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Introdution

Geohazard Assessment

In geohazard assessment, acceptably accurate numerical simulation of the
complex geologic activities such as as debris & pyroclastic flows, snow
avalanches and landslides is of crucial importance.

Continuum Model

Considering the geophysical mass flow as an incompressible continuum,
the conservation of mass and momentum equations are:
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Introdution

Rheology of flow

Mechanical behavior of the flowing material or the rheology of the flow is
a mathematical model appearing in the Cauchy stress tensor, σ

∼
.

S-W Assumptions

Geophysical mass flows exhibit a shallow flow geometry. Using
Shallow-Water approximations, the shallowness parameter is assumed
to be very small, ε , h/L� 1.

Depth-Averaging

Shallow-Water assuption allows to perform a Depth-averaging of
conservation variables (integrating conservation equations along the flow
thickness).

A. K. Patra (SUNY at Buffalo) UQ analysis for rheology models December 13, 2016 3 / 18



Mohr-Coulomb Model
Depth-Averaged conservation Equations
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Mohr-Coulomb Model

The Source terms Sx and Sy are:

Sx = gxh −
ū
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Bed friction angle, φbed , and internal friction angle, φint , are model
parameters.
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Pouliquen-Forterre Model

The knowledge of two functions is sufficient to define the empirical friction
law,µb(‖ū

∼
‖, h), in the whole range of velocity and thickness:

µstart(h) = tan(φstart(h))

µstop(h) = tan(φstop(h)) (5)

As a result, for the basal friction coefficient in the dynamic friction regime
where Fr ≥ β:

µ(h,Fr) = µstop(hβ/Fr) (6)

In the intermediate friction regime when 0 < Fr < β, the friction
coefficient is given by a power law extrapolation between the friction laws
in the static and dynamic friction regimes as:

µ(h,Fr) =

(
Fr

β

)γ

[µstop(h)− µstart(h)] + µstart(h) (7)
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Pouliquen-Forterre Model

The functions µstop and µstart are given by fits to experimental
measurements as transitions between the relevant critical angles.
Therefore:

µstop(h) = tanφ1 +
tanφ2 − tanφ1

1 + h/L
(8)

and

µstart(h) = tanφ3 +
tanφ2 − tanφ1

1 + h/L
(9)

The critical angles φ1, φ2 and φ3 and the parameter L (the characteristic
depth of the flow over which a transition between the angles φ1 and φ2

occurs) in addition to the β are the material properties.
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Pouliquen-Forterre Mode
Depth-Averaged conservation Equations & Source terms
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Voellmy-Salm Model

The principlal relation between shear and normal stresses are:

τ = µσ +

ρ‖g
∼
‖

ξ
‖ū
∼
‖2 (12)

σ denotes the normal stress at the bottom of the fluid layer and
g
∼

= (gx , gy , gz) represents the gravity vector.

The total basal friction splits into:

Velocity independent dry-Coulomb term which is proportional to
the normal stress at the flow bottom (coefficient µ).

Velocity dependent viscous or turbulent term (coefficient ξ).
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Voellmy-Salm Model
Depth-Averaged conservation Equations & Source terms
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Block-and-ash flow example
April 16, 1991, Volcán de Colima, Mexico

Property Value

Pile location (UTM East) 644956.0 m
Pile location (UTM North) 2157970.0 m
Material Volume 1.4×105 m3

Table : Slumping pile properties

Suppose that Ai is a random simulated estimate for D; therefore, the
distance function is defined as:

d(Ai ,D) :=
Ai∆D

D
=

(Ai ∪ D)\(Ai ∩ D)

D
(15)
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Block-and-ash flow example
Distance function distributions

(a) M-C, Samples (b) P-F, Samples (c) V-S, Samples

(d) M-C, GaSP (e) P-F, GaSP (f) V-S, GaSP

Figure : Distance function distributions, d(Ai ,D), for the rheology models.
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Block-and-ash flow example

Figure : Mean value of max flow height record over each model’s parameter space, (a)-(c), and their Bayesian weighted
average, (d).
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Debris flow example
October 16, 1955, Atenquique, Mexico

Pile number Center location Center location Material volume
(UTM East) (UTM North)

1 647077.0 m 2163900.0 m 1.57× 106 m3

2 649512.0 m 2165360.0 m 1.57× 106 m3

3 652228.0 m 2160730.0 m 1.57× 106 m3

Table : Slumping piles properties
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Debris flow example
October 16, 1955, Atenquique, Mexico

Location number Deposit thickness

1 2.2 m
2 2.2 m
3 4.6 m
4 4.3 m

Table : Deposit thicknesses measured at the field,
D = {H1,H2,H3,H4}

Since here the available observed data is the flow thickness at four
particular locations, we can use the following metric definition:

d(Ai ,D) :=
1

4

4∑
j=1

|Dj − Ai |
Dj

(16)
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Debris flow example
Distance function distributions

(a) P-F, Samples. (b) P-F, GaSP.

(c) V-S, Samples. (d) V-S, GaSP.

Figure : Distance function distributions, d(Ai ,D), for the rheology models.
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Debris flow example

(a) (b)

(c)

Figure : Mean value of max flow height record over each model’s parameter space, (a) & (b), and their Bayesian weighted
average, (c).
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The End!
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