c( A,B),2))
flush.console()
print(round(50*(A+B),2))
flush.console()}

#Calculating uncertainty ranges on matrix.
rangeMatHawk=function(M){
print('T',quote=F); flush.console()
rangesHawk(M[2,1],M[2,2],M[2,3])
print('mu',quote=F); flush.console()
rangesHawk(M[3,1],M[3,2],M[3,3])
print('1/l0',quote=F); flush.console()
rangesHawk(M[4,3],M[4,2],M[4,1],1)}

#Density estimation: Max. Likelihood (ML) exponential;
#parameter A imposes the color.
plotExpT=function(Vs,A=0){
mean=fitdistr(Vs,'exponential')$estimate
X=(seq(1,10001) 1)/10000*1250
if(!A){plot(X,dexp(X,mean),'l',lwd=2,xlim=c(0,1250),ylim=c(0,0.008))}
if(A==1){lines(X,dexp(X,mean),lwd=2,lty=2,col='red')}
if(A==2){lines(X,dexp(X,mean),lwd=2,lty=2,col='darkviolet')}
if(A==3){lines(X,dexp(X,mean),lwd=2,lty=2,col='blue')}
if(A==4){lines(X,dexp(X,mean),lwd=2,lty=2,col='green3')}}

#ML exponential considering East and West separately.
doublePlot=function(Vs1,Vs2){
m1=fitdistr(Vs1,'exponential')$estimate
m2=fitdistr(Vs2,'exponential')$estimate
mean=m1+m2; X=(seq(1,10001) 1)/10000*1250
plot(X,dexp(X,mean),'l',lwd=2,xlim=c(0,1250),ylim=c(0,0.008))
lines(X,dexp(X,m1),lwd=2,lty=2,col='blue')
lines(X,dexp(X,m2),lwd=2,lty=2,col='green3')}

#Kernel density estimation for time distrib. reflexed in zero;
#parameter A imposes the color.
plot_kdeT=function(Vs,A=0){
X=numeric(2048); m=quantile(Vs,0.995)
pdf=density(Vs,n=4096,from= m,to=m)
X=c(pdf$y[2049:4095]+pdf$y[2048:2],pdf$y[4096])
print(sum(X*(pdf$x[1] pdf$x[2]))); flush.console(); if(!A){
plot(pdf$x[2049:4096],X,'l',lwd=2,xlim=c(0,1250),ylim=c(0,0.008))}
if(A==1){lines(pdf$x[2049:4096],X,lwd=2,lty=2,col='red')}
if(A==2){lines(pdf$x[2049:4096],X,lwd=2,lty=2,col='darkviolet')}
if(A==3){lines(pdf$x[2049:4096],X,lwd=2,lty=2,col='blue')}
if(A==4){lines(pdf$x[2049:4096],X,lwd=2,lty=2,col='green3')}
if(A==5){lines(pdf$x[2049:4096],X)}

#Calculating the Bayesian effect of 477 years of no activity conditioning; simple MC.
MC_Posterior=function(M,VT,Vmu,Vl0){Vs=numeric(M); for(j in 1:M){while(Vs[j]<=0){S=0; mu=rtrian(Vmu[1],Vmu[2],Vmu[3])
T=rtrian(VT[1],VT[2],VT[3]); l0=rtrian(Vl0[1],Vl0[2],Vl0[3]); Vs[j]=IVerupt01hawk(T,mu,l0,1)}; if(j/10==floor(j/10)){print(j); flush.console()}}
Vs1=quantile(Vs,0.05); Vsm=mean(Vs); Vs2=quantile(Vs,0.95); plot_kdeT(Vs); print(round(c(Vs1,Vsm,Vs2))); flush.console(); return(Vs)}

#Nested MC on NxM samples calculates next eruption time mean and percentiles curves and plot them; in addition it calculates the percentiles of
such curves and their uncertainty bounds; parameter A imposes the color; if f=1 plots only the mean curve, with line type t.
Perc_IVepoHawk=function(N,M,VT,Vmu,Vl0,A=0,f=0,t=1){
Vs=numeric(N); VsM=numeric(M)
for(j in 1:M){mu=0; T=0; l0=0
while(mu<=0){mu=rtrian(Vmu[1],Vmu[2],Vmu[3])}
while(T<=0){T=rtrian(VT[1],VT[2],VT[3])}
while(l0<=0){l0=rtrian(Vl0[1],Vl0[2],Vl0[3])}; VsM[j]=l0
for(i in 1:N){Vs[i]=IVerupt01hawk(T,mu,l0,2)}
VsM[j]=fitdistr(Vs,'exponential')$estimate
if(j/10==floor(j/10)){print(j); flush.console()}}
X=(seq(1,10001) 1)/10000*1250; Cv=matrix(0,10001,M)
for(j in 1:M){Cv[,j]=dexp(X,VsM[j])}
outp=seek_quantile(Cv,10001)
if(A==0){B='black'}; if(A==1){B='red'}; if(A==2){B='darkviolet'}
if(A==3){B='blue'}; if(A==4){B='green3'}
if(f){lines(X,outp[,4],lwd=2,lty=t,col=B); return(NULL)}

lines(X,outp[,1],lwd=1,lty=2,col=B)
lines(X,outp[,2],lwd=1,lty=2,col=B)
lines(X,outp[,4],lwd=1,lty=1,col=B)
q05=q95=numeric(M)
for(i in 1:M){q05[i]=qexp(0.05,VsM[i])
q95[i]=qexp(0.95,VsM[i])}
Vs1=quantile(VsM,0.95); Vsm=mean(VsM)
Vs2=quantile(VsM,0.05)
q1_1=quantile(q05,0.05); q1_m=mean(q05)
q1_2=quantile(q05,0.95)
q2_1=quantile(q95,0.05); q2_m=mean(q95)
q2_2=quantile(q95,0.95)
print(round(c(q1_1,1/Vs1,q2_1))); flush.console()
print(round(c(q1_m,1/Vsm,q2_m))); flush.console()
print(round(c(q1_2,1/Vs2,q2_2))); flush.console()}
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6.4 Principal Notation

The following is the list of the variables adopted in the thesis. Each variable is briefly described and
if possible we report also the Definition (D) in which it is first introduced. The list is organized in
four paragraphs concerning the main parts of the thesis. We focus on Chapters 1-4, and we do not
include the variables that are specific of the more technical Chapters 5 and 6.

Doubly stochastic modelling
(Ω,F , P ) - sample space with the associate σ-algebra and probability measure. An arbitrary element of Ω
is called ω. - D1.

(E, E) - epistemic space with the associate σ-algebra; an arbitrary element from E is called e. - D1.

(W,W) - physical space with the associate σ-algebra. - D1.

ξ - random variable from (Ω,F , P ) to (E, E) sampling epistemic assumptions. - D1.

χ(e, ·) - random variable from (Ω,F , P ) to (W,W) sampling the physical observables, conditional on e. -
D1.

η - probability distribution on (E, E), image of P under ξ. - D1.

M(e) - probability distribution on (W,W), image of P under χ(e, ·), conditional on e. - D1.

Vent opening probability maps
A ⊆ R2 - domain representing the area of the volcanic system, associated with its Borel σ-algebra B(A). -
D2.

X - random variable from (Ω,F , P ) to (A,B(A)) representing the location of the next eruptive vent. An
arbitrary vent location in A is called x. - D2.

µX - probability distribution on (A,B(A)), image of P under X. It is the probability map of vent opening.
- D2.

π1 - measurable function from (W,W,M) to (A,B(A)), representing the projection of the physical space
onto the space of the vent opening location. - D3.

X̌(e, ·) - random variable from (Ω,F , P ) to (A,B(A)) representing the location of the next eruptive vent
conditional on e. - D3.

µX̌(e) - probability distribution on (A,B(A)), image of M(e) under π1, or of P under X̌(e, ·). It is the
probability map of vent opening conditional on e. - D3.

(Xi)i=1,...,d - random variables from (Ω,F , P ) to (A,B(A)) representing vent locations based on the infor-
mation of single volcanologic features. Their distributions of (A,B(A)) are called (µi)i=1,...,d. - D15.

(αi)i=1,...,d - random variables from (E, E , η) to ([0, 1],B(0, 1)) representing the linear weights of the maps.
- D15.

β = (βj)j=1,...,d′ - random variables defined on (E, E , η) representing the DM responses to the elicitation
questionnaire concerning vent opening. f is a measurable function that permits to calculate (αi)i=1,...,d

from β = (βj)j=1,...,d′ . - D16.

V = (wi)i=1,...,n - discrete set of all the eruptive events considered. - D17.

(Di)i=1,...,n - ellipses representing the enlarged locations of the eruptions. For each i, ζi is a uniform
probability measure supported on Di. - D17.
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(Al)l=1,...,N - finite partition of the spatial domain A. - D18.

Appendix A of Chapter 2 relies on the previous notation.

Appendix B of Chapter 2, re-defines some previously adopted symbols with different meanings (not reported
here) valid only in that section.

Pyroclastic density current invasion maps
Y - real positive random variable from (Ω,F , P ) representing the location of the area invaded by PDCs
during the next explosive eruption. An arbitrary areal size is called y. - D4.

νY - probability distribution on (R+,B(R+)), image of P under Y . It is the distribution of PDC invaded
areas. - D4.

π2 - measurable function from (W,W,M) to (R+,B(R+)), representing the projection of the physical space
onto the eruptive scale space. - D5.

Y̌ (e, ·) - random variable from (Ω,F , P ) to (R+,B(R+)) representing the area invaded by the next PDC,
conditional on e. - D5.

νY̌ (e) - probability distribution on (R+,B(R+)), image of M(e) under π2, or of P under Y̌ (e, ·). It is the
probability distribution of PDC invaded area conditional on e. - D5.

B ⊆ R2 - domain representing an enlarged zone possibly affected by PDC hazard, associated with its Borel
σ-algebra B(A). An arbitrary element of B is called z. - D6.

F - function from A × R+ to the Borel subsets of B, representing the set invaded by a PDC propagating
from a vent x with a scale y. - D6.

p - measurable function from (B,B(B)) to ([0, 1],B([0, 1]) coinciding with E[1F (X,Y )]; represents the prob-
ability of each point of B to be reached by the next PDC. - D7.

p̌(z) - random variable from (E, E , η) to ([0, 1],B([0, 1]) representing the probability of each point of B to
be reached by the next PDC, conditional on e. - D7.

(γ1, γ2) - real positive random variables defined on (E, E , η) representing mean and standard deviation of
the distribution of PDC invaded areal sizes. - D25.

β̃ = (βj)j∈d′+1,...,d′+q - random variables defined on (E, E , η) representing the DM responses to the elicita-
tion questionnaire concerning PDC assessment. g is a measurable function that permits to calculate γ from
β̃. - D25.

lmax - real positive arbitrary number representing the maximum run-out of a PDC neglecting topography.
- D26.

K - real positive measurable function defined on [0, diam(B)]×R+ with their Borel σ-algebra, representing
the kinetic energy as a function of the distance r from the vent, and of lmax. - D26.

U - real positive measurable function defined on (A,B(A)), representing the potential energy associated
with the topography, as a function of the location. - D26.

F̃ - function from A × R+ to the Borel subsets of B, representing the set invaded by a PDC propagating
from a vent x with a scale y, based on the kinetic energy comparison, without shading. - D26.

σ(·) - set function from A×P(B) on P(B) representing the shading of the area invaded. - D27.

R - real positive measurable function defined on A× R+ representing the parameter lmax as a function of
the vent location x and of the areal size y. - D27.
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Appendix A of Chapter 3, re-defines some previously adopted symbols with different meanings (not reported
here) valid only in that section.

Appendix B of Chapter 3, includes the following notation for the physical parameters.

l(t) - position of the front of the current as a function of time.

u(t) - velocity of the front of the current as a function of time.

h(t) - height of the current as a function of time.

ϕ(t) - volume fraction of particles as a function of time.

V - volume of the current per radiant.

Fr - Froude number.

ws - sedimentation velocity.

gp - reduced gravity of the particles.

H - potential energy required for overcoming an obstacle.

C - physical constant summarizing all the parameters governing the box model approximation.

Appendix C of Chapter 3 mostly relies on the previous notation, and introduces a few new variables not
reported here.

Time-space model for the next eruption
τ - random variable from (E, E , η) to the space S(n) of the permutations of {1, . . . , n}, representing the
random time sequence of past eruptions. - D8.

(vj)j=1,...,n - set of all the eruptive events considered, with an ordering imposed by τ . - D8.

(tj)j=1,...,n - vector of real random variables from (E, E , η) to Rn
+, each tj representing the time of eruptive

event vj . - D8.

Vj - random variable from (E, E , η) to (A,B(A)) representing the location of the eruption vj . - D8.

Θl - random set of random variables representing the times of each eruption vj that occurred in the zone
Al. - D8.

Z = (Zl)l=1,...,N - doubly stochastic multivariate Hawkes process on (Ω,F , P ) representing the times and
locations of eruptions. - D9.

φ - functional from E to the space of continuous decreasing functions on R+, representing the random
diminishing of self interaction for the process Z. - D9.

λl
0 - real positive random variable from (E, E) representing the base rate of the process Zl. - D9.

π3 - measurable function from (W,W,M) to the space of l-dimensional counting measures, representing the
projection of the physical space onto the set of next eruptions times in each of the caldera zones. - D10.

Ž(e, ·) - point process defined on (Ω,F , P ) representing the set of next eruptions times, conditional on e. -
D10.

Zmn - Cox-Hawkes process starting from a situation without excitement except for the residual additional
intensity from Monte Nuovo, after t0 = 477 years. - D11.

Z∗ - positive random variable on (Ω,F , P ) representing the remaining time before the next eruption at
Campi Flegrei. - D11.

ϱZ∗ - probability distribution on (R+,B(R+)), image of P under Z∗. It is the distribution of next eruption
time from the present (year 2015). - D11.
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Žmn - Cox-Hawkes process starting from a situation without excitement except for the residual additional
intensity from Monte Nuovo, after t0 = 477 years, conditional on e. - D12.

Ž∗(e, ·) - random variable from (Ω,F , P ) to (R+,B(R+)) representing the remaining time before the next
eruption at Campi Flegrei, conditional on e. - D12.

ϱŽ∗(e) - probability distribution on (R+,B(R+)), image of P under Ž∗(e, ·). It is the probability distribution
of next eruption time conditional on e. - D12.

k, h - real positive random variables on the space (E, E , η) representing the parameters of the self-interaction
function of an Hawkes process. - D29.

L - likelihood function of a time-space record. Ll is the likelihood of the sub-record of zone Al. - D30.

Z̃3 - counting process without base rate and including only the residual self-excitement from Monte Nuovo
event after t0 = 477 years. - D32.

Qmn - probability of producing an offspring after t0 = 477 years of quiescence from the first event, in
absence of other previous excitements. - D32.

Lmn - likelihood of passing t0 = 477 years without other events after one eruption, in absence of other
previous excitements. - D32.

T - real parameter representing the duration of self-excitement: the integrated additional intensity on the
times above T is 5% of the total.

µ - real parameter representing the mean of the offspring points from a single ancestor (not including
offspring of an offspring).

Appendix A of Chapter 4 mostly relies on the previous notation, and introduces some new variables not
reported here.



Bibliography

[1] Acocella, V. (2007), Understanding caldera structure and development: an overview of analogue mod-
els compared to natural calderas, Earth-Sci Rev, 85, 125-160.

[2] Acocella, V. (2008), Activating and reactivating pairs of nested collapses during caldera-forming
eruptions: Campi Flegrei (Italy), Geophys Res Lett, 35 (17).

[3] Alberico, I., L. Lirer, P. Petrosino and R. Scandone (2002), A methodology for the evaluation of
long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy), J Volcanol Geoth Res, 116,
63-78.

[4] Alberico, I., P. Petrosino and L. Lirer (2011), Volcanic hazard and risk assessment in a multi-source
volcanic area: the example of Napoli city (Southern Italy), Nat Hazard Earth Sys, 11, 1057-1070.

[5] Andronico, D., L. Lodato (2006), Effusive activity at Mount Etna volcano (Italy) During the 20th
century: a contribution to volcanic hazard assessment, Nat Hazards, 36 (3), 407-443.

[6] Arrighi, S., C. Principe, and M. Rosi (2001), Violent strombolian and subplinian eruptions at Vesuvius
during post-1631 activity, Bull Volcanol, 63, 126-150.

[7] Aspinall, W.P. (2006), Structured elicitation of expert judgment for probabilistic hazard and risk
assessment in volcanic eruptions, in: Statistics in Volcanology, Eds. H.M. Mader et al., Geological
Society of London on behalf of IAVCEI, 15-30.

[8] Aspinall, W.P. (2010), A route to a more tractable expert advice, Nature, 463, 294-295.

[9] Aspinall, W.P. and R. Blong (2015), Volcanic Risk Assessment, in: The Encyclopedia of Volcanoes
(second edition), Eds. H. Sigurdsson et al., Chapter 70, 1215-1231.

[10] Bai, T. and D.D. Pollard (2000), Fracture spacing in layered rocks: a new explanation based on the
stress transition, J Struct Geol, 22, 43-57.

[11] Barclay, J., K. Haynes, B. Houghton and D. Johnston (2015), Social Processes and Volcanic Risk
Reduction, in: The Encyclopedia of Volcanoes (second edition), Eds. H. Sigurdsson et al., Chapter
70, 1203-1214.

[12] Bartolini, S., A. Cappello, J. Mart̀ı and C. Del Negro (2013), Q-VAST: A new Quantum GIS plug-in
for estimating volcanic susceptibility, Nat Hazard Earth Sys, 13, 3031-3042.

[13] Baxter, P.J., R. Boyd, P. Cole, A. Neri, R. Spence and G. Zuccaro (2005), The impacts of pyroclastic
surges on buildings at the eruption of the Soufrière Hills Volcano, Montserrat, Bull Volcanol, 67,
292-313.

[14] Baxter P.J., W.P. Aspinall, A. Neri, G. Zuccaro, R.S.J. Spence, R. Cioni and G. Woo (2008), Emer-
gency planning and mitigation at Vesuvius: A new evidence-based approach, J Volcanol Geoth Res,
178, 3, 454-473.

[15] Bebbington, M.S. and S.J. Cronin (2011), Spatio-temporal hazard estimation in the Auckland Volcanic
Field, New Zealand, with a new vent-order model, Bull Volcanol, 73, 55-72.

178



BIBLIOGRAPHY 179

[16] Berrino, G., G. Corrado, G. Luongo and B.Toro (1984), Ground deformation and gravity changes
accompanying the 1982 Pozzuoli uplift, Bull Volcanol 47, 187-200.

[17] Bevilacqua, A., R. Isaia, A. Neri, S. Vitale, W.P. Aspinall, M. Bisson, F. Flandoli, P. J. Baxter, A.
Bertagnini, T. Esposti Ongaro, E. Iannuzzi, M. Pistolesi, and M. Rosi (2015), Quantifying volcanic
hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: I. Vent opening maps, J Geophys
Res, 120 (4), 2309-2329.

[18] Bisson, M., A. Fornaciai and F. Mazzarini (2007), SITOGEO: A geographic database used for GIS
applications, Il Nuovo Cimento C - Note Brevi, 30C, n.3.

[19] Bonadonna, C., A. Costa, A. Folch and T. Koyaguchi (2015), Tephra Dispersal and Sedimentation,
in: The Encyclopedia of Volcanoes (second edition), Eds. H. Sigurdsson et al., Chapter 33, 587-597.

[20] Branney, M.J. and B.P Kokelaar (2002), Pyroclastic density currents and the sedimentation of ign-
imbrites, Geo Soc Mem, 27, 8 pp.

[21] Branney, M.J. and V. Acocella (2015), Calderas, in: The Encyclopedia of Volcanoes (second edition),
Eds. H. Sigurdsson et al., Chapter 16, 299-315.
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