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The Failure Forecast Method (FFM
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Motivations and Outline

FFM is known to be affected by sources of uncertainty, like:

 the occurrence of multiple phases of acceleration in the signals

* the superposition of signals originating from different causes

* heterogeneity in the breaking material, producing changes in the signals.

In addition, the statistical fitting of model parameters can be poorly constrained.

A full probability assessment of FFM, with uncertainty quantification, is the
motivation of this study.

We retrospectively test

In particular, we enhance the classical FFM by: the e?ha”fje‘: FF':/'
. . . . over rour datasets
* systematically characterizing the uncertainty, from Voight, 1988.

including both aleatoric and epistemic sources;

. . . . . . These refer to:
* incorporating a stochastic noise in the equations, St Helens. 1981.82

and a mean-reversion property to constrain it. Bezymianny, 1960,

Mt. Toc (Vajont), 1963.

Our aim is to produce probability forecasts with the FFM,
instead of deterministic predictions.



The FFM differential equations (ODE) 0. - convexity parameter

A - slope parameter
dX/dt — AXa where X is the time rate of signals

t, - initial time
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The new terms: mean-reversion and stochastic noise
'r](t) — (1 - Oé)A(t - t()) —I_ /BeXp(—’Yt) —|_ 'r](t()) It makes every

perturbation
decay with time

mean-reversion term <

1/X

MEAN-REVERTING EFFECT STOCHASTIC NOISE EFFECT .
8 - & (a) K=18 ) Figure.
o { (a)
® y=2.5e-1 1/X with 0=2,
2 - el - A=0.1, B==10.
] Yok=2 The colors show
R - y=2.5e-2 X _ ] different vy.
@ y=le-2 =
o e (b)
" (MY With A=0.
I < | The colors show
| A=le-1 . | different (y ,0),
T T T T T T T T T T T T T T T Wlth equal
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 K: 62/’Y
T T

o Y - mean-reversion parameter
dnt — — YNt dt + O-d[ L t G - hoise parameter
_ noise term B - initial perturbation

(A=0) SOLUTION
0-2 0-2 Parameters are based
Nt ~ N O7 — [1 - exp(—nyt)] ~ N O, — on the residuals in the
2’)/ 2’}/ linearized problem.



The FFM stochastic differential equations (SDE)
dne = {v[(1 — a)A(t — to) + mty —me] + (1 — ) A} dt + odWs

mean-reversion terms classical FFM

i
X: = {thoa —i—/ {’y [(1 —a)A(s —to) + thofo‘ —
to

SDE SOLUTION, 1/X - a=2

Probability /day

0 50 100 150 200 250 300

T (days)

tr(w) = inf{t: X " (w,t) = 0}

random variable

0.01 0.02 0.03 0.04 0.05 0.06

0.00

t l—«
X, 1+ (1 -a)A} dt+/ adWS}
to

noise term

NONLINEAR FORMULATION

TEMPORAL PDF - a=2

0 100 200 300 400

T (days)

Figure.
SDE solutions,
with 0=2, A=0.1.

The black line is the
mean solution.

(a) colored lines are

random paths, y=0 or
v=0.25.

(b) also shows g;;.
The solution 1/X
is reported again.

gt, : R — R+, / gt,(z)dr =1

t; probability density function



Method 1, ODE estimators of ¢,

Method 1 characterizes the epistemic uncertainty related to the parameter fitting in the classical FFM.
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Method 2, doubly stochastic estimators of t;

Method 2 allows excursions from the classical FFM solutions, modeling aleatoric uncertainty sources.
It also models the epistemic uncertainty related to parameter fitting, like in Method 1.
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Our doubly stochastic
formulation allows users to
determine a “worst case
scenario” with a specified

level of confidence (Bevilacqua,

2016).

Figure.
Colored lines assume
a as from LLT or HT.

The bold line is g
Bold dashed lines are its 5t
and 95t percentile values.

Dashed lines bound a 90%
confidence of solutions.
Dotted lines show examples
of random paths.

A dashed vertical line is t,
the black dots are data.



Material failure likelihood - g (t,)

The reported value is the pdf in the day t,, as displayed in the previous figures.
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If o is based on LLT Method 1 provides low likelihoods, below 1% in some case. The 95t
percentile values of Method 2 clearly outperforms Method 1.

We remark that the HT method cannot be used in forward forecasting, but only
retrospectively.



Method 1, ODE forecasts of t;
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We compare two time windows with extremes reported in
figure. They include different subsequences of data.

Estimators based on the whole
seqguence of signals are not

forecasts (Boué et al. 2015).

We assume that data are

available only up to time t<t..

Forecasts can be significantly
uncertain, because based on

fewer data.

Figure.

Forecasts of t;

based on different time
windows T.

The bold line is g
Dashed lines bound a 90%
confidence of solutions.

A dashed vertical line is t..
The dots are data,
in red if belonging to T.



Method 2, doubly stochastic forecasts of t;

If the forecast is poorly constrained, Method 2 typically reduces the uncertainty
affecting t;, compared to Method 1. Indeed the noise can push 1/X to hit zero, when 1/X is small enough.
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The doubly stochastic
formulation of Method 2

appears to have an impact.

Figure.

Forecasts of t;

based on different time
windows T.

The bold line is g
Bold dashed lines are its 5t
and 95t percentile values.

Dashed lines bound a 90%
confidence of solutions.
Dotted lines show examples
of random paths.

A dashed vertical line is t..
The dots are data,
in red if belonging to T.



Material failure likelihood - g (t,)

Method 2 mean forecasts provide consistent likelihoods with Method 1.

The 95t percentile values are significantly higher than other forecasts, from 5% to 10% in
the first and second time windows, and above 15% in the third.
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Figure. Barplots of the likelihood g,(t.) on three time windows. In (a) the colored bars assume Method 1.
(b) assumes Method 2. Full bars are the mean values, shaded bars are the 95t percentile values.



EE 3 w - Summary and conclusions - Q

We have introduced a new method for performing short-term eruption timing INGV
forecasts, when the eruption onset is related to a significant rupture of materials.

 The method enhances the well known FFM equation. We allow random excursions from the
classical solutions. This provides probability forecasts instead of deterministic predictions.

* Our doubly stochastic formulation can consider the “worst case scenario” with a probability
of occurrence of at least 5%. This was not possible in the classical formulation.

 We compared two formulations of the method on historical datasets of precursory signals.
The data show the increased forecasting skill of the doubly stochastic formulation,
expressed as the likelihood in the day of the actual eruption.

This approach is the subject of ongoing and future work, with the purpose to further test its
forecasting robustness over more complex sequences of signals. -
|
Doubly stochastic enhancement of the Failure Forecast Method using a noisy mean-reverting process and » I A VCE I org
application to volcanic eruption forecasts, https://arxiv.org/abs/1805.11654.
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