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Motivation & Objective
• In hazard assessment for geophysical mass flows, we seek
to construct accurate and reliable maps that show
regions with high hazard.

•Acceptably accurate numerical simulation of complex
geophysical mass flows is of crucial importance.

•Modeling mechanical behavior of such flows or the flow
rheology presents a major difficulty.

•TITAN2D v. 4.0, the geophysical mass flow simulator,
offers multiple well-known choices for flow rheology –
Mohr-Coulomb, Pouliquen-Forterre, Voellmy-Salm.

• In this contribution, we present a Bayesian framework
to combine the simulation results of alternative models
and quantify the uncertainty in rheology models for
both experimental and natural terrain flows.

1) Physics of Geophysical Flows

We assume the bulk mass of granular material as an incom-
pressible continuum. Therefore, conservation of mass and mo-
mentum form the system of equations as:
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•Off-diagonal components of Cauchy stress tensor, T∼ ,
contain the flow rheology.

•We impose kinematic boundary conditions and apply
“shallow-water” assumptions. This enables us to reduce the
3D problem to a 2D one by “depth-averaging” [1].
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Where:
- h, hū and hv̄, are the flow thickness and depth-averaged
flow momentum components along x and y directions.

- k, is the proportionality factor relating the in-plane normal
stress components to the out-of-plane normal component.

- Source terms, Sx, Sy, contain the accelerating gravitational
forces as well as the resisting forces due to the mechanical
behavior and dynamics of flow.

- k, Sx and Sy, are specified by the rehology model.
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2) Bayesian Approach for Rheology Combination

• Let (Mi)i=1,...,Nm
be a set of alternative rheology models developed to simulate the geophysical mass flows.

• In order to proceed this Bayesian method, the following materials form the set of necessary given data:
1 At least one set of observation data, D, collected from a previous event (flow) at that site.
2 An estimation for the initial conditions, X , needed to simulate the event for which we have observation data.

•We can define the likelihood, f (D,X|Mi), using a proper ensemble of simulations for {D,X} given that model Mi was used.
•Avoiding any bias for the alternative models, we employ a prior discrete uniform distribution, such that p(Mi) = 1

Nm
, i=1,...,Nm

.
•We can consider the prior distribution as a set of weights for each rheology model.
•According to the Bayes’ theorem, the posterior weights (discrete distribution) are calculated as:

w(Mi|D,X ) = f (D,X|Mi) p(Mi)
Nm∑
j=1

f (D,X|Mj) p(Mj)

•Using these posterior weights, any estimator for some quantity of interest, ηi, could be combined through their Bayesian
weighted average, η̄b = ∑Nm

i=1w(Mi|D,X ) ηi, which includes model uncertainty.

4) Flow Down an Inclined Ramp

Table 1: Posterior weights regarding D1, D2 and D1 ∪D2.

Rheology Model: {M1, M2, M3}
w(Mi|D1,X ) {0.33, 0.28, 0.39}
w(Mi|D2,X ) {0.46, 0.24, 0.30}
w(Mi|D1 ∪D2,X ) {0.35, 0.25, 0.40}

Conclusion
In the hindcasting cases (i.e., replicating previously oc-
cured flows) we described, this Bayesian scheme provided us
valuable information on the combined-model performance.
The results are useful tools for the future application of
this method in construction of natural hazard forecasting
associated with geophysical flows.

5) Bayesian Weighted Averaging
for Flow Height Record Maps

The April 16-17, 1991, eruption of Volcán de Colima, Mexico,
is a classical example of partial dome collapse with the genera-
tion of progressively long runout, Merapi-type pyroclastic flow
(block-and-ash flow).

Table 2: Estimation for I.C.s, X , Volcán de Colima 1991 eruption.

Pile center location (UTM East) 644956.0 m
Pile center location (UTM North) 2157970.0 m
Material volume 1.4×105 m3

We adopted Jaccard distance as a proper metric:

d(Aj(X ), D) := (Aj(X ) ∪D)\(Aj(X ) ∩D)
Aj(X ) ∪D

Here, D is the observed inundation area extent for this event
and Aj(X ) is the inundated area obtained from each sample
simulation.

Figure 1: Flow height record maps considering single rheology models (a-c)
and their Bayesian weighted average map (d).

3) Metric-based Likelihoods

• Let Aj(X )j=1,...,Nsamples
, be the simulated quantity and D be

the corresponding observation data.
•Considering D, we define a proper “metric” or “distance
function”, d(Aj(X ), D), for likelihood construction.

•We construct the likelihood, f (D,X|Mi), as:
f (D,X|Mi) = P

[
d(Aj(X ), D) ≤ ε|Mi

]
, i=1,...,Nm

Where ε, is a desirable threshold for metric values. Here, we
choose the average of all samples.

• “Gaussian Stochastic Processes” allow the visualization of
the metrics though high-resolution surrogates.

6) Uncertainty Affecting Flow
Height Record Maps

•Each rheology model produces a probability distribution for
each specific target numerical value which can be expressed
with mean and the percentile values of the
combined-model results.

• Similar to what is done in “expert judgement” techniques,
we treat the pool of rheology models, (Mi)i=1,...,Nm

, as a
pool of experts – we combined the probability density
distributions (fi)i=1,...,Nm

for the flow height record values
[2].

• Linear pooling is a natural rule to define the
combined-model percentiles [3]:

g(·) =
Nm∑
i=1

w(Mi|D,X )fi(·).

Where the function g(·) is the probability mixture of the
functions (fi)i=1,...,Nm

.
• Linear pooling quantifies combined effects of the
uncertainties in competing rheology models and their
associated parameter spaces.

Figure 2: Following the linear pooling for n = 2000 times, the rheology
model and then we sampled its specific parameters are randomly selected,
providing a population of flow height values – the 5th and 95th percentiles
of this population approximated the uncertainty bounds maps for Volcán de
Colima, based on 16-17 April, 1991 event.
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