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The volcanological problem

Campi Flegreiis an active volcanic area in the Campanian Pdominated by a 12 km large caldera.

This study concerns Campi Flegtteng-term hazard assessmentabout pyroclastic density currents
(PDC), primarily based on past eruption data antherstructural features of the volcanic system.
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Mosaic of orthophotos of
Campi Flegrei caldera and
surrounding areas.

Ayellow line separates western and eastern sectors of theacalille different history of activity.



Research objective and methodology
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vent clustering.

[from Neri et al., 2015]

. . - ) . Examples of probability density functions modeling:
With asimplified PDC invasion model(box modél, we (a) vent opening location [Bevilacqua et al. 2015,

repeated a large number of PDC invasion samplesgthg (b) areal size of PDC [Neri et al. 2015],

vent Iocation, scale and time. (c) examples of single PDC propagations,
(d) PDC invasion hazard map.



PDC invasion hazard map conditional to an explosivevent - not including time

PDC invasion hazard map assuming a single ventddcanland. Contours and colours indicate the
percentage probability of PDC invasioonditional on the occurrenceof an explosive eruption.
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The probability maps are affected by epistemic daagy: for this reason we reported the
mean, 3" and 958" percentile values for the PDC invasion hazaedtimates.
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Eastern vs Western sectors of the caldera
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Differences
between the eastern
and western sectors
in terms of the past
PDC areal sizes in
the last 15 ka.

Theeastern sector
had asignificantly
greater number of
eruptive eventsand
larger eruptive
scales

(a) Areas invaded by past
PDC, eastern and western
sectors. Each coloured line is
an event.

(b) probability density
functions for the PDC
invasion areas The black
curve is the mean and the
colored curves are thelb
and 9%h percentiles.

(c,d) conditional vent
opening mapsin the two
sectors.



PDC invasion hazard maps — Vent opening in specifgectors (East/\West)

PDC ORIGINATING IN THE WESTERN SECTOR

PDC ORIGINATING IN THE EASTERN SECTOR
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PDC invasion hazard
maps computed
under assuming
different PDC scales
as a function of the
sector.

(@) - (b) are conditional
on the occurrence of a
PDC originating inside
a specific sector;

(c) assume different
PDC areal sizes
distributions for the
PDC originating in the
two sectors.



PDC invasion hazard maps — Vent opening in specifoones of the caldera
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bold are the
vent
opening
probabilities
inside each
selected zone
according to
thevent
opening
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et al. [2015].



PDC invasion hazard maps — Ranged vs fixed scales
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PDC invasion hazard maps — 10 years

A probability density function for theemaining time before the next eruption has been calculated aith
long-term subdomain specific Poisson-type procsss Bevilacqua et al., 2016].

For producing these maps we assumed that Monte dNwag thdbeginning of a new epoch of eruptive
activity similar to the previously occurred ones.
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PDC invasion hazard maps — 50 years

The model naturally generates clusters of eventspiace-time and includes the effects of epistemic
uncertainty affecting past record data.

For this longer time window the PDC hazard alsdudes the potential for sequences of multiple exent
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Concluding remarks

Quantitative maps of PDC invasion hazard at Campi Flegrei have been produced exploring
a range of volcanological assumptions. The maps explicitely corbielemariability of the
three main future unknowns of the system (vent location, eruption scale, time).

PDC invasion maps considering tlveestern and eastern sectors separatelyesult
significantly different from those obtained considering the cal@ds homogeneous. Maps
significantly change also based on the temporal period assumed.

Specific scenarioswere produced concerning the poin of origin of the PDC and it$ area
extent. This represents a versatile tool for exploring the hazasdbiy.

By assuming that Monte Nuovo represents shat of a new epoch of activity PDC
invasion hazard maps for the next 10 and 50 years time window hamepbmduced. The
most exposed area (i.e. Agnano-Astroni) reaches average hazard abtwve 5.5% in the
next 10 years and around 25% in the next 50 years.



Publications

Quantifying volcanic hazard at Campi Flegrei caldea (Italy) with uncertainty assessment: |I. Vent opeimg maps,
A. Bevilacqua , R. Isaia, A. Neri, S. Vitale , WABpinall, M. Bisson, F. Flandoli, P. J. Baxter,Bertagnini, T. Esposti
Ongaro, E. lannuzzi, S. Orsucci, M. Pistolesi, MsiR] Geophys Res, 120 (4), 2309-2329.

Quantifying volcanic hazard at Campi Flegrei caldea (Italy) with uncertainty assessment: |l. Pyroclatic density
current invasion maps,A. Neri, A. Bevilacqua, T. Esposti Ongaro, R. Is&iaP. Aspinall, M. Bisson, F. Flandoli, P. J.
Baxter, A. Bertagnini, E. lannuzzi, S. Orsucci, Ristolesi, M. Rosi, S. Vitald Geophys Res, 120 (4), 2330-2349.

Temporal models for the episodic volcanism of Camgtlegrei caldera (Italy) with uncertainty quantification, A.
Bevilacqua, F. Flandoli, A. Neri, R. Isaia, and\&ale, J. Geophys. Res. Solid Earth, 121, doi:10.100:82B013171.

Doubly Stochastic Models for Volcanic Hazard Assesgent at Campi Flegrei Caldera A. Bevilacqua
Theses, 21, Edizioni della Normale, Birkhauser/iSyet.

Acknowlegments

This study was developed through a PhD scholarshiptituto Nazionale di Geofisica e Vulcanologia
and Scuola Normale Superiore di Pisa (Convenzibli&SNS 2009-2011), and the following projects:

e Project MED-SUV “Mediterranean Supersite Volcan8e&uropean Union, 2013-2016.

 Project DPC-V1 “Valutazione della pericolosita vulcanica in termprdbabilistici”,

Dipartimento della Protezione Civile (Italy), 202045.

e Project EJN “Expert Judgment NetworkCOST Action, European Union, 2013-2017.
TR

wiby
=< i . ’\ I
@.‘I ‘ ‘_} {‘ . _:. MEDiterranean SUpersite Volcanoes ’ / * ohals * I D 5
L] kl A ] =1 = » [ ‘ m A A
SCUOLA \&F 7 l\r’{ [' {; ) -S U ' ] A . ¥ EUROPEAN COOPERATION
NORMALE = v E R LIRS Uni

i IN SCIENCE AND TECHNOLOGY
SUPERIORE INGV T

*
* o *
one Europea




