
9th  International Congress on Industrial and Applied Mathematics Valencia, 15 July 2019 9th  International Congress on Industrial and Applied Mathematics Valencia, 15 July 2019 

ICIAM 2019 

A SDE Framework for Volcanic Precursors 

Andrea Bevilacqua (INGV),  

Abani Patra (UB), Eric Bruce Pitman (UB), Marcus Bursik (UB),  

Augusto Neri (INGV), Barry Voight (PennState), Franco Flandoli (SNS),  

Prospero de Martino (INGV), Flora Giudicepietro (INGV),  

Giovanni Macedonio (INGV), Stefano Vitale (UNINA) 

Mapping and managing hazards using Precursory Data, and Analysis 

NSF awards 1521855, 1821311, project FISR2017 MIUR, agreement DPC-INGV Annex B2 2019-21 

UNIVERSITY AT BUFFALO NATIONAL SCIENCE 

FOUNDATION 



ICIAM 2019 

9th  International Congress on Industrial and Applied Mathematics Valencia, 15 July 2019 

Overview of the talk 

 

1) Probabilistic enhancement of the Failure Forecast Method. 
Let the problem be temporal. Then F: [t0, t1] → ℝ is determined by a 

physical equation which links the rate X= dF/dt and the rate-change 

Ẋ. This provides estimates of the time tf such that F(tf) = + ∞. 

Depending on the additional hypotheses we can make on F, we describe two different cases:  

Let (x, t) ∈ ℝ3 × ℝ+ be the spatial location and onset time of a target phenomenon. 
 

A volcanic precursor is a real function F defined on a domain  A × [t0, t1] ⊆  ℝ3 × ℝ+,  

such that F has a local maximum in (x, t). 
 

Our purpose is to obtain probability forecasts of (x, t) given the values of F. 

2) Update of a prior spatial map through the statistical 

assimilation of precursor data. 
Let the problem be spatial. Then the values of F: A → ℝ  

define a likelihood map which is combined with a prior 

probability distribution of (x,t) using the Bayes' Theorem. 

 

Figure. Examples of  

(a) enhanced failure 

forecast method and  

(b) posterior spatial map. 

(a) 
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PART 1A 

Probabilistic enhancement of the 

Failure Forecast Method 
[Modified from Bevilacqua et al., 2019] 

Front. Earth. Sci., 7:135. doi: 10.3389/feart.2019.00135 
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The FFM is a well-

established tool in the 

interpretation of 

monitoring data as 

possible precursors, 

providing quantitative 

predictions of a volcanic 

eruption onset (Voight, 1988). 

The model represents the 

potential cascade of 

precursory signals leading 

to a significant rupture of 

materials, with tf a proxy for 

the eruption onset te. 
Figure. Examples of linear regression of the inverse rate of 

cascading seismic signals collected at Redoubt volcano (USA), 

before a major eruption in 1990 (from Voight & Cornelius, 1991) 

The FFM has been retrospectively applied to several volcanic systems, including explosive 

eruptions. Seismic and ground deformation data are the type of signals most extensively 

studied with the method. 
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In particular, we enhance the classical FFM by: 

• systematically characterizing the uncertainty, including both 

aleatoric sources (related to the future forecast) and  

epistemic sources (related to our current knowledge); 

 

• incorporating a stochastic noise in the equations, and a mean-

reversion property to constrain it (i.e. a Hull-white model). 

FFM is known to be affected by sources of uncertainty, like:  

• the occurrence of multiple phases of acceleration in the signals 

• the superposition of signals originating from different causes  

• heterogeneity in the breaking material, producing changes in the signals.  

 

In addition, the statistical fitting of model parameters can be poorly constrained. 

 

We perform a full probability assessment of FFM, with uncertainty quantification.  

Our aim is to produce probability forecasts with the FFM, instead of deterministic predictions. 

We retrospectively 

test  

the enhanced FFM  

over two datasets  

from Voight, 1988. 

 

These refer to:  

St. Helens, 1982,  

Bezymianny, 1960. 
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: 

α - shape 

A - slope  

t0 - initial time 

tf - failure time 

where X is the time rate of signals 

change of variables 

Figure.  

ODE solution,  

(a) X, and (b) 1/X. 

 

 

Note the effect of 

varying slope and 

convexity 

parameters. 

α, A learnt from 

data 

S
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L
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T
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linearization 
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(A=0) 

mean-reversion term 

SOLUTION noise term 

γ - mean-reversion 

σ - noise 

β - initial perturbation 

Figure. (a)  

1/X with α=2, 

A=0.1, β=±10. 

The colors show 

different γ. 

 

(b)  

(ηt)t>0 with A=0. 

The colors show 

different (γ ,σ), 

with equal 

K= σ2/γ. 

STOCHASTIC NOISE EFFECT 

Parameters are based 

on the residuals in the 

linearized problem.  

It makes every 

perturbation 

decay with time  
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mean-reversion terms classical FFM noise term 

NONLINEAR FORMULATION  

tf probability density function random variable 

Figure.  

SDE solutions,  

with α=2, A=0.1. 
 

The black line is the 

mean solution. 
  

(a) colored lines are 

random paths, γ=0 or 

γ=0.25. 
  

(b) also shows gtf. 

The solution 1/X  

is reported again. 
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Figure.  

Forecasts of tf 

based on different time 

windows [0, T]. 

 

The bold line is gtf.  

Dashed lines bound a 90% 

confidence of solutions. 

 

A dashed vertical line is te.  

We compare two time 

windows with extremes 

reported in figure.  

They include different 

outcomes of data (trends). 

Forecasts can be significantly 

uncertain, especially if 

based on few data. 

Large colored dots mark the 

data points evaluated with 

the FFM. Small dots are not 

considered. 
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Figure.  

Forecasts of tf made on 

different time windows [0,T]. 

 

The bold line is gtf.  

Bold dashed lines are its 5th 

and 95th percentile values. 

  

Dashed lines bound a 90% 

confidence of solutions. 

Dotted lines show examples 

of random paths. 

A dashed vertical line is te.  

If the forecast is poorly 

constrained, including the 

noise typically reduces the 

uncertainty affecting tf. 

Indeed the noise can push 

1/X to hit zero earlier, when 

1/X is small enough. 

Large colored dots mark 

the data points evaluated 

with the FFM. Small dots 

are not considered. 
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Figure. Barplots of the likelihood gtf(te) on three time windows. In (a) the colored bars assume the ODE 

formulation, in (b) the SDE formulation. Full bars are the mean values, shaded bars are the 95th percentile values.  

The 95th percentile values are significantly higher than other forecasts, from 5% to 10% in 

the first and second time windows, and above 15% in the third. 

SDE mean forecasts provide consistent likelihoods with the ODE results.  
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PART 1B 

The FFM applied to the  

Campi Flegrei caldera 
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Campi Flegrei (Italy) is a volcanic field that has been active in the last 80’000 years.  

The depression of Campi Flegrei is generally interpreted as a calderic structure. 

Two large scale collapses are related to the eruptions of: 

-Campanian Ignimbrite (40’000 years BP);  -Neapolitan Yellow Tuff (15’000 years BP) 

Figure. Schematic of 

a caldera collapse 

following the 

expulsion of magma 

because of a large 

scale explosive 

eruption. 

Episodes of slow uplift and subsidence of the ground, called bradyseism, 

characterize the recent dynamics of the Campi Flegrei caldera.  

The central part of the caldera has been uplifting in the last 10’500 years 

(a caldera resurgence of ~100 m). 

Figure. Plot of the elevation  

above sea level of the ruins of  

the Macellum of Pozzuoli  

(194 BC, called Serapeum Temple). 

 

Data reconstructed from the borings 

of marine organisms. 

GROUND UPLIFT AT SERAPEUM TEMPLE 

sea level 

Monte Nuovo 

eruption  
 

AD 1538 

Last 

60 years 
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Station cGPS RITE  

(Rione Terra – Pozzuoli) 
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Civil Protection 

raised the alert level  

to «Attention» 

In the last decades two 

major bradiseismic crises 

occurred in 1969/1972 and 

in 1982/1984, with a ground 

uplift of 1.70m and 1.85m, 

respectively. 

 

Thousands of earthquakes, 

with a maximum magnitude 

of 4.2 caused the partial 

evacuation of the town of 

Pozzuoli in October 1983.  

Figure. Ground 

deformation 

measurements 

collected at RITE 

(vertical uplift) by 

means of  

(a) leveling and  

(b) GPS.   

(a) 

(b) 

Bradiseismic crises 



9th  International Congress on Industrial and Applied Mathematics Valencia, 15 July 2019 

ICIAM 2019 Ground deformation and seismic data 

We preliminarily applied 

our enhanced FFM on 

Campi Flegrei caldera 

seismic and ground 

deformation dataset.  

 

We remark that the time 

window is much longer 

than in the classical 

applications, and spans 

over tens of years.  

EARTHQUAKE COUNT 

Figure. (a) Campi Flegrei caldera GPS monitoring network  

(21 stations + 4 bouys). RITE and ACAE stations marked in red. 

 

(b) Cumulative number of EQ measured in CF  

from 1st Jan 2007 to 10th Sep 2018.  

(a) 

(b) 
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tf is the time when accelerating signals as observed in the last 10 years would diverge to infinity.  

The interpretation of tf as the onset of a volcanic eruption is speculative (Chiodini et al., 2017; Kilburn, 2018).  

Figure. Probability forecasts of tf using 

the seismic data of 2008-2018.  

In (a) the inverse rate is obtained on 

120 days, in (b-d) on 360 days. 

 

(b, d) are based on the data of  

2011-2018, and (c, d) remove the 

swarms: ∀i,  ti+1 - ti > 6 hours. 

Red points are inverse rate data.  

The green line is mean value of gtf, the 

probability/day scale bar is related to it. 

Dashed lines mark its 5th and 95th 

percentiles.  

 

Thin blue dashed lines bound the 90% 

confidence interval of the ODE paths of 

1/X, and a thin line is the mean path. 

Grey dotted liner display 50 SDE paths. 

Seismic data analysis 

Removing the swarms from the 

2008-2018 dataset produces 

significantly short forecasts. 
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Figure. Ground deformation 

measurements of 2000-2018 

collected at (a) RITE (vertical), 

and (b) ACAE (planar) GPS 

stations. 

 

 In (c-d) we show the residual 

signal after subtracting the 

average measurement over a 

360 days moving window. 

 

Seasonal cycles are evident, 

as well as noise effects.  

 

Period and amplitude of the 

cycles apparently changed in 

2011. 

Rate change in 2011 is 

indicatively reported with a 

descriptive purpose. 
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Figure. Fourier analysis of 

the residual deformation 

measurements collected at 

(a) RITE (vertical), and (b-d) 

ACAE (planar) GPS 

stations. 

 

In (a-b) we show the ||·||2 of 

Fourier coefficients, as 

obtained over the whole 

time domain 2000-2018. 

 

In (c) we focus on the 

subdomain 2002-2010, in 

(d) on the 2011-2018 

subdomain. 

 

The period of the peak 

mode of the cycles appears 

to have changed: 

 

~1 year in 2002-2010 

~2 years in 2011-2018. 
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Figure.  (a) Time rate of the deformation measurements collected at RITE (vertical) GPS stations, according 

to finite differences calculated over 360 days. (b) Rate change of the same time series, calculated by second 

order finite differences over 720 days. 

 

The minor uplift rate increases occurring in 2005-2006 and in 2011-2013 are evident, as well as the average 

rate, that increased up to above 10 cm/year in 2012-2013 and 2015-2016.  
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Figure. Inverse rate plots 

of the deformation 

measurements collected at 

(a,b) RITE (vertical), and 

(c,d) ACAE (planar) GPS 

stations. 

 

In (a,c) we show the 

results obtained over the 

time domain 2002-2018. 

 

In (b,d) we focus on the 

subdomain 2011-2018. 

 

Multiple phases of inverse 

rate decrease compatible 

with the FFM equations 

occurred in 2011-2013,  

and 2014-2016. 
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Ground deformation data analysis V 

Figure. Probability forecasts of tf using the deformation data of 2011-2018. In (a) the inverse rate is obtained 

from RITE (vertical), and in (b) from ACAE (planar) GPS stations.  

Red points are inverse rate data. The green line is mean value of gtf, the probability/day scale bar is related to 

it. Dashed lines mark its 5th and 95th percentiles.  
 

Thin blue dashed lines bound the 90% confidence interval of the ODE paths of 1/X, and a thin line is the mean 

path. Grey dotted liner display 50 SDE paths. 
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PART 2 

Update of a prior spatial map 

through the statistical assimilation 

of precursor data 
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Figure.  

Vent opening map 

based on long-term 

volcanological data. 

The values are 

probabilities over km2. 
(Bevilacqua et al., 2015) 

 

A Gaussian random 

field can be adopted  

to represent the 

uncertainty affecting 

the pdf values.  

 

 

We choose this field 

as a prior parameter 

for the Bayes’ 

theorem.  

Long-term vent opening map with uncertainty 

A vent opening map is a family of pdfs for the spatial location of a new eruptive vent.  
A hierarchical sampling is employed to choose the pdf and then the location. 
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Each sample is normalized to sum 

to one. Thanks to the law of large 

numbers, if correlation is not too 

strong, this is introducing a 

negligible error. 

Gaussian random field of the spatial pdf 

Figure.  

Example of 

random 

fields 

representing 

the vent 

opening 

map. 

 

The plots 

assume 

Gaussian 

correlation 

kernels of 

different 

bandwidths. 

(a1) 

(b1) 

(a2) (a3) (a4) 

(b2) (b3) (b4) 

(a1-4) assume a radial limit of 2 km, (b1-4) of 5 km,  

i.e. beyond this radius the correlation is below 5% of its maximum value. 

 

(a1, b1) display random samples of a Gaussian field with  

constant mean and unitary autocorrelation. 

 

(a2-4, b2-4) show three random samples of a Gaussian field having the same 

5th and 95th percentiles of the vent opening map in Bevilacqua et al. 2015.   

 

We assumed a radial limit of 4 km in the following. 
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Let X be the random variable expressing the new vent 

opening location according to the prior map gX 

Let F(x) be a likelihood function based on the distance 

from seismic epicenters. In this example we implement a 

Gaussian likelihood with 4 km radius (2σ). 

Then, let Y be a random variable with values in {0,1}, 

expressing the event of having an eruption after the observed 

precursors. That is, P{Y = 1 | X = x} is given by F(x).  

The Bayes’ theorem states: 

 

gX | Y = 1(x) =  
P{Y = 1 | X = x} gX(x)

P{Y = 1}
  = 

F(x) gX(x)
h  

where the constant h is the Bayesian evidence that 

an eruption is going to happen, given prior and data.  

Figure. Vent opening map combining prior 

information from (Bevilacqua et al., 2015) 

and the spatial locations of the epicenters of the 

seismic swarm of 26/09/2017. 

 

Here the map assumes that the swarm was 

composed of real eruptive precursors. 
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If the observed signals are not real eruptive precursors, then 
  

∀ x,   P{Y = 1 | X = x} = P{Y = 1} ≡ h,   gX | Y = 1(x) = gX (x), 
 

that is, the Bayes’ theorem leaves the prior map unchanged. 

 

So, we define a binary logic tree made of two cases: 

A. The signals are real eruptive precursors 

gX | Y = 1(x) = 
F(x) gX(x)

h
 

 

B. The signals are not eruptive precursors 

gX | Y = 1(x) = gX (x)     

 

Let event A have 

a probability p to 

happen, then 

event B has a 

probability (1-p) 

to happen. 

Figure. Vent opening 

map combining prior 

information from 
(Bevilacqua et al., 2015) 

and the spatial 

locations of the 

epicenters of the 

seismic swarm of 

26/09/2017. 

 

Here the map 

assumes that the 

swarm was composed 

of real eruptive 

precursors with a 

chance p = 20%. 
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(a) (b) 

Figure A. schematic of  

multi-polar interpolation 

   v(ij)λ := [λr(j)+(1-λ)r(i), λα(j), λd(j)+(1-λ)d(i)] 

Centers of symmetry are locally determined for every pair of measurements, enabling the 

reconstruction of bimodal profiles, deviating from the usual bell-shape. 

Figure B. (a-d) show examples of 

GPS data collected in 2012-2013. 

  

Blue dots mark the virtual 

displacements, along elliptic 

trajectories. 

 

Green dots are the centers of 

symmetry. The purple cross is the 

average of the centers. 

Results are independent on arbitrary assumptions on the geometry, the physical properties of 

the source of deformation and of the elastic medium, but they are only based on  

a «local» central symmetry. 

Our spatial mapping of deformation data relies on a multi-polar interpolation, that is a linear 

interpolation among the pairs of applied vectors, made in polar coordinates with respect to the 

intersection of the straight lines defined by the planar displacement components. 

Multi-polar interpolation method 
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In 1970-1985, Campi Flegrei caldera underwent two episodes of  

major caldera‐wide uplift and seismicity, which raised the central region  

by 3.5 m, followed by about 20 years of overall subsidence, until 2005. 

 

We focus our analysis on the minor uplifts (cm - scale) occurred in  

2011-2013 (De Martino et al. 2014). 

UP4 4/2011 - 6/2011  

UP5 7/2011 - 5/2012  UP6 6/2012 - 10/2012  

Vertical displacement maps 

Figure. (a)  maps of vertical displacement, 
based on the GPS data of UP4-UP6.   

(b) Uncertainty range, given by the difference 
of the 5th and the 95th percentiles of error.  
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Figure. (a)  maps of planar displacement, 
based on the GPS data of UP4-UP6.   

(b) Uncertainty range, given by the difference 
of the 5th and the 95th percentiles of error.  

Figure. Vertical 

displacement boundaries 

and max horizontal 

displacement lines as 

resulting from the RIM 

maps above presented. 

Past vents locations 

occurred in the last  

5.2 ky BP are reported 

as pink stars. 

We assume that the planar 

(horizontal) displacement of the 

ground is a key input for the 

construction of a vent opening 

map, if the deformation source is 

related to a magmatic intrusion. 

Planar displacement maps 



9th  International Congress on Industrial and Applied Mathematics Valencia, 15 July 2019 

ICIAM 2019 

UP4 

UP4 

UP4 

U
P

4
 4

/2
0

1
1

 - 6
/2

0
1
1
  

Posterior maps based on deformation data - I 

Figure. Vent opening map combining prior 

information from (Bevilacqua et al., 2015) 

and the planar displacement map related to UP4. 

 

Here the map assumes that the deformation data 

consisted of real eruptive precursors. 

If compared to the long-term 

prior, the probability 

concentrates in the central 

eastern part of the caldera 

with a maximum 

corresponding to the zone of 

Solfatara crater. 
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Posterior maps based on deformation data - II 

Figure. Vent opening map combining prior 

information from (Bevilacqua et al., 2015) 

and the planar displacement map related to UP5. 

 

Here the map assumes that the deformation data 

consisted of real eruptive precursors. 

In this case, the 

shape is different, 

with multiple zones of 

increased vent 

opening probability of 

a wide subregion. 
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Posterior maps based on deformation data - III 

Figure. Vent opening map combining prior 

information from (Bevilacqua et al., 2015) 

and the planar displacement map related to UP6. 

 

Here the map assumes that the deformation data 

consisted of real eruptive precursors. 

The probability is 

concentrated near 

Solfatara crater, but 

less sharply than 

during UP4. 
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In PART 1 we introduced a new method for performing short-term eruption timing probability forecasts, 

when the eruption onset is well represented by a model of a significant rupture of materials.  
 

• The method enhanced the well known FFM equation. We allowed random excursions from the 

classical solutions. This provided probabilistic forecasts instead of deterministic predictions, giving the 

user critical insight into a range of failure or eruption dates. 

 

• We described an assessment of failure time on present‐day unrest signals at Campi Flegrei caldera 

(Italy) using either seismic count and ground deformation data. The new formulation enabled the 

estimation on decade-long time windows of data, locally including the effects of variable dynamics.  

 

Summary and conclusions 

In PART 2 we introduced a new framework for performing short-term eruption spatial forecasts by 

assimilating precursor signals into a prior (“background”) vent opening map.  
 

• We summarized the uncertainty affecting a vent opening map pdf by defining an appropriate Gaussian 

random field that replicates it. 

 

• We introduced a new interpolation method based on multiple points of central symmetry, and we 

applied it on discrete GPS data collected at Campi Flegrei caldera. 

 

• We described an application of the Bayes’ theorem that combines the prior vent opening map and the 

data-based likelihood product-wise. We provide examples based on either seismic count and interpolated 

ground deformation data collected at Campi Flegrei caldera.  

 


