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Abstract—We study the influence of the resistivity frequency
dispersion effects on the magnetotelluric (MT) response. Impedivity
is the term used to indicate the frequency dependent resistivity in
rocks. The impedivity functions, used in this paper, have been derived
from the general solution of the motion equation of a charge carrier,
discussed in a previous paper. A 1D three-layered earth section, with
the second layer assumed to be dispersive, is considered to analyze
the distortions due to dispersion on the modulus and phase of the
MT responses on the earth’s free surface. The MT responses of the
section, where the dispersive layer is attributed an impedivity function
describing at first a positive, then a negative and finally a resonant
dispersion model, are computed for various combines of the dispersion
parameters. A general conclusion is that the dispersion effects can
strongly influence the MT response either in recognizable or in subtle
forms. In the former case, the distortions appear as either steeply rising
and/or descending curve branches or spike-like deltas, not compatible
with a dispersion-free section. In the latter case, instead, the MT
curves preserve the typical behavior for a dispersion-free section, and
may thus erroneously be modeled by a section, where the dispersive
layer is totally suppressed. In both case, disregarding the distortion
effects may lead to misleading conclusions as to the physical properties
of the surveyed structures.

1. INTRODUCTION

Resistivity dispersion is a known phenomenology [15, 31, 34], which
in geophysics constitutes the basis of the Induced Polarization (IP)
prospecting method [4, 11, 33, 36, 40]. In the frequency domain (FD),
the dispersion consists in a variation of the resistivity parameter as the
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frequency of the exciting current is changed. The dispersive resistivity,
called impedivity [24], is a complex function of the frequency. At
vanishing frequency, however, the impedivity is real and coincides with
the classical resistivity parameter used in DC geoelectrical methods. A
real asymptote is also approached by the impedivity as the frequency
tends to infinity.

So far, the IP FD spectrum in rocks has been modeled mostly
using the Cole-Cole type impedivity function ρCC

+ (ω) [5], given as

ρCC
+ (ω) = ρ+,0

[
1 − m+

(iωτ+)c+

1 + (iωτ+)c+

]
, (1)

which describes a typical positive dispersion model. In Eq. (1),
i =

√ − 1, ω is the angular frequency, ρ+,0 is the DC resistivity
and m+ ∈ [0, 1], known in mining geophysics as chargeability, is the
positive dispersion amplitude, defined as m+ = (ρ+,0 − ρ+,∞)/ρ+,0,
where ρ+,∞ ∈ [0, ρ+,0] is the real impedivity at infinite frequency.
Moreover, c+ ∈ [0, 1] is the decay spectrum flatting factor and τ+ ≥ 0
is the main time constant.

It has been shown that the electrical dispersion phenomenology
can influence the magnetotelluric (MT) response in the typical 10−2 −
102 Hz IP band [23, 35]. The detection and spatial definition of
impedivity effects by MT can give a notable contribution to the
understanding of the rock physical properties, well beyond the limited
exploration depths of some tens m, reachable by the standard IP
equipments.

Hydrocarbon and geothermal research are application fields,
where MT is an ideal approach to detect dispersion-affected zones.
These zones are fractured portions of rock, which have undergone
diffuse alterations due to chemical interaction with uprising light
hydrocarbons and hot fluids. These altered zones are considered
reliable markers of the presence of exploitable reservoirs underneath.

Following the theory developed by [23, 24], the Cole-Cole model
was included in MT to study the distortions provoked by dispersion
on 1D [8] and 2D [19] synthetic responses. Positive dispersion effects
in MT were experimentally recognized in volcanic and geothermal
areas [6, 9, 10, 12, 20, 21, 27].

The aim of this paper is to further study the influence of the
electric dispersion on MT, by analyzing the responses generated by
the inclusion of negative and resonant dispersion models. These models
have recently been proposed, with the aim of extending the application
possibilities of the dispersion phenomenology in geophysics [25, 26].
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2. THE GENERALISED DISPERSION MODEL

A generalized physical model was examined by [25], by solving in the
FD the following electrodynamic equation of a charge carrier subject
to an external electrical field e(ω)

2∑
p=0

mp(iω)pr(ω) = qe(ω). (2)

In Eq. (2), q and m2 are the electrical charge and mass of the
carrier, m0 is an elastic-like parameter explaining recall effects, m1 is a
friction-like parameter accounting for dissipative losses due to collisions
and r(ω) is the Fourier transform of the trajectory of the charge.

Assuming, for simplicity, only one species of charge carriers
and putting with K their number per unit of volume, the following
elementary expression was derived for the impedivity ρ(ω) [25]

ρ(ω) =
m0 + iωm1 − ω2m2

iωKq2
. (3)

Eq. (3) is a simple physical model, describing the behavior of a
tuned circuit-like cell, i.e., a resistor–inductor–capacitor (RLC) series
link. It is the equivalent of Lorentz’s solution to the 2nd-order
differential equation of harmonic oscillation [3].

2.1. The Positive Dispersion Model

By the generalized scheme reported above, a positive dispersion model
was derived, assuming a dispersive rock equivalent to a serial chain
of N two-branch parallel circuits. Each two-branch parallel circuit
simulates the behavior of two different ionic species, which are both
assumed to have negligible inertia, i.e., m2,jω

2 ≈ 0, where the index
j = 1, 2 indicates the ionic species. One species (j = 1) is also assumed
unbound, i.e., with m0,1 negligible, and the other (j = 2) bound. In
other words, one branch is a single R, in order to represent the path the
unbound light ions can run through, with constant speed, under the
action of an external exciting field. The other branch is, instead, an
RC series link, in order to represent the path the bound light ions can
move through, under the action of the same external field and against
the decelerating recall forces [25]. This assumption was proved to lead
to the following dispersion formula [25, 26]

ρD
+(ω) = ρ+,0

(
1 − m+

N∑
n=1

iωαn

1 + iωτ+,n

)
, (4)
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where ρ+,0 and m+ are the DC resistivity and the positive dispersion
amplitude, as previously defined, and αn and τ+,n are related to the
parameters K, q and mp (p = 0, 1, 2) of each jth (j = 1, 2) species
in each nth (n = 1, . . . , N) two-branch parallel circuit, as reported in
Table 1. They satisfy the condition

∑N
n=1(αn/τ+,n) = 1 [25].

Table 1. Explicit formulae of the coefficients appearing in Eq. (4).

=

Eq. (4) is an impedivity functions made of a discrete distribution
of Debye dispersion terms [7]. This was the model almost exclusively
used in the early IP works, notwithstanding the highest number
of elementary terms often required to fit the experimental data.
The Cole-Cole model reported in Eq. (1), originally considered an
empirical law [41], was proved to be physically interpretable as a
continuous distribution of Debye terms [30]. The Cole-Cole model
has gained a widest popularity in geophysics, since the pioneering work
by [29], thanks to the notably reduced number of unknown parameters,
compared with the high number of parameters that characterize,
instead, the discrete Debye distribution model.

2.2. The Negative Dispersion Model

By means of Eq. (3), [26] derived a new impedivity function, in order
to fit less usual dispersion spectra showing a behavior opposite to that
of the previous case [34]. It was argued that a dispersive rock can
also be assimilated to a serial chain of N two-branch parallel circuits,
each traveled by two distinct unbound ionic species, i.e., both with
negligible m0,j (j = 1, 2). One species (j = 1) was also assumed to
have vanishing inertia, i.e., with m2,1ω

2 negligible. In other words,
one branch was again a single R, representing, as previously, the path
which the unbound light ions run through, with instantaneous constant
speed, under the action of the external exciting field. The other branch
was, instead, a RL link, in order to simulate the accelerated path the
unbound heavy ions can travel through, subject to the same external
field. The impedivity function thus obtained is featured by a discrete
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sum of Debye-type dispersion terms, as follows [26]

ρD
−(ω) = ρ−,0

(
1 − m−

N∑
n=1

iωβn

1 + iωτ−,n

)
, (5)

where ρ−,0 is the DC resistivity and m− ∈ [−∞, 0] is the negative
dispersion amplitude, defined as m− = (ρ−,0 − ρ−,∞)/ρ−,0. The
coefficients βn and τ−,n are related to the parameters K, q and mp

(p = 0, 1, 2) of each jth (j = 1, 2) species in each nth (n = 1, . . . , N)
two-branch circuit, as in Table 2. The condition

∑N
n=1(βn/τ−,n) = 1

is satisfied.

Table 2. Explicit formulae of the coefficients appearing in Eq. (5).

The formal identity between Eq. (4) and Eq. (5) allows the Cole-
Cole formalism to be extended also to the negative dispersion as follows

ρCC
− (ω) = ρ−,0

[
1 − m−

(iωτ−)c−

1 + (iωτ−)c−

]
, (6)

where again c− ∈ [0, 1] is the decay spectrum flatting factor and τ− ≥ 0
is the principal time constant. Noting that Eq. (5) for N = 1 and
Eq. (6) for c− = 1 become identical, it can easily be verified that
also the ρCC

− (ω) function can physically be interpreted as a continuous
distribution of Debye-type dispersion terms, following the procedure
used by [30] for the positive dispersion.

2.3. The Resonant Dispersion Models

To avoid useless complications, in the following analysis devoted to
the resonant assumption, we consider a system containing the least
necessary number of distinct ionic species.

At first, we study the case of a system with only two distinct ionic
species, where the first species (j = 1) is considered with negligible
recall and inertia terms. An elementary cell of a dispersive rock is
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thus assumed to behave like a single two-branch parallel circuit, with
a branch being a single R and the other an RLC series junction.
The following elementary admittivity function corresponds with this
model [26]

σrf (ω) =
1
ρ0

+
iωσ2

γ2 + iω − ω2λ2
, (7)

which represents a simple resonant flat (rf) dispersion model. The low-
frequency and high-frequency admittivity asymptotes are now placed
at the same level (flat asymptotic line), which means, in terms of
resistivity, ρ0 = ρ∞, i.e., a zero dispersion amplitude. The resonance
effect occurs at ω =

√
γ2/λ2. The parameters appearing in Eq. (7) are

explicated in Table 3.

Table 3. Explicit formulae of the coefficients appearing in Eq. (7),
Eq. (8) and Eq. (9).

2
,1

2

)( j

jj
j

m

qK
    ( j=1,2,3)

j

j
j m

m

,1

,0     ( j=2,3)
j

j
j m

m

,1

,2 ( j=2,3)=σ = =γ λ

To conclude, we consider the resonance superimposed on either a
positive or a negative dispersion effect. Therefore, we assume that the
elementary cell now contains three different ionic species (j = 1, 2, 3)
and behaves like a three-branch parallel circuit. The first branch is
made of a single R (j = 1), the second branch of either a RC or a RL
series link (j = 2), and the third branch by a RLC series combination
(j = 3). The admittivity functions are [26]

σr+(ω) =
1

ρ+,0

[
1 − m+

iωτ+

1 + iωτ+

]−1

+
iωσ3

γ3 + iω − ω2λ3
, (8)

for the resonant positive (r+) dispersion model, and

σr−(ω) =
1

ρ−,0

[
1 − m−

iωτ−
1 + iωτ−

]−1

+
iωσ3

γ3 + iω − ω2λ3
, (9)

for the resonant negative (r−) dispersion model. Both models resonate
at ω =

√
γ3/λ3. The explicit formulae of the new parameters appearing

in Eq. (8) and Eq. (9) are given in Table 3.
The influence of the resonant positive dispersion on transient EM

methods has been studied by [1, 37], who adopted the CC model given
in Eq. (1), by arguing that for small chargeability values its validity
can be extended to values of c ∈]1, 2[ and that within this interval the
resonance effects can be modeled.
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3. THE MT RESPONSE IN PRESENCE OF DISPERSION

We show the results from a simulation of the MT responses, when the
different dispersion models, separately, are assumed to characterize
the electrical properties of a region of the explored half-space. A 1D
three-layered earth, with its four A, Q, H, K type sections [14], is
considered, with only the intermediate layer assumed to be dispersive.
A fixed sequence of DC resistivities and thickness is attributed as in
Fig. 1.

Figure 1. The three-layer A, Q, H and K type sections used for all of
the dispersive MT simulations.

The formula used to extract modulus and phase of the MT
complex response at the earth surface, i.e., the apparent impedivity
function ρd

a(ω), for the three-layer earth with a dispersive intermediate
layer is given as [24]

ρd
a(ω)=ρ1th2

{
k1t1+th−1

[√
ρ2(ω)

ρ1
th

(
k2t2+th−1

√
ρ3

ρ2(ω)

)]}
, (10)

where t1 and t2 are the thickness of the 1st and 2nd layer, respectively,
ρ1 is the DC resistivity of the 1st layer and ρ3 that of the substratum,
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and th stands for hyperbolic tangent. Moreover k1 and k2 are the
wavenumbers in the 1st and 2nd layer, given by k1 =

√
(iωμo/ρ1) and

k2 =
√

[iωμo/ρ2(ω)], respectively, being μo the magnetic permeability
of free space, equal to 4π · 10−7 H/m in SI units, used throughout the
paper. The impedivity ρ2(ω) of the second layer is given, separately,
the expressions in Eqs. (1) and (6), and the inverse of the expressions
in Eqs. (7), (8) and (9). The thickness and DC resistivity values
attributed to the layers are reported in Fig. 1.

In all of the sets of diagrams which will be shown, the reference
not dispersive MT response will always be drawn for comparison.
Moreover, for each dispersion law, only a few simulations will be drawn,
sufficient to deduce the relevant aspects of the dependence of the MT
response on the dispersion parameters. It must be pointed out that
the MT phase curves that will be shown describe the behavior of the
phase of the apparent impedivity function defined in eq. (10). This a
slightly different representation compared with that used in classical
not dispersive MT, where the phase curves of the wave impedance are
generally drawn, e.g., [42]. Using the well known relationship between
apparent impedivity and wave impedance, e.g., [19, 24, 42], it can be
easily demonstrated that the apparent impedivity phase function is
equal to two times the impedance phase function minus 90◦.

3.1. The MT Response with Non-resonant Positive
Dispersion

Referring to the Cole-Cole dispersion model in Eq. (1), based on the
three dispersion parameters c+, m+ and τ+, the simulations have been
done by fixing two of them and letting the third vary. The following
three sets of simulations have thus been computed:

1st set: c+ = 0.75, m+ = 0.9 and τ+ = 1, 10, 100 s, (Fig. 2(a)),
2nd set: m+ = 0.9, τ+ = 100 s and c+ = 0.25, 0.5, 0.75,

(Fig. 2(b)),
3rd set: c+ = 0.75, τ+ = 100 s and m+ = 0.1, 0.5, 0.9, (Fig. 2(c)).

Figure 2(a) shows that the dispersion phenomenology provokes a
very limited effect on the curves belonging to the A, Q and K three-
layer sections. Conversely, for the H type section a magnificent effect is
visible on both the modulus and phase dispersive curves, substantially
diverging from the reference dispersion-free MT curves. However, the
influence the main time constant τ+ has on distorting the curves is
quite imperceptible for all of the type sections, though τ+ has been let
to vary by two orders of magnitude from 1 s to 100 s. In fact, the blue
curves, corresponding to the highest τ+ value, wholly absorb the nearly
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coincident red and green curves, corresponding to the lower values of
τ+.

Figure 2(b) shows that also the influence of the flatting factor c+

is quite limited, but a little more evident than in the former case. The
red curves, corresponding to the lowest c+ can be distinguished from
the blue curves, corresponding to the highest c+. Again, the dispersion

Figure 2a. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a Cole-Cole type non-resonant positive
dispersion. The black lines are the reference not dispersive MT
responses. The positive dispersion amplitude and flatting factor are
fixed, respectively m+ = 0.9 and c+ = 0.75, while the principal time
constant is variable with values τ+ = 1 s (red line), τ+ = 10 s (green
line) and τ+ = 100 s (blue line).
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phenomenon has a poor influence on the curves belonging to the A, Q
and K type sections. Conversely, for the H type section a magnificent
effect is again visible on both the modulus and phase dispersive curves.
The evidence that the H section is the most responsive to the influence
of dispersion may have a notable impact on the interpretation of MT
data. In fact, in the application fields mentioned in the introduction,

Figure 2b. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1,
with the second layer affected by a Cole-Cole type non-resonant
positive dispersion. The black lines are the reference not dispersive
MT responses. The positive dispersion amplitude and principal time
constant are fixed, respectively m+ = 0.9 and τ+ = 100 s, while the
flatting factor is variable with values c+ = 0.25 (red lines), c+=0.5
(green lines) and c+ = 0.75 (blue lines).
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i.e., oil and geothermal exploration, the H section is by far the most
representative earth model. This aspect will be further discussed in the
next section after the presentation of all of the dispersion typologies.

Finally, Fig. 2(c) shows the positive dispersion amplitude m+ as
widely influencing the shape of the dispersive responses. In fact, a large
spread appears from the red curves, corresponding with the lowest

Figure 2c. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a Cole-Cole type non-resonant positive
dispersion. The black lines are the reference not dispersive MT
responses. The flatting factor and principal time constant are fixed,
respectively c+ = 0.75 and τ+ = 100 s, while the positive dispersion
amplitude is variable with values m+ = 0.1 (red lines), m+ = 0.5
(green lines) and m+ = 0.9 (blue lines).
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value of m+, which nearly coincide with the dispersion-free curves, to
the blue curves, corresponding with the highest value of m+.

Practically, all of these simulations show what it was expected,
i.e., that the dispersion alters the shape of the curves in the
same way as a lowering of the DC resistivity of the second layer
does in a not dispersive situation. Such equivalence, without any

Figure 3a. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a Cole-Cole type non-resonant negative
dispersion. The black lines are the reference not dispersive MT
responses. The negative dispersion amplitude and flatting factor are
fixed, respectively m− = −999 and c− = 0.75, while the principal time
constant is variable with values τ− = 1 s (red lines), τ− = 10 s (green
lines) and τ− = 100 s (blue lines).



Role of impedivity in magnetotelluric response 13

external constraints, may make the interpretation of the curves quite
ambiguous, as far as the maximum permitted slopes for dispersion-
free curves are not surpassed. Of course, by this limited analysis, no
general rule can be drawn as to the way the MT curves will be distorted
by changing the dispersion parameters. The distortion will basically
depend on how large is the frequency window of the MT waves fading

Figure 3b. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a Cole-Cole type non-resonant negative
dispersion. The black lines are the reference not dispersive MT
responses. The negative dispersion amplitude and principal time
constant are fixed, respectively m− = −999 and τ− = 100 s, while the
flatting factor is variable with values c− = 0.25 (red lines), c− = 0.5
(green lines) and c− = 0.75 (blue lines).
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out within the dispersive layer, and on how much part of the dispersion
frequency band falls within this MT window. This explains why the
A, Q and K curves do not show remarkable IP effects.

Figure 3c. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a Cole-Cole type non-resonant negative
dispersion. The black lines are the reference not dispersive MT
responses. The flatting factor and principal time constant are fixed,
respectively c− = 0.75 and τ− = 100 s, while the negative dispersion
amplitude is variable with values m− = −9 (red lines), m− = −99
(green lines) and m− = −999 (blue lines).
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3.2. The MT Response with Non-resonant Negative
Dispersion

Referring to the Cole-Cole type non-resonant negative dispersion model
given in Eq. (6), the simulations have again been done by fixing two of
the three dispersion parameters c−, m− and τ− and letting the third
vary. The following three sets of simulations have thus been drawn:

1st set: c− = 0.75, m− = −999 and τ− = 1, 10, 100 s, (Fig. 3(a)),

Figure 4a. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a resonant flat dispersion. The black lines
are the reference not dispersive MT responses. Fixed parameters are
σ2 = 0.1 s/m and γ2 = 10 Hz, while the variable parameter is λ2 = 1 s
(red lines), λ2 = 10 s (green lines) and λ2 = 100 s (blue lines).
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2nd set: m− = −999, τ− = 100 s and c− = 0.25, 0.5, 0.75,
(Fig. 3(b)),

3rd set: c− = 0.75, τ− = 100 s and m− = −9, −99, −999,
(Fig. 3(c)).

Figure 3(a) shows again a quite imperceptible influence of τ−. The
blue, red and green curves are still overlapping, except for the H type
section.

The same elusive effects are also produced by changing c−

Figure 4b. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a resonant flat dispersion. The black lines
are the reference not dispersive MT responses. Fixed parameters are
γ2 = 10 Hz and λ2 = 10 s, while the variable parameter is σ2 = 0.1 s/m
(red lines), σ2 = 0.01 s/m (green lines) and σ2 = 0.001 s/m (blue lines).



Role of impedivity in magnetotelluric response 17

(Fig. 3(b)) and m− (Fig. 3(c)), except again for the H type section,
which appears the most responsive section also to this dispersion
typology.

3.3. The MT Response with Resonant Flat Dispersion

Simulations have been calculated using the following sets of dispersion
parameters:

Figure 4c. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a resonant flat dispersion. The black lines
are the reference not dispersive MT responses. Fixed parameters are
σ2 = 0.1 s/m and λ2 = 10 s, while the variable parameter is γ2 = 1 Hz
(red lines), γ2 = 10 Hz (green lines) and γ2 = 100 Hz (blue lines).
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1st set: σ2 = 0.1 s/m, γ2 = 10 Hz, λ2 = 1, 10, 100 s, (Fig. 4(a)),
2nd set: γ2 = 10 Hz, λ2 = 10 s, σ2 = 0.1, 0.01, 0.001 s/m,

(Fig. 4(b)),
3rd set: σ2 = 0.1 s/m, λ2 = 10 s, γ2 = 1, 10, 100 Hz, (Fig. 4(c)).
The reference formula is given in Eq. (7).
As previously, also the resonant flat dispersion effect can hardly

Figure 5a. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1,
with the second layer affected by a resonant positive dispersion. The
black lines are the reference dispersion-free responses. The positive
dispersion amplitude, flatting factor and time constant parameters are
m+ = 0.75, c+ = 1 and τ+ = 1000 s, respectively. Fixed are also
σ3 = 0.1 S/m and γ3 = 10 Hz, while the variable parameter is λ3 = 1 s
(red lines), λ3 = 10 s (green lines) and λ3 = 100 s (blue lines).

Domenico
Barra

Domenico
Testo di sostituzione
0.5
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be detected in the A, Q and K curves drawn in Figs. 4(a), 4(b) and
4(c), except for the H section, where huge resonance peaks and curve
distortions emerge.

Figure 5b. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with the
second layer affected by a resonant positive dispersion. The black lines
are the reference dispersion-free MT responses. The positive dispersion
amplitude, flatting factor and time constant parameters are m+ = 0.75,
c+ = 1 and τ+ = 1000 s, respectively. Fixed are also γ3 = 10 Hz and
λ3 = 10 s, whereas the variable parameter is σ3 = 0.1 S/m (red lines),
σ3 = 0.01 S/m (green lines) and σ3 = 0.001 S/m (blue lines).
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Domenico
Testo di sostituzione
0.5
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3.4. The MT Response with Resonant Positive Dispersion

Simulations have been done using the following sets of resonant positive
dispersion parameters:

1st set: m+ = 0.5, c+ = 1, τ+ = 1000 s, σ3 = 0.1 S/m, γ3 = 10 Hz,
λ3 = 1, 10, 100 s, (Fig. 5(a)),

Figure 5c. MT apparent impedivity modulus and phase simulated
responses for the A, Q, H and K three-layer sequences of Fig. 1, with
the second layer affected by a resonant positive dispersion. The black
lines are the reference dispersion-free MT responses. The positive
dispersion amplitude, flatting factor and time constant parameters are
m+ = 0.75, c+ = 1 and τ+ = 1000 s, respectively. Fixed are also
σ3 = 0.1 S/m and λ3 = 10 s, while the variable parameter is γ3 = 1 Hz
(red lines), γ3 = 10 Hz (green lines) and γ3 = 100 Hz (blue lines).
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2nd set: m+ = 0.5, c+ = 1, τ+ = 1000 s, γ3 = 10 Hz, λ3 = 10 s,
σ3 = 0.1, 0.01, 0.001 S/m, (Fig. 5(b)),

3rd set: m+ = 0.5, c+ = 1, τ+ = 1000 s, σ3 = 0.1 S/m, λ3 = 10 s,
γ3 = 1, 10, 100 Hz, (Fig. 5(c)).

The reference formula is given in Eq. (8). For the first time, in all
of the type sections MT is able to detect the dispersion effect. In fact,

Figure 6a. MT apparent impedivity simulated responses for the A, Q,
H and K three-layer sequences of Fig. 1, with the second layer affected
by a resonant negative dispersion. The black lines are the reference
dispersion-free MT curves. The negative dispersion amplitude, flatting
factor and time constant are m− = −1, c− = 1 and τ− = 500 s,
respectively. Fixed are also σ3 = 0.1 S/m and γ3 = 10 Hz, while the
variable parameter is λ3 = 1 s (red lines), λ3 = 10 s (green lines) and
λ3 = 100 s (blue lines).
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quite evident resonance peaks always appear, with a slight but well
outlined full curve distortion only in the H section. As it can easily be
observed in Fig. 5(b), the peak is strongly regulated by the resonance
conductivity σ3, in the sense that the larger the σ3 the larger the
amplitude. It is worth outlining that the position and/or the amplitude
of the peak appear always well distinguishable, independently of the

Figure 6b. MT apparent impedivity simulated responses for the A, Q,
H and K three-layer sequences of Fig. 1, with the second layer affected
by a resonant negative dispersion. The black lines are the reference
dispersion-free MT curves. The negative dispersion amplitude, flatting
factor and time constant are m− = −1, c− = 1 and τ− = 500 s,
respectively. Fixed are also γ3 = 10 Hz and λ3 = 10 s, while the variable
parameter is σ3 = 0.1 S/m (red lines), σ3 = 0.01 S/m (green lines) and
σ3 = 0.001 S/m (blue lines).
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choice of the parameters which regulate the resonance part of the
dispersion model.

3.5. The MT Response with Resonant Negative Dispersion

Simulations have been done using the following sets of parameters:

Figure 6c. MT apparent impedivity simulated responses for the A, Q,
H and K three-layer sequences of Fig. 1, with the second layer affected
by a resonant negative dispersion. The black lines are the reference
dispersion-free MT curves. The negative dispersion amplitude, flatting
factor and time constant are m− = −1, c− = 1 and τ− = 500 s,
respectively. Fixed are also σ3 = 0.1 S/m and λ3 = 10 s, while the
variable parameter is γ3 = 1 Hz (red lines), γ3 = 10 Hz (green lines)
and γ3 = 100 Hz (blue lines).
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1st set: m− = −1, c− = 1, τ− = 500 s, σ3 = 0.1 S/m, γ3 = 10 Hz,
λ3 = 1, 10, 100 s, (Fig. 6(a)),

2nd set: m− = −1, c− = 1, τ− = 500 s, γ3 = 10 Hz, λ3 = 10 s,
σ3 = 0.1, 0.01, 0.001 S/m, (Fig. 6(b)),

3rd set: m− = −1, c− = 1, τ− = 500 s, σ3 = 0.1 S/m, λ3 = 10 s,
γ3 = 1, 10, 100 Hz, (Fig. 6(c)).

There is no general comment to add to what has already been
said previously as to the influence of the resonant addendum in the
dispersion model. Identical effects are in fact noted, except for the
inverted behavior of the non-resonant part, which is detectable, as
usual, only in the H-type three-layer section.

Figure 7. MT equivalence between a dispersive H-type three-layer
model and a not dispersive two-layer model. The black lines are
the reference apparent impedivity modulus and phase curves for the
dispersion-free H-type model drawn in Fig. 1 The red lines are the
apparent impedivity modulus and phase responses for the same H-type
sequence, with the second layer affected by a non-resonant negative
dispersion, with parameters m− = −999, c− = 1 and τ− = 100 s. The
blue lines are the corresponding curves for the dispersion-free two-layer
sequence with ρ1 = 100 Ωm, ρ2 = 1000 Ωm and t1 = 500 m.

4. CONCLUSIONS

We have shown in this paper how the electric dispersion phenomenol-
ogy can affect the MT response. A three-layer earth section has been
adopted to simplify the analysis. Mostly important have been the re-
sults achieved for an H-type section, where the dispersion phenomenol-
ogy within the sandwiched layer shows its most pronounced effects.

It is worth stressing again that the H-type layer sequence has
been shown to be the most recurrent model, fitting the MT spectrum
in oil and geothermal exploration [28, 42]. In fact, as mentioned in the
introduction, strong dispersion phenomena may occur in a permeable
rock, underlying a cover layer, because of the diffuse presence of mineral
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and clay particles formed by the aggressive action of uprising fluids
from a subjacent reservoir. The electric properties of such a layered
sequence can likely be condensed into an H-type sequence. In fact, the
larger is the amount of the alteration particles, which are deposited
in the fractured layer, the higher is its conductivity, well over that
of the cover layer. Furthermore, exploited dense oilfields, gas- and
vapor-dominated reservoirs have largely been proved to be identified
by a DC resistivity much higher than that of the overlying altered
layer. Thus, in conclusion, the MT dispersive method can likely have
some good chances to be a powerful large-scale mapping tool of the
electrical properties of rocks, in the search for earth’s energy resources
underground.

It is equally important to point out also the misleading
implications one may incur if the dispersion phenomenon is not taken
into account in the interpretation phase of the MT sounding curves.
It has, in fact, been shown that, when the dispersion effects on the
MT curves do not cause any apparent incompatibility with the MT
theory over layered structures, a dispersive MT response can as well
be interpreted as a non-dispersive one. Fig. 7 shows a clear example
of such an occurrence. A three-layer H-type model, affected by a
non-resonant negative dispersion, can equally well be interpreted as
a dispersion-free two layer sequence.

Of course, we have not made an exhaustive study of all the possible
MT dispersive responses, having limited our attention to the large-scale
1D assumption. Now that advanced 2D and 3D modeling and inversion
tools are available [2], a good challenge will be the small-scale analysis
of the distortions provoked by dispersion in both vertically and laterally
confined structures. This new approach will make MT a more efficient
tool to explore deep crustal structures with an enhanced relative
resolution power, comparable with that of near-surface methods, like
GPR [13, 22, 32, 38, 39], and shallow-depth methods, like geoelectrics
and magnetics [16–18].
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