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- The Long Valley volcanic region -  



Long Valley caldera (LVC), was created by the 
eruption of >200km3 tephra ~ 760ka BP  
(Bishop tuff). 

The most recent period of unrest started in 
1978 - several seismic swarms in LVC and 
below Mammoth mountain, and diffuse 
volcanic CO2 emissions. 

Over the last 180ka the eruptions have been 
mostly localized at Mammoth Mountain,  
on the western rim of LVC and  
along the Mono-Inyo Craters volcanic chain, 
stretching ~45km North towards Mono lake. 



(c) Mammoth Mountain 

Smithsonian Institution - Photo by R. Von Huene, 1971 (USGS). 

(a) Mono Craters 

Teleseismic model (12 km depth) and hypothetical 
magma system of LVVR, from Dawson et al. [1990]. 

(d) 

(d1) (d2) 

Photo from Hildreth et al., [2014]. 

(b) Inyo Craters 

Smithsonian Institution - Photo by L. Mastin, 1988 (USGS). 
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(b) Conceptual geologic model based on the 
electric resistivity features of Mono region. 

From Peacock et al., [2015]. 

(a) 

(c) Schematic of the electric resistivity model  
and hydrothermal flow of LVC region.  

Arrow colors represent temperature,  
in purple is the paleohydrothermal flow.  

From Peacock et al., [2016] 



- Eruptive record description -  



Past record was divided into five subgroups. 
1) 180/149 ka BP -  9 events. average return time ~3,400 yrs,  
concluded with a ~18 ka period of quiescence. 
 
2) 131/60 ka BP - 30 events, average return time ~2,350 yrs,  
concluded by a ~ 20 km location shift to North. 
 
3A) 59/27 ka BP - 7 events, average return time ~4,650 yrs,  
concluded by a ~13 ka period of quiescence. 
 
3B) 14/8 ka BP - 5 events, average return time ~1,150 yrs,  
concluded by a great increase of activity rate. 
 
4) < 6 ka BP - 30 events, average return time ~200 yrs,  
11 vents active together at 625-600 yr BP. 

A 

B 

The separation after 60ka BP corresponded with the  
activation of the northern part of the region.  

TEMPORAL RECORD 

Two states of volcanic activity, A and B, are considered, 
with a probability p1 of changing state when a new event 
will occur.  

The state A concerns the Mammoth Mountain area, 
whereas the state B mostly the Mono basin, with Inyo 
Craters lying in the middle.  



Examples of 1st and 2nd spatially closest 
previously active vents. 
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DISTANCES OF  PROPAGATION 

Alternative distances are easily 
defined: the spatially closest previously 
active vent, the second closest vent, etc.  

A 20km jump in the N/S distance of 
propagation is noticed around 60ka BP. 

There is a significant increase of N/S 
propagation distances after such jump. 

The vent propagation process is likely 
Gaussian, but not isotropic: the N/S scale 
is ~5 times larger than the E/W scale 



- Spatial modeling: vent opening probability maps -  



The volcano is presented as a random system that must be assessed with uncertain information. 

Even the final probability maps will be affected by uncertainty: we 
calculated the mean, 5th and 95th percentile values for the vent 
opening probability density functions. 

As a consequence of this approach, some probability estimates will 
have their own confidence intervals.  

Adopting a doubly stochastic approach, some ill-constrained parts of the long-term probability 
models will be randomly changed, reporting the effect on the probability estimates. 

Doubly stochastic vent opening maps 
A "map of vent opening" is the spatial estimate of the probability of vent opening per km2 in each 
point of the region of interest.  

That probability is conditional on the occurrence of a new eruption, without temporal window. 



- Spatial Model I: Gaussian kernel density estimator -  



Example of Gaussian density plot. 

Given the locations (xi ,yi )i=1,…,N of the past N 
events, a new event propagates from one event 
location randomly chosen from the previous, to 
a random distance: 

X = (xk + d1, yk + d2), 

where X is the spatial location of the next vent, 

 k is a discrete random variable in {1,…,N} 
sampling one of the previous vents,  

d = (d1 , d2) is a two dimensional Gaussian 
random vector with mean μ and covariance 
matrix Σ. 

The random variables k, d change according 
with the state - in the figure are shown da and db 
based on the statistics of the past propagation 
distances. 

KERNEL FUNCTIONS 



The density f of X is obtained by convolving the anisotropic probability kernel describing d with the 
past vent location disks (Di ) i=1,…,N , each weighted relying on the distribution of k. 
 
A Monte Carlo sampling varies the uncertainty parameter p1.  
[i.e. Mammoth Mountain unknown relevance]. 



- Spatial Model II: Bayesian update of IFO map -  



We defined an additional spatial parameter ζ = (ζ1, ζ2)  
called “interacting fault outcrop” (IFO).  

The IFO a priori distribution is the linear 
combination of log-extension data and  
uniform distributions.  

Conditioned on an IFO location ζ = (x, y), the 
likelihood for vent location is a symmetric Gaussian 
function of mean ζ and covariance matrix σ2I. 

Indeed σ relates to the expected distance from 
the fault outcrops to the vent openings:  
- 10 km depending on the brittle/ductile 
transition depth, or  
- 2 km depending on numerical models for dike 
propagation.  

Two alternative models are used to constrain 
the standard deviation σ. 

The model assumes that the new vents open near a 
random IFO location, at a random distance d.  



The Bayes Theorem is used to calculate the a posteriori IFO probability density as the product of the a 
priori IFO and the likelihood functions of past vents locations. 

It describes the fault locations that lie closer to past events as the most probable to drive a dike path again. 
That map includes the uncertainty sources concerning tectonic data, 
and Mammoth Mountain unknown relevance.  



The new density f of X is obtained by convolving the likelihood kernel describing d with the  
a posteriori IFO map.  
 
Everything is done inside a Monte Carlo sampling that varies the uncertainty parameters p1-p4. 



- Models integration: Bayesian Model Averaging - 



Bayesian model averaging (BMA) 

The main step of BMA is to define some scores [s(i)]i=1,...,n for the models based on the available 
observations D about the quantity δ.  
 
The scores are re-scaled to sum one, hence to define a discrete probability distribution on the models set 
(Mi)i=1,...,n. These scores represent the probability of the models to be correct.  
 
Equal a priori scores [s(i)]i=1,...,n were assumed for the models, such that si = 1/n for all i.  
The Bayes Theorem states that, for each i=1,…,n, the a posteriori weights are: 

where Li is the likelihood associated to model i, and C is a normalizing constant such that the new 
weights still sum to one.  
 
The a posteriori scores will be proportional to the likelihood that the models give to the observed data.  
 
An integrated model will defined by the linear combination of the outputs given by the different 
models, with the scores [s(i|D)]i=1,...,n as weighting coefficients. 

Let (Mi)i=1,...,n be different probability models for a random quantitative output δ, for example the vent 
opening probability map, such that we do not know which is the correct one.  



Through the BMA we obtain the weights (qj)j=1,2,3  for a linear combination of the alternative models.  
The uncertainty comes from the Monte Carlo sampling of (pi)i=1,…,4.  
  

  q1 = [35.02%,  37.52%,  40.62%] – for the kernel density estimator 
  q2 = [50.16%,  53.41%,  56.59%] – for the Bayesian update of IFO map 
  q3 = [  7.27%,    9.07%,  11.19%] – for a uniform distribution. 



- Temporal modeling: Poisson-type processes - 



Locally, the intensity function λ has still the meaning of the average density of new events occurring. 
The integral ∫λ(t)dt gives the average number of events in the selected time interval.  
λ is the derivative of the compensator function - which morally is the average path of the counting 
process. 

Poisson processes sample the waiting times between 
events as i.i.d. exponential random variables.  

Waiting times have mean 1/λ, where λ is called 
intensity of the process. 

These are "memory-less", and there is no correlation 
between the points. 

If Z is a counting process, Z(t) counts the number of 
events occurred before time t.  
Its random paths are a non-decreasing step-functions. 

Nonhomogeneous Poisson processes (NHPP) enable the intensity λ(t) to change as a function of time.  

The Cox processes assume the intensity function λ affected by uncertainty.  
They are also called doubly stochastic NHPP. 

Example of counting process graph. 

We will describe three different Cox-type processes for modeling the eruption record of LVVR, 
also including various self-excitement features. 



- Temporal uncertainty quantification - 



The record adopted 
here included some 
updates on  
[70 - 2] ka BP. 

Uncertainty #1 - 
the model assumes 
Gaussian errors on 
the dates. 

Larger intervals 
smooth the 
variability of λ 
tending to a 
constant value. 
 
Shorter intervals 
tend to a sequence  
of local spikes, 
localized at the time 
of past events. 

The intensity 
function λ is 

approximated by 
difference 
quotients  

on finite intervals. 



Uncertainty #2 - under-recording of eruptions  
it is likely that a number of lost events does exist.  
We assumed that past events can have a "shadow companion", i.e. 
sampled with the same age uncertainty, with chance p(t). 
More lost events are sampled when the eruption frequency was 
higher. Including new events uniformly in time is also possible. 
 
Uncertainty #3 - over-counting of vents 
some of the recent single eruptions include several vents. 
Even if spatially distinct, same-time events was counted as one 
eruption.  

Preliminary lost 
events rate p(t), 
relying on 
Campi Flegrei 
expert 
judgement data 
and uncertainty 
estimates. 
 
 
A more specific 
model for 
LVVR under-
recording rates 
is under 
development. 



- Three temporal models - 



The intensity function 
λ(t) is the ratio 
#events / T  
on the left window  
[t-T, t]. 

The bandwidth T  
is selected to 
maximize likelihood 
of past events based 
on the preceding 
sequence. 

This can be done in 
average, or  
sample-wise  inside 
a Monte Carlo 
simulation. 

The second 
derivative expresses 
the evolution of the 
intensity function. 

A minimum rate of 
1/104 avoids null 
intensity in the past. 

MODEL I - NHPP WITH TIME WINDOW FIXED  



MODEL II - NHPP WITH TIME WINDOW VARIABLE   The intensity function 
λ(t) is the ratio 
k / (tn - tn - k)  
where tn is the time of 
last event before t. 

The number k 
is selected to 
maximize likelihood,  
in average or  
sample-wise. 

This gives the 
potential for higher 
spikes of intensity, 
and longer tails. 

Again minimum rate 
of 1/104 is imposed. 

After event nth the 
intensity decreases as 
a rational function 
k / (C + Δt) 
of the additional  
time Δt. 



MODEL III - COX HAWKES PROCESS (EXPONENTIAL DECAY)  The intensity function 
λ(t) is the sum 
 λ0 + f (t) 

where f  is given by 

λ0 is equivalent to the 
#ancestor events, 
 
f  is selected by the 
choice  of self-
excitement decay 
duration. 

Each event produces 
additional intensity, 
which then decreases 
exponentially. 

and tn is the time of 
last event before t. 

The likelihood 
function is now two 
dimensional: 

= 1 



- Preliminary temporal probability forecasts- 



Summary of the models parameters: maxima of average likelihood, and doubly stochastic values. 

Extrapolating the current intensity function, we obtained probability forecasts  
for future eruptions in the next 10 and 50 yrs. 

Model II gives the higher probabilities - its intensity is very sensitive by the recent many close-timed events. 
It focuses on them forgetting the previous record. 


