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Abstract: Accurate tracking and forecasting of ash dispersal in the atmosphere and quantification
of its uncertainty are of fundamental importance for volcanic risk mitigation. Numerical models
and satellite sensors offer two complementary ways to monitor ash clouds in real time, but limits
and uncertainties affect both techniques. Numerical forecasts of volcanic clouds can be improved
by assimilating satellite observations of atmospheric ash mass load. In this paper, we present a
data assimilation procedure aimed at improving the monitoring and forecasting of volcanic ash
clouds produced by explosive eruptions. In particular, we applied the Local Ensemble Transform
Kalman Filter (LETKF) to the results of the Volcanic Ash Transport and Dispersion model HYSPLIT.
To properly simulate the release and atmospheric transport of volcanic ash particles, HYSPLIT has
been initialized with the results of the eruptive column model PLUME-MoM. The assimilation
procedure has been tested against SEVIRI measurements of the volcanic cloud produced during the
explosive eruption occurred at Mt. Etna on 24 December 2018. The results show how the assimilation
procedure significantly improves the representation of the current ash dispersal and its forecast.
In addition, the numerical tests show that the use of the sequential Ensemble Kalman Filter does
not require a precise initialization of the numerical model, being able to improve the forecasts as the
assimilation cycles are performed.

Keywords: data assimilation; volcanic eruptions; volcanic hazard; numerical modelling; ash dispersal;
remote sensing; Mt. Etna

1. Introduction

During explosive eruptions, volcanoes can release large volumes of ash into the atmosphere.
The term volcanic ash refers to those particles that, with a diameter < 2 mm, can remain suspended
into the atmosphere for days or longer and can therefore be transported over great distances from
the volcanic source. Monitoring and forecasting ash dispersal and deposition patterns is of crucial
importance for volcanic hazard mitigation, which includes safety procedures for aviation [1,2] and
populations living near volcanoes [3,4].
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Volcanic ash forecasting encountered a turning point with the explosive eruption of Eyjafjallajökull,
Iceland, April–May 2010 [5]. The eruption lasted several weeks, approximately from 14 April to 22
May 2010, and released 4.8 ± 1.2 × 1011 kg of material mostly in the form of fine ash (diameter < 1
mm) [6]. Due to the geographic location of Eyjafjallajökull volcano (southern coast of Iceland) and
the unusual synoptic meteorological conditions [7], the ash cloud spread over Europe and the North
Atlantic causing a massive disruption of air traffic with economic losses estimated in $250 million
per day [8]. Since then, large improvements in quantitative ash forecasting have been done [9,10]
and efforts are continuously made to develop long-term contingency plans for aviation response to
volcanic ash [11].

Presently, numerical models are a valuable tool for simulating the release, atmospheric transport
and deposition of volcanic ash, with numerous software tools developed and used for research and
operational tasks [12]. These models are called Volcanic Ash Transport and Dispersion (VATD) models
and are used to simulate both the deposition of the coarser particles and the long-range transport of
the fine ash. Some of these codes have been specifically developed for volcanological purposes (i.e.,
FALL3D [13], ASH3D [14]), while others are modifications of well-established atmospheric dispersal
models (i.e., HYSPLIT [15], FLEXPART [16], NAME III [17], VOL-CALPUFF [18]). Some of these
models, as HYSPLIT, NAME III and FALL3D, are operationally used by the Volcanic Ash Advisory
Centers (VAACs) to forecast the distribution of volcanic ash into the atmosphere.

Depending on the mathematical formulation, VATD models are classified as Eulerian (those
solving the Eulerian advection–diffusion–sedimentation equation as FALL3D), Lagrangian (those
calculating the trajectories of several particles as FLEXPART) or hybrid (those calculating the trajectories
of individuals puffs or particles with a Lagrangian approach, but computing the concentration on a
fixed three-dimensional grid as HYSPLIT). The accuracy of every VATD model depends on numerical
approximations and physics simplifications. Moreover, the initialization of such models is a further
source of uncertainty. Indeed, model inputs are often highly uncertain and difficult to estimate,
especially in real time. Commonly, VATD model inputs are the Eruptive Source Parameters (ESPs)
defining the volcanic source terms (e.g., mass flow rate, eruptive column height, eruption duration,
initial grain size distribution, etc.). Efforts to improve the accuracy of ESPs have been done with the
use of a set of pre-defined conditions to use in case of eruptions on the basis of assumed relevant
volcanological scenarios [19,20]. In addition, methodologies have been developed to infer ESPs in
real time from satellite- or ground-based measurements [21–25]. However, high uncertainties are still
present, especially for not monitored volcanoes.

Beside numerical models, volcanic plumes can be tracked by satellite-borne instruments. Both polar
orbit and geosynchronous platforms are used to detect volcanic clouds by sending observations up to every
5 min, 24 h a day, on a global scale. In the thermal infrared, volcanic ash and gases (mainly SO2 and H2S)
can be identified and quantified using the spectral extinction bands between 8 and 13 µm. In particular,
ash particles can be detected using the channels centered at 10 and 12 µm [26,27]. Assumptions about the
microphysical properties of ash particles and radiation transfer models allow the retrieval of effective
particle radius, aerosol optical depth and mass of the fine ash [28–31]. Examples of instruments able
to detect volcanic ash are: the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS
Terra Mission [32], the Advanced Very High Resolution Radiometer (AVHRR) carried by the NOAA
polar orbiting platforms and European MetOp satellites [26,33], the Atmospheric Infrared Sounder (AIRS)
on board the NASA Aqua satellite [34,35], the Infrared Atmospheric Sounding Interferometer (IASI)
carried by EUMETSAT MetOp-A and MetOp-B satellites [36–38] and the Spin Enhanced Visible and
Infrared Imager (SEVIRI) on board the MSG geostationary satellite [25,39,40]. However, the accuracy of
ash detection from space-based sensors suffers from measurement errors, interference of a mixture of
constituents within the same pixel and sub-optimal measurement characteristics which lead to poorness
or ambiguity in discrimination [41,42].

The synergy between VATD models and satellite observations appears to be an effective way to
monitor and forecast ash dispersal and deposition. Indeed, some of the limits of satellite retrievals can
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be overcome by numerical simulations and vice versa. For example, depending on the circumstances,
numerical models allow tracking and forecast of volcanic plumes at higher temporal resolution than
satellite sensors. This is of value for volcanic risk mitigation, where information on ash location and
concentration are needed at high temporal frequency. On the contrary, the properties and distribution
of ash particles retrieved from space are a valuable support for the initialization of the numerical
models. However, since satellite observations and numerical results are affected by uncertainties,
a straightforward combination between the two is not sufficient to reduce the global uncertainty of the
system. In this sense, Data Assimilation (DA) is a powerful tool for estimating the best representation
of the state of the system including the minimization of the global uncertainty [43]. DA is widely used
and applied in atmospheric and oceanic contexts [44–46], while few studies have been dealing with
volcanic applications so far. Improvements in ash forecasting by assimilating data from aircraft- and
satellite-based measurements have been shown in Fu et al. [47–52] and Osores et al. [53].

Depending on the problem and expected outcomes, many strategies can be pursued to solve a
DA problem and each strategy presents a specific mathematical formulation. DA methods can be
categorized into variational and sequential [54]. Variational DA minimizes a cost function to estimate
the unknown parameters which define the state of a system (for example the initial state). Sequential
DA allows estimation of the system state sequentially as it evolves forward in time [45]. In this sense,
the sequential way considers observations in small batches of time, as they become available, while
the variational approach uses all the observations within a prescribed observing window. Sequential
filtering (which is the one applied in the present paper) includes Kalman Filters (KFs), Ensemble
Kalman Filters (EnKFs) and Particle Filters.

This paper presents the application of a variant of the traditional EnKF, the so-called Local
Ensemble Transform Kalman Filter (LETKF) [55], inside a numerical procedure which simulates the
release and transport of volcanic ash produced by explosive eruptions. The numerical procedure
consists of a sequence of Python scripts coupling the eruptive column model PLUME-MoM [56]
with the VATD model HYSPLIT [15]. Numerical results are sequentially corrected by assimilating
satellite observations of volcanic ash supplied by the sensor SEVIRI. The toolkit used to perform
the assimilation is the Parallel Data Assimilation Framework (PDAF) [57]. PDAF is a free software
environment and offers fully implemented and optimized DA algorithms, such as EnKFs. We tested
the assimilation procedure using as case study the ash cloud produced by the explosive eruption
at Mt. Etna on 24 December 2018. We performed different experiments, varying the way in which
ensemble members are created and the assimilation time interval. The results of each experiment
show a significant improvement in ash monitoring and forecasting. Indeed, at each assimilation cycle,
the analyzed ash state represents the best state of the system with minimized errors with respect
to the original numerical forecast and the observations. The improvement achieved by assimilating
satellite observations is particularly evident by comparing the results of the assimilation cycles with
the forecast done without assimilation.

2. Mt. Etna Case Study: the 24 December 2018 Flank Eruption

The eruption that we investigated as case study occurred at Mt. Etna on 24 December 2018. Mt.
Etna is a stratovolcano located in Sicily (Italy) and it is one of the most active volcanoes in the world.
It has an elevation of 3300 m asl and 4 active summit craters: Voragine, North-East Crater, Bocca
Nuova and New-South-East Crater. Mt. Etna activity is routinely monitored by the ground-based
network managed by the Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo (INGV-OE).
Moreover, daily observations made by space-based instruments integrate the large dataset of Mt. Etna
monitoring data.

According to official bulletins from INGV-OE, on 24 December 2018 the activity started at 07:00
UTC (all times are in UTC) with a degassing increase from the summit craters. A few hours later,
discontinuous ash emissions were reported from Bocca Nuova and North-East craters. After 10:40,
a continuous ash emission began and at 11:00 an eruptive fissure opened at the eastern base of the
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South-East Crater producing violent Strombolian activity. A second small fissure opened between
the New-South-East and the North-East craters generating weak Strombolian activity lasted a few
minutes. The two fissures fed a lava flow going east. A sustained ash plume rose from the two fissures
and the summit craters of Bocca Nuova and North-East. The ash cloud drifted south-east and ash
fall-out was found in the area of Zafferana Etnea, a village located at the slopes of Mt. Etna. From 13:30
ash emission from the summit craters decreased, while the Strombolian activity from the fissures was
still active and persisted with violent and discontinuous emissions losing intensity during the night.
A high level of seismicity persisted during the whole eruptive event with earthquakes up to magnitude
4 M located in the Etna region [58,59].

The sustained volcanic column generated during the peak in activity was recorded by the
ground-based visible (VIS) camera of INGV-OE located in Catania (27 km from the summit craters),
Figure 1 Panel (b). The camera had been calibrated to estimate column height [60] and INGV-OE
reported a maximum height of 8.5 km asl at around 11:30. The camera estimates are in agreement with
the plume height computed by exploiting the well-established dark pixel procedure applied to the
SEVIRI measurements collected during the eruption [30]. Both estimates show a rapid decrease in
column height which reached 5 km asl at around 12:00.
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0 200 400
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Mediterranean Sea
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(a)
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Figure 1. Main box in Panel (a) shows the ash plume emitted during the 24 December 2018 eruption as
captured by the sensor MODIS on-board Aqua polar satellite. The overpass time is 12:00 UTC which is
coincident with the peak in Strombolian activity. The small upper-left box shows the location of Mt.
Etna, while a picture taken during the eruption is displayed in the small lower-left box (photo taken by
Boris Behncke). Panel (b) reports volcanic column height above sea level as estimated by the dark pixel
procedure applied to SEVIRI data (blue dots) and by the calibrated VIS camera (gray dots).

3. Numerical Models: Plume-Mom and Hysplit

To simulate the release and the atmospheric dispersal of ash particles we coupled the eruptive
column model PLUME-MoM [56] with the VATD model HYSPLIT [15].

PLUME-MoM is an integral plume model which simulates the rise of volcanic plumes in
steady-state conditions and in a 3-D coordinate system. The transport of the volcanic mixture
(solid particles and gas) is simulated by solving the set of transport equations for mass, momentum
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and energy, where the effect of the wind and the loss of particles during the rise are considered.
The treatment of the polydisperse nature of the pyroclastic mixture is done applying the method of
moments, which allows the treatment of particle aggregation and fragmentation. For this reason,
the set of equations commonly employed by volcanic plume integral models [18,61] is reformulated
accounting for the transport of the moments of each solid phase defining the volcanic mixture (more
details and the complete description of the model are in de’ Michieli Vitturi et al. [56]). ESPs and
atmospheric conditions at the vent location are needed to initialize PLUME-MoM. ESPs include column
height (from which mass eruption rate can be estimated) or mass eruption rate directly, Total Grain
Size Distribution (TGSD) of the solid particles, water vapor content and mixture temperature. In case
PLUME-MoM is initialized with column height instead of mass flow rate, an inversion procedure is
operated internally by the model to find the best-fit mass eruption rate by searching for the optimum
combination of vent diameter and initial mixture velocity [56]. When the inversion is done, initial
mixture temperature and water content are kept constant. TGSD at the vent is defined as a series
of bins each representing a specific diameter and containing a certain mass fraction (diameters are
expressed in the logarithmic phi-scale).

The VATD model that we used to simulate the atmospheric transport of volcanic ash is the HYbrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [15]. HYSPLIT has been developed
by the NOAA Air Resources Laboratory’s (ARL) and computes simple air parcel trajectories, as well
as complex transport, dispersion, chemical transformation and deposition simulations. HYSPLIT is
currently used as VATD model by Darwin, Wellington, Washington and Anchorage VAACs. HYSPLIT
calculates the dispersion of a pollutant by assuming either puff or particle dispersion. In the first
approach, pollutant advection/dispersion is modelled by following the mean trajectories of puffs
(packets of particles) which expand horizontally (and optionally vertically) due to turbulent mixing in
the atmosphere until their dimensions exceed the size of a few meteo grid points. At this point, puffs
are split into multiple smaller puffs, each with a proportional fraction of the original mass. Modelling
pollutant dispersion through puffs instead of single particles allows a reduction of the computational
times ensuring good model performance.

The results of PLUME-MoM in terms of mass fluxes of volcanic particles lost from the edges of the
column are used to initialize HYSPLIT. Such particles are both those lost from the column during plume
ascent and those injected into the atmosphere at the neutral buoyancy level. Routines written in Python
automatically produce the HYSPLIT input files from the results of PLUME-MoM. A single control file
allows the user to specify the input parameters needed by the two codes. In this file the user can set the
computational domain (dimension and grid size), the duration of the eruption and the Eruptive Source
Parameters (column height, Total Grain Size Distribution, water mass fraction, mixture temperature,
etc.) defining the investigated event. Moreover, HYSPLIT requires meteorological wind data which
can be both reanalysis or forecast data. Operationally, NOAA’s Air Resources Laboratory (ARL)
uses meteo data provided by the National Weather Service’s National Centers for Environmental
Prediction (NCEP). Such data can be downloaded for free and used to run the simulations [62].
PLUME-MoM takes into account atmospheric conditions to simulate the rise of a buoyant plume.
For this reason, wind velocity, temperature, pressure and humidity profiles at the vent location
are given as input to the model. To enforce the coupling between PLUME-MoM and the dispersal
model HYSPLIT, these parameters are extracted from the meteorological data file used to perform
the dispersal simulation through HYSPLIT. In the following, we refer to PLUME-MoM&HYSPLIT to
indicate the complete model used to perform the simulations. Tadini et al. [63] show the application of
PLUME-MoM&HYSPLIT for volcanic hazard assessment of Andean volcanoes.

Figure 2 shows an example of the main outcomes of a typical PLUME-MoM&HYSPLIT simulation
applied to the Mt. Etna case study. Plume height was set equal to 8300 m asl (i.e., 5000 m above the
vent) and we set an eruption duration of 2 h (from 11:30 to 13:30 on 24 December 2018). TGSD is
formed by 9 particle classes ranging from −3 to 5 φ with ∆φ = 1. Mixture temperature and water
mass fractions are 1300 K and 0.03, respectively. Panel (a) shows the 3D structure of the plume as
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computed by PLUME-MoM, while plume radius, plume velocity, mixture density and relative density
are displayed in Panel (b). Please note that we indicate with relative density the difference between the
density of the volcanic mixture and the density of the surrounding air. A negative value of the relative
density means that the density of the volcanic mixture is lower than the density of the atmosphere and
thus the plume is buoyant. Mass fractions of the particle classes lost from the column during plume
ascent are shown in Panel (c), where classes are numbered from CL1, corresponding to −3φ, to CL9,
5φ. As can be seen from the figure, the coarsest class (CL1) loses 35% of its initial mass during the
ascent, while finer classes are transported up to the neutral buoyancy height without losing significant
amount of mass. Finally, Panel (d) shows atmospheric ash columnar content (burden) in t km−2 as
computed by HYSPLIT at two different time slices.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

4

5

6

7

8

CL1

CL2

CL3

CL4

CL5

CL6

CL7

CL8

CL9

0 2 4
Radius (km)

4

6

8

10
H

e
ig

h
t

(k
m

)

0 50 100 150 200
Velocity (m/s)

4

6

8

10

H
e
ig

h
t

(k
m

)

1 2 3 4

Mixture density (kg/m3)

4

6

8

10

H
e
ig

h
t 

(k
m

)

0 1 2 3

Relative density (kg/m3)

4

6

8

10

H
e
ig

h
t 

(k
m

)

Particle mass loss fraction

H
e
ig

h
t 

(k
m

)

24 Dec 2018 13:30 UTC 24 Dec 2018 15:30 UTC

(a) (b)

(c) (d)

1.0x10-3

A
sh

 m
a
ss [t k

m
-2]

1.0x102

8.6x101

7.1x101

5.7x101

1.0x101

1.0x10-1

1.0x10-6

Figure 2. Results of a reference PLUME-MoM&HYSPLIT simulation. In Panels (a–c) the outcomes of
PLUME-MoM are displayed, while Panel (d) presents the results of the HYSPLIT simulation initialized
with the mass fluxes of particles computed by PLUME-MoM.

A complete simulation (i.e., column generation and ash dispersion) can be done in a few minutes
on a standard PC. For this reason, this tool has the potentiality for real-time applications, and it is
particularly suitable for EnKF applications where hundreds of simulations are performed.

4. Satellite Data

The volcanic ash retrievals were based on measurements supplied by the Spin Enhanced Visible
and Infrared Imager (SEVIRI) on board the MSG geostationary satellite [64]. SEVIRI has 12 spectral
channels going from Visible (VIS) to Thermal InfraRed (TIR), a nadir spatial resolution of 3 km and
a temporal resolution that ranges from 15 min (Earth full disk) to 5 min (rapid scan mode over
Europe and Northern Africa). The retrieval has been realized by exploiting the SEVIRI channels
centered at 11 and 12 µm and applying the well-established Volcanic Plume Retrieval (VPR) procedure,
formerly Volcanic Plume Removal [25,65,66]. The VPR procedure is based on the computation of the
volcanic ash cloud transmittances in the TIR channels and requires as input only the volcanic cloud
altitude. From those, aerosol optical depth and effective radius are obtained, and ash column density
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is derived by applying the simplified formula introduced by Wen and Rose [28]. For the investigated
eruption, we considered a cloud height of 8.5 km asl as estimated from the ground-based VIS camera
measurements [60]. The total error estimated for ash columnar content is 40% of the retrieved values.
This estimate is the result of sensitivity analysis performed on the retrieval procedure and takes into
account uncertainties in Earth surface characteristics (temperature and emissivity), plume geometry
(especially altitude and thickness), ash optical properties and interference of water vapor [67].

5. Data Assimilation: Algorithms And Tools

Kalman Filter (KF) is a sequential filter method. This means that the numerical model is integrated
forward in time and, whenever measurements are available, these are assimilated to produce a
new analyzed state with minimized errors with respect to previous model results and observations.
The analyzed state is then used to reinitialize the model before the integration continues. From its
first formulation [68], KF underwent a massive development both in mathematical formulations
and applications. One of the main innovations has been the formulation of the so-called Ensemble
Kalman Filters (EnKFs) [69,70] to treat large-scale numerical models. Indeed, classical KF requires high
resources of storage and computational time to handle and compute error statistics. EnKFs overcome
this limit by applying a Monte-Carlo method to forecast error statistics. The way in which EnKFs
compute error statistics is by using an ensemble of model realizations to represent the state estimate as
a mean state (i.e., ensemble mean) and a covariance matrix (i.e., ensemble covariance).

Several variants of the original EnKFs have been proposed over the recent years. Among them,
the ensemble square-root Kalman Filters (EnSRKFs) are one of the most popular developments [71].
EnSRKFs compute the covariance matrices using the ensemble perturbations as square-root of the
error covariance matrices. The advantage of this variant is that the assimilation is performed without
the need to perturb the observations as done in the original EnKF formulations [70,72].

According to EnSRKFs theory, the state of a system, such as ocean or atmosphere, is estimated
through a collection (ensemble) of m realizations of the system at time tk (x(α)k with α = 1, ..., m).
The state estimate is given by the ensemble mean x̄k:

x̄k =
1
m

m

∑
i=1

x(i)k , (1)

and by the ensemble covariance matrix Pk :

Pk =
1

m− 1
X
′
k(X

′
k)

T . (2)

In Equation (2), X
′
k is the matrix of ensemble perturbations X

′
k = Xk− X̄k, with Xk = [x(1)k , ..., x(m)

k ]

being the ensemble matrix and X̄k = [x̄k, ..., x̄k] is the collection of the ensemble mean. Please note that
x(m)

k and x̄k are column vectors, thus Xk and X̄k are matrices. From Equation (2), we can observe that
the square root of Pk is given by the matrix of ensemble perturbations X

′
k scaled by (m− 1)−0.5.

Observations at time tk are in the form of the vector yo
k of size p. The measurement operator Hk

links model state and observations as:

yo
k = Hk(x f

k ) + εk, (3)

with εk being the vector of observation errors which are assumed to be Gaussian and with covariance
matrix R. We assume the observations to be uncorrelated, thus R is a diagonal matrix.

EnSRKFs, and KF in general, consist of two steps. In the first step (forecast step), ensemble
members are advanced in time until observations are available (time tk). In the forecast step,
the statistics defining the forecast state are x̄ f

k and P f
k , given by Equations (1) and (2) respectively.

In the second step (analysis step), the filter is applied to provide a new analyzed ensemble whose
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statistics are x̄a
k and Pa

k , both at time tk. The analyzed ensemble represents the linear combination of
forecast state and observations minimizing overall uncertainty. This is the general idea behind data
assimilation which combines information with known error statistics from different sources to reduce
overall uncertainties.

For simplicity, in the following we omit the time index k, remembering that the assimilation cycle
is performed at time tk.

For the present application, we used the Ensemble Transform Kalman Filter (ETKF) [73]. For the
description of the algorithm we follow the notation of Nerger et al. [74]. When observations are
available, the forecast state, whose statistics are x̄ f

k and P f
k , is transformed into the analyzed state

through the transformation matrix A defined by:

A−1 = γ−1(m− 1)I + (HX
′ f T R−1HX

′ f ), (4)

where the forgetting factor γ has the role to increase the ensemble spread avoiding filter collapse.
The analysis state covariance matrix Pa and the state estimate x̄a are computed from the

transformation matrix as:
Pa = X

′ f A(X
′ f )T , (5)

x̄a = x̄ f + X
′ f w̄ETKF, (6)

with w̄ETKF being the weight vector:

w̄ETKF = A(HX
′ f )T R−1(yo − Hx̄ f ), (7)

To compute the square root of the analysis state covariance matrix, X
′ f is transformed as:

X
′a = X

′ f WETKF. (8)

The weight WETKF is computed as:

WETKF =
√

m− 1Cλ, (9)

with C as the square root of A (CCT = A) and λ as an arbitrary orthogonal matrix of size mxm or
the identity.

Equations (6) and (8) can be combined into a single transformation of X
′ f as:

Xa = X̄ f + X
′ f (W̄ETKF + WETKF), (10)

with W̄ETKF = [w̄ETKF, ..., w̄ETKF]. From Equation (10), the analysis ensemble Xa can be computed
directly without updating the state estimate by Equation (6).

In the following, we applied the ETKF in the localized version (Local Ensemble Transform Kalman
Filter, LETKF). Local ETKF solves the same equations of the global filter, but it works on local domains
and on localized observations [75]. Each local domain is a portion of the full model grid on which the
filter is applied. In our case, each pixel of the computational grid represents a local domain. Only the
observations lying within a fixed influence radius from the local domain are considered. At the end of
the assimilation cycle, local analysis states are merged to form the global state vector and ensemble array.
More details on local filters and their implementation can be found in Hunt et al. [55], Nerger et al. [76].

The tool that we adopted to perform the assimilation cycles is the Parallel Data Assimilation
Framework (PDAF) [57]. PDAF is a software environment for ensemble DA developed and maintained
at the Computing Center of the Alfred Wegener Institute. We followed the off-line implementation
approach, which means that the numerical model doing the ensemble integration is executed separately
from the assimilation program. When observations are available, model integration is stopped,
and results are passed to PDAF which produces the analyzed ensemble. Each member of the analyzed
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ensemble is then used to advance the numerical integration stopped before the assimilation procedure.
With the off-line implementation, model core is not modified, and files exchanged between the model
and PDAF is done through routines which come with the PDAF package. PDAF offers a series of
DA filters already implemented and the LETKF, the one we used for the present work, is one of the
available options.

6. Data Assimilation Applied to Plume-Mom& HYSPLIT

We developed a DA procedure which uses SEVIRI observations of volcanic ash to correct the
predictions (forecast state) produced by PLUME-MoM&HYSPLIT. In this application, the state is
defined by the values of ash load (kg) on a pre-defined computational grid. Observations are
assimilated to produce a new ash state (analyzed state) with minimized errors with respect to the
forecast state and the observations. The analyzed state is used to initialize new model simulations
which are integrated forward in time until new observations are available. At this point, a new
assimilation cycle is performed (Figure 3).

Forecast state
Ensemble statistics:  

Assimilation
PDAF-LETKF

The measurement operator (H) converts the 
3D forecast state into a 2D state

Analyzed state 
Ensemble statistics: 

Simulations are re-initialized from the analyzed state at time tk 

If eruption is still ongoing, m PLUME-MoM&HYSPLIT new simulations are initialized 

at time tk to simulate the continous release of ash from the volcanic vent

f  : forecast state
a :analyzed state
k : time index

Satellite observations
Observation statistics: 

Simulations are integrated forward in time

When observations are available (tk),
model integration is stopped

Numerical model initialization at t0
Ensemble of m PLUME-MoM&HYSPLIT simulations 

initialized at t0 and integrated forward in time until 

the first observation is available (t1).

Figure 3. Workflow of the DA procedure developed for the present application.

6.1. Ensemble Creation

The creation of the ensemble members is of fundamental importance for the success of the
assimilation cycle. Indeed, the statistical moments describing the system (mean and covariance) are
computed from the ensemble of model realizations. The sampling error done in representing the
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system with a finite number of model realizations decreases proportional to 1/
√

m, where m is the
number of ensemble members. Thus, ensemble with enough members should be used to accurately
reproduce the investigated system.

The first way that we investigate to generate the ensemble is to perform m
PLUME-MoM&HYSPLIT simulations each initialized and carried forward with a perturbed
version of a reference wind data. To generate the perturbed wind, a perturbation on horizontal
wind direction and intensity is added to all the wind vectors forming the meteorological grid.
In particular, the perturbations on wind direction are created from N rotation angles θ corresponding
to N percentiles of a Gaussian distribution with µθ and σθ as mean value and standard deviation.
The same is done to define the perturbations on wind intensity. In this case, a Gaussian distribution of
mean and standard deviation µint and σint is defined and N coefficients are selected by considering N
percentiles of the distribution. Each coefficient is a multiplication factor used to increase or decrease
the intensity of the wind vectors. By combining the perturbations on wind direction and intensity,
N2 perturbed wind-fields are created (the original unperturbed wind data is included in the N2

winds). After each assimilation cycle, ensemble member integration is carried forward by associating
at each member a wind-field randomly sampled from the N2 winds. It is important to remark that we
do not force each ensemble member to have the same wind perturbation at different cycles.

We also tested a second way to generate the initial ensemble which is based on defining different
eruptive scenarios each characterized by a different column height. Indeed, ash dispersal patterns as
computed by VATD models strongly depend on the height at which ash particles are injected into the
atmosphere at the volcanic vent location. For well-monitored volcanoes, as Mt. Etna is, estimates of
column height can be supplied in real time by ground- and satellite-based measurements. However,
the majority of sub-aerial volcanic systems is not routinely monitored and, in case of an eruption,
estimates of column height are highly uncertain. For this reason, we tested the possibility to create the
members of the ensemble from a set of hypothetical column heights spanning from 4300 to 18,300 m
asl (i.e., 1000 to 15,000 m above the vent).

Uncertainties on ESPs other than column height are not considered in this work for the creation
of the ensemble members. This means that, for example, initial Total Grain Size Distribution and water
mass fraction are the same for all the ensemble members.

6.2. Observations Preprocessing

SEVIRI observations used in the assimilation cycles are re-gridded according to the computational
grid used by HYSPLIT. Moreover, original ash columnar content (t km−2) is converted into ash load
(kg) for consistency with the results of HYSPLIT. To define the observation covariance matrix (R),
we assume that each pixel forming the observed ash cloud has its own error which is 40% of the ash
mass contained in the pixel. This value is set according to the estimates done by Corradini et al. [67]
about the uncertainty on ash columnar content from satellite retrievals. Satellite retrieved ash mass
loading are 2D data, while HYSPLIT produces a 3D ash loading map. Thus, a measurement operator
(H) is defined to compare observations and model results. H integrates in the vertical direction the
modelled ash profile resulting in a total ash loading contained in each pixel. This quantity can be
directly compared with the observed ash loading coming from SEVIRI observations.

6.3. Data Assimilation Cycle

When observations are available, the m numerical simulations forming the forecast ensemble are
stopped and the corresponding state vectors enter as input in PDAF. Additional input data are the
observation vector and the observation covariance matrix. We modified the interface routines of PDAF
to adapt the assimilation cycle to our case study, while no modifications to the core routines of PDAF
have been made. The core routines contain the assimilation algorithms that we used as a sort of black
box. The filter that we used for our case study is the Local Ensemble Transform Kalman Filter (LETKF).
We also tested global filters, but we found better performance with the localized ones. The influence
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radius for the observations to be considered was set equal to 5 pixels (about 50 km) and we set the
forgetting factor equal to 0.8. The result of each DA cycle is a new analyzed ensemble whose members
are used to continue forward with the simulations stopped before the assimilation step.

6.4. Simulation Settings

To test our assimilation procedure, we performed different experiments by varying the observation
sampling time interval (∆tobs), the number of ensemble members (m), and the way in which the initial
ensemble is created.

The set of experiments that we performed is reported in Table 1.

Table 1. Set of experiments performed to test the assimilation procedure. σθ is the standard deviation of
the perturbation in wind direction that we imposed to create the perturbed wind-fields, while σint is the
standard deviation of the perturbation in horizontal wind intensity. For all the experiments, µθ = 0◦

and µint = 1. N is the number of percentiles that we considered from each Gaussian distribution
(direction and intensity) and nwind indicates the total number of perturbed wind-fields used to create
the ensemble members (nwind = N2). Hcol is the number of hypothetical column heights from which
ensemble members are created. m is the product of nwind by Hcol and indicates the number of members
forming the ensemble. ∆tobs specifies the sampling time interval for the satellite observations to be
considered in the assimilation procedure.

Experiment σθ σint N nwind Hcol m ∆tobs

EXP1 15◦ 0.5 7 49 1 49 1 h
EXP2 10◦ 0.5 7 49 1 49 1 h
EXP3 20◦ 0.5 7 49 1 49 1 h
EXP4 15◦ 0.5 7 49 1 49 30 min
EXP5 15◦ 0.5 7 49 1 49 2 h
EXP6 15◦ 0.5 3 9 5 45 1 h

The duration of the paroxysmal phase of the eruption is 1 h for each experiment, from 11:30 to
12:30 on 24 December 2018. The advection/dispersion of the ash cloud is simulated until 18:30 on
the same day. INGV-OE bulletins and satellite observations reveal that ash emission persisted after
the end of the paroxysmal phase. Thus, we simulated a continuous ash emission (from 12:30 to 18:30)
setting a plume height of 4300 m asl (i.e., 1000 m above the vent).

The numerical wind-field used to test the assimilation procedure is produced by the Global
Data Assimilation System (GDAS) which is managed by the National Weather Service’s National
Centers for Environmental Prediction (NCEP). We used the 3 hourly, global, 1◦ latitude longitude
dataset on pressure surfaces [77]. This data is the reference wind-field from which the perturbed winds
are generated.

The ensemble members of EXP1 were created by perturbing the reference wind-field in both
direction and intensity. In particular, we defined two Gaussian distributions, one for wind direction
and one for wind intensity. The distribution for wind direction has µθ = 0◦ and σθ = 15◦, while the
distribution for wind intensity has µint = 1 m s−1 and σint = 0.5 m s−1 . We extracted 7 values from each
curve by using the following percentiles: 16th, 25th, 40th, 50th, 60th, 75th, 84th. This operation resulted
in 7 rotation angles equal to: −15◦, −10.1◦, −3.8◦, 0◦, 3.8◦, 10.1◦, 15◦ and 7 intensity coefficients equal
to: 0.5, 0.66, 0.87, 1, 1.12, 1.33, 1.5. Thus, a total number of 49 perturbed wind-fields was created by
combining perturbations on wind direction and intensity. Column height was set equal to 7750 m asl
from 11:30 to 11:45, 7050 m asl from 11:45 to 12:00, 5500 m asl from 12:00 to 12:15 and 5350 m asl from
12:15 to 12:30. These values were taken from the results of the dark pixel procedure applied to SEVIRI
measurements done during the paroxysmal phase of the eruption (see Figure 1). We highlight that
for this experiment, all the ensemble members were initialized with the same column height, which
varies during the eruption. Thus, the parameter Hcol in Table 1 is equal to 1.
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The TGSD used to initialize PLUME-MoM has mean value of 2 φ and std of 2.5 φ. The mean was
set according to the TGSD reported in Scollo et al. [78] for the 2001 Mt. Etna flank eruption, while we
increased the standard deviation to include in the distribution also the fine ash (i.e., particles with
diameter up to 0.5 µm). TGSD was discretized in classes from −5 φ to 11 φ with ∆φ = 2. SEVIRI
retrievals detect the very fine ash only (particles with diameter from 0.5 to 10 µm). For this reason,
we assimilated and show the results only for classes 7, 9 and 11 φ, while the remaining classes do not
enter in the procedure.

In EXP1 we assimilated SEVIRI observations every hour from 12:30 to 18:30. EXP2 and EXP3 differ
from EXP1 for the standard deviation of the Gaussian distribution used for altering wind direction
(σθ = 10◦ for EXP2 and σθ = 20◦ for EXP3). EXP4 and EXP5 present the same simulation settings of EXP1,
but observations are assimilated every 30 min and 2 h respectively. Finally, in EXP6 ensemble members
were created by varying both the eruptive scenario and the wind-field. In particular, we considered 5
possible column heights equal to 4300, 7300, 11,300, 15,300, 18,300 m asl (i.e., 1000, 4000, 8000, 12,000,
15,000 m above the vent). Moreover, we created 9 perturbed wind-fields from the set of rotation angles
and intensity coefficients corresponding to the percentiles 16th, 50th and 84th. This results in the
definition of an ensemble formed by 45 members (5 eruptive scenarios and 9 perturbed wind-fields).

The remaining input parameters were kept constant for all the experiments and are summarized in
Table 2. These parameters define the properties of the eruptive mixture used to initialize PLUME-MoM
and the setting parameters of the computational grid on which HYSPLIT simulations are performed.
For the present application, particle aggregation was not considered and HYSPLIT simulations were
done using the puff approach. However, in case of Mt. Etna eruptions, ash aggregation is not
dominant [79]. It is worth noting that the same TGSD was used as input for all the experiments.
Experiments from 1 to 5 aimed at testing the data assimilation procedure for uncertainties on
meteorological conditions and for different observation sampling intervals. Since ESPs, including
TGSD, are kept constant for all the experiments, the three particle classes which are assimilated
carry the same fraction of the total ash mass loading for all the experiments (from 1 to 5). On the
contrary, EXP6 was designed to test the effects that unknown ESPs (in this case column height) have
on the assimilation results. A variation in column height determines a variation in mass eruption rate,
and thus in the ash mass loading carried by the assimilated particle classes. Previous studies show
that plume height is weakly dependent on the initial TGSD [80]. The reason is that the large amount
of air entrained in the volcanic column reduces the contributions of the solid fraction to the overall
dynamics [56,81]. Moreover, we are not interested in reproducing the deposit, which is more strongly
related to initial TGSD, but we only look at the dispersal patterns of the fine ash. For these reasons,
the choice that we made on initial TGSD determines the fraction of the total ash loading, which is
assimilated only without major repercussions on the dynamics of the volcanic column.

We defined a computational domain formed by nx × ny cells (longitude and latitude directions)
of 0.1◦ by 0.1◦ (1◦ is about 100 km) and 7 vertical levels equal to 3300, 4000, 5000, 6000, 7000, 8000,
12,000 (the last level is equal to 20,000 m for EXP6).

For each experiment, the forecast state is formed by an ensemble of m model realizations each being
the result of a PLUME-MoM&HYSPLIT simulation (Equation (1)). Model realizations are in the form
of state vectors containing the variables to be assimilated, in our case the atmospheric ash load (kg)
associated with each particle class, atmospheric level and computational cell. For the present case study,
the dimension of the state vectors is 103761. This number is the product of nx (equal to 81), ny (equal to
61), the number of atmospheric levels (equal to 7) and the number of particle classes (equal to 3).



Atmosphere 2020, 11, 359 13 of 31

Table 2. Input parameters used for the PLUME-MoM&HYSPLIT simulations. Tmix and wv are the
temperature and the water vapor mass fraction of the eruptive mixture, while Cp is the specific heat of
the solid particles. Particles density was set according to Bonadonna and Phillips [82], with a linearly
increasing density from ρ2 to ρ1 for particles with diameter in the range 2 mm - 8 µm, constant density
ρ2 for particles with diameter > 2 mm and constant density ρ1 for particles with diameter < 8 µm. SF is
particles shape factor. ∆lat and ∆lon is the resolution of the computational grid. Mt. Etna latitude and
longitude coordinates are ventlat and ventlon respectively, while Hvent is Mt. Etna elevation. numpar
indicates the number of puffs released per cycle, while maxpar expresses the maximum number of
puffs carried by the simulation. Finally, delt indicates HYSPLIT integration step in minutes.

PLUME-MoM&HYSPLIT

Tmix 1300 K ∆lat 0.1◦

wv 0.03 % ∆lon 0.1◦

Cp 1610 JK−1kg−1 ventlat 37.73◦

ρ1 2600 kgm−3 ventlon 15.00◦

ρ2 1000 kgm−3 Hvent 3300 m
SF 0.6 numpar 50000

maxpar 1000000
delt 5 min

6.5. Evaluation Metrics

For this work, we used several metrics to evaluate the performance of the numerical model
(PLUME-MoM&HYSPLIT) and of the DA algorithm. Evaluation metrics for model forecast include the
rank histogram [83], the Rank Probability Score [84], the Jaccard similarity coefficient, model precision
and model sensitivity [85]. Such metrics were calculated at each assimilation cycle and were used to
compare the numerically predicted ash state (forecast state) with the observed state. Please note that
the satellite data were re-gridded to match the computational grid used for the numerical simulations.

The rank histogram, also known as Talagrand diagram [83], is a tool for assessing the reliability of
ensemble forecasts. It is used to check whenever the ensemble spread is consistent with the assumption
that observations statistically belong to the probability distributions of the forecast ensembles. Thus,
for a good forecast, observations are indistinguishable from model forecasts and they can be considered
to be members of the forecast distributions. The procedure that we adopted to construct the rank
histogram is the following: at each grid point of the computational domain, we ranked the m ensemble
members from the lowest to the highest producing m + 1 bins (the two extremes are included and
they are rank 1 and rank m + 1). We identified which bin the observation falls into and we placed the
observation in the appropriate bin. We tallied over all the grid points and we created a histogram (the
Talagrand diagram). In case two or more ensemble members and the observation have the same value
(most commonly 0), we randomly selected which bin receives the count. A flat Talagrand diagram
means that observations are indistinguishable from any other ensemble member meaning that the
ensemble spread correctly represents the uncertainty of the observations. An U-shaped diagram reflects
a poorly spread ensemble, while a Dome-shaped one means that the spread of the ensemble is too large
with respect to observation uncertainties. Indeed, in the first case (U-shaped), observations fall too
often outside the extremes of the ensemble, while in the second case (Dome-shaped) observations fall
too often near the center of the ensemble. An asymmetric histogram means that the ensemble contains
bias. It is worth noticing that a flat histogram is not a necessary condition for a reliable ensemble, but it
only means that the probability distribution of the observations is well represented by the ensemble
spread [83].

While the rank histogram gives information on the ensemble for the whole domain, we also
computed the Rank Probability Score (RPS) to analyze the ensemble results on the single observation
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points [84]. RPS measures the quadratic distance between the forecast and the observed probability
distributions computed for a specific point of the domain:

RPS =
1

m− 1

m

∑
i=1

(CDFf c,i − CDFobs,i)
2, (11)

where m is the number of ensemble members, CDFf c,i is the i-th value of the forecast Cumulative
Density Function (CDF), while CDFobs,i is the i-th value of the observed CDF. The CDFs for the forecasts
were computed empirically from the ensemble values, while the CDFs for the observations are step
functions centered at the observed values. As it is a quadratic operator, RPS penalizes larger deviations
from the observed probability much stronger than smaller ones. RPS ranges from 0, in case of a perfect
forecast, to 1.

Model performance has also been evaluated through three indices named Jaccard similarity
coefficient (Rj), also called Threat Score or Critical Success Index [86], model precision (Rmp), also called
Positive Predictive Value, and model sensitivity (Rms), also called Hit Rate or True Positive Rate. For the
description of these indices we used the notation of Charbonnier et al. [85]. To calculate Rj, Rmp and
Rms, we considered the number of False Positives, False Negatives, True Positives, and True Negatives
resulting from the comparison of the forecast state (simulation results) with the observed state. In our
case, pixels where ash is both numerically predicted and observed are denoted as True Positives (TP),
while pixels where ash presence is simulated, but not observed, are called False Positives (FP). False
Negative (FN) indicates that a pixel is numerically ash-free, but the presence of volcanic ash has been
detected from space. Finally, ash-free pixels resulting from both model simulations and observations
are denoted as True Negatives (TN).

Next, the Jaccard similarity coefficient (Rj) is computed as:

Rj =
TP

TP + FP + FN
× 100. (12)

where Rj expresses the ratio between the intersection (TP) and the union (TP+FP+FN) of the number
of pixels where ash is both simulated and observed. This coefficient allows us to quantify the similarity
between the simulated and the observed plume and should be 100 in the ideal case of a complete
overlapping between the two.

Model precision Rmp and model sensitivity Rms are evaluated as:

Rmp =
TP

TP + FP
× 100, (13)

Rms =
TP

TP + FN
× 100. (14)

High values of Rmp indicate that the forecast plume reproduces well the observed one. However,
some pixels where ash was detected from space could not be included in the simulation results. Model
sensitivity (Rms) gives the percentage of the observed ash cloud that the simulation reproduces, with no
penalty for FP. This means that there could be FP pixels where ash is simulated but not observed.
Values of Rms close to 100 guarantee that the number of False Negative pixels is close to 0. Since FN
pixels falsely report no ash where ash in fact exists, they are particularly dangerous for aviation safety.
Thus, model forecast should guarantee a low number of FN pixels.

Filter performance was evaluated by the root mean square error (RMSE):

RMSE =

√√√√ 1
n

n

∑
i=1

(
1

m− 1

m

∑
j=1

(xi,j − x̄i)2

)
, (15)



Atmosphere 2020, 11, 359 15 of 31

where n is the dimension of the state vector, m is the number of ensemble members, xi,j is the j-th
member of i-th state variable and x̄i is the mean value of the i-th state variable. RMSE is an indicator
of the ensemble spread around the mean state. High values of RMSE mean that the considered state
(forecast or analyzed) is highly uncertain with the ensemble members spreading a lot around the mean
state. The goal of the assimilation cycle is to produce a new state with a reduced uncertainty with
respect to the observations and the forecast state. The RMSE of the observed state is computed as:

RMSE =

√√√√ 1
p

p

∑
i=1

ε2
i , (16)

where p is the dimension of the observation vector and εi is the observation error. Finally, as the
assimilation cycles are performed, we tracked the total atmospheric ash mass loading of the observed,
forecast and analyzed states.

7. Results

In this section, the results of the assimilation experiments are presented and discussed. Evaluation
metrics (Rj, Rmp and Rms and RMSE) are reported for all the experiments, while the complete set of
figures showing the observed, forecast and analyzed ash clouds is presented for EXP1 only. Figures for
the remaining experiments can be found in the supplementary material (Figures S1–S25).

We first present the results of simulations done without DA, Figure 4. Only the portion of the cloud
formed by the particle classes considered for the DA is displayed in columns named “Deterministic
run” and “Ensemble no assimilation” (i.e., classes 7, 9, and 11 φ). The deterministic simulation was
done using the reference wind-field and the model settings of Table 2. The members of the ensemble
simulation were created using the setting parameters of EXP1, see Table 1, while parameters in Table 2
were used to initialize the PLUME-MoM&HYSPLIT simulations. Ensemble integration was stopped
at observation time slices and re-initialized from the ensemble members without performing the
assimilation. As for the DA experiments, the wind-field used by each member was sequentially
changed at each re-initialization by randomly sampling from the 49 perturbed wind-fields. It emerges
that simulations performed through ensembles appear to produce results more similar to the observed
state even when DA is not performed. Table 3 shows the evaluation metrics Rj, Rmp and Rms computed
for the deterministic and the ensemble simulations. It is clear that the ensemble simulation improves
the quality of the forecast, with values of Rms close to 100%, while the deterministic run shows values
of ~25% for the different time slices.

Thus, as previously shown by Dare et al. [87], Zidikheri et al. [88], ensemble prediction is
encouraged with respect to deterministic forecasting.

The results of the assimilation procedure are shown from Figures 5–8. At each assimilation cycle,
three ash states are presented. From the left to the right, these are: the ash cloud as seen from space
(Observations), the prediction done by the model (Forecast state) and the result of the assimilation
procedure (Analyzed state). The statistics describing each ash state are the mean value and the standard
deviation calculated for the ash columnar content of each pixel. For the forecast and analyzed states,
these quantities are computed from the ensemble members by applying Equations (1) and (2) (standard
deviation is the square root of the covariance). The mean state is displayed in Figures 5 and 6, while the
standard deviation in Figures 7 and 8. For the forecast and the analyzed states, ash load (kg) contained
in each pixel was integrated over the particle classes and the atmospheric levels to produce 2D maps.
Then, ash load was converted into ash columnar content (t km−2) for comparison with the SEVIRI
observations. A concentration cut-off of 0.01 t km−2 was applied to the plot of observations, forecast
and analyzed states. Despite the concentration cut-off, 99% of the initial ash loading is still present
into the regions plotted in the figures for the measured, forecast and analyzed ash states. It is worth
noting that the simulated clouds are bigger than the observed ones. This result is mainly due to the
way in which the ensemble was created, which is through perturbations of the wind-field. Changing
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the way in which the ensemble is generated (e.g., through perturbations of ESPs such as column
height or TGSD) or varying the perturbation coefficients (i.e., µθ , σθ , µint, σint) would affect the size
and the shape of the simulated cloud. These effects can be seen in the experiments reported in the
supplementary material (Figures S1–S25).
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Figure 4. Comparison between the observed ash cloud and the results of PLUME-MoM&HYSPLIT
simulations done without DA. Panels (a,d,g) show the cloud as seen from space, while Panels (b,e,h)
report the results of a deterministic simulation initialized with the input parameters of Table 2 and
performed using the reference wind-field. Panels (c,f,i) present the outcomes of an ensemble simulation
performed using the setting of EXP1.

From Figures 5 and 6 it emerges that the analyzed state produced by the DA cycle improves the
numerical ash forecasting by taking into account the observations. This is evident starting from the
first assimilation cycle (12:30), where the peak in ash column amount of the forecast state was modified
considering the observed state. The ensemble members forming the analyzed state at each assimilation
cycle were used to reinitialize the dispersal simulation to provide a new forecast.

The ability of the filter in producing a new analyzed state with minimized errors is evident
when looking at the standard deviations computed for the observed, forecast and analyzed states
(Figures 7 and 8).
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Figure 5. Mean states resulting from EXP1. Panels (a,d,g,j) show the ash cloud as detected from
space (Observations). Panels (b,e,h,k) illustrate the ash cloud as predicted by the numerical model
PLUME-MoM&HYSPLIT (Forecast state), while Panels (c,f,i,l) present the results of the assimilation
cycles (Analyzed state). A cut-off of 0.01 t km−2 was applied to original ash column density. The edges
of the original ash cloud (both forecast and analyzed) are indicated by the black dotted lines. In this
figure are displayed the assimilation cycles performed at 12:30, 13:30, 14:30 and 15:30.
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Figure 6. Mean states resulting from EXP1. Panels (a,d,g) show the ash cloud as detected from
space (Observations). Panels (b,e,h) illustrate the ash cloud as predicted by the numerical model
PLUME-MoM&HYSPLIT (Forecast state), while Panels (c,f,i) present the results of the assimilation
cycles (Analyzed state). A cut-off of 0.01 t km−2 was applied to original ash column density. The edges
of the original ash cloud (both forecast and analyzed) are indicated by the black dotted lines. In this
figure are displayed the assimilation cycles performed at 16:30, 17:30 and 18:30.
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Figure 7. Standard deviations of ash columnar content resulting from EXP1. Figure layout is the same
as Figure 5, while color bar scale has an upper limit of 2.5 t km−2 instead of 5 t km−2 as in Figure 5.
Panels (a,d,g,j) show the observation error (Observations: std). Panels (b,e,h,k) illustrate the standard
deviation of ash columnar content as predicted by the numerical model PLUME-MoM&HYSPLIT
(Forecast state: std), while Panels (c,f,i,l) present the standard deviation resulting from of the
assimilation cycles (Analyzed state: std). Results of assimilation cycles performed at 12:30, 13:30,
14:30 and 15:30 are displayed.
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Figure 8. Same as Figure 7 but for the assimilation cycles performed at 16:30, 17:30 and 18:30. Panels
(a,d,g) show the observation error (Observations). Panels (b,e,h) illustrate the standard deviation of ash
columnar content as predicted by the numerical model PLUME-MoM&HYSPLIT (Forecast state), while
Panels (c,f,i) present the standard deviation resulting from the assimilation cycles (Analyzed state).

Table 3. Indices Rj, Rmp and Rms calculated for the deterministic and the ensemble simulations
performed without DA.

Index 13:30 15:30 18:30

Deterministic
Rj 28.57 23.75 22.07

Rmp 95.23 88.37 79.52

Rms 28.99 24.52 23.40

Ensemble
Rj 56.30 51.96 49.46

Rmp 57.26 53.67 50.28

Rms 97.10 94.19 96.80

Evaluation metrics were computed to check the performance of the numerical model in producing
the forecast states used in the assimilation procedure. Panels from (a) to (g) of Figure 9 show the rank
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histograms computed for the different time slices (i.e., 12:30, 13:30, 14:30, 15:30, 16:30, 17:30 and 18:30),
while Panel (h) presents the cumulative histogram obtained by summing histograms from (a) to (g).
Each histogram was constructed by considering all the points of the computational domain and by
applying a concentration cut-off of 0.01 t km−2, to be consistent with the procedure previously applied.
This means that ensemble values less than 0.01 t km−2 were replaced with zero. Rank histograms
appear flat, without peaks at the extremes (U-shaped) or at the central bins (Dome-shaped). This means
that the ensemble spread is appropriate in reproducing the actual model uncertainty, with the higher
bias for times 16:30 and 17:30. This result can be partially due to the fact that in most of the pixels of
the domain there is a zero concentration for both the ensemble members and the observation. For this
reason, to better analyze the local performance of the data assimilation algorithm, we also computed
the Rank Probability Score (RPS) for each pixel presenting an observation value different from zero.
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Figure 9. Panels from (a–g) show the rank histograms computed for the different time slices and
considering all the points of the computational domain. The 49 ensemble members produce 50 bins
(possible observation ranks). The cumulative histogram (panel (h)) was constructed by summing
histograms of panels from (a–g).

RPS allows us to check the accuracy of the ensemble prediction locally (i.e., at each observation
point), see Figure 10. The magenta pixels in Figure 10 indicate the observations falling outside the
range of values predicted by the model. About 95% of the observed values are within the predicted
values and RPSs range from 0 to 0.4 (0 means perfect prediction).

Overall, the rank histograms and the RPSs indicate that our ensembles are reliable in reproducing
the true variability of the observations and thus they can be used for the DA procedure.
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12:30 UTC 13:30 UTC 14:30 UTC

16:30 UTC
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(f) (g)(e) 17:30 UTC 18:30 UTC

15:30 UTC

0 0.2 0.4 0.6 0.8 1

Rank Probability Score
(RPS)

Figure 10. Panels from (a–g) show the Rank Probability Score (RPS) computed for the different time
slices: 12:30, 13:30, 14:30, 15:30, 16:30, 17:30 and 18:30. RPS was evaluated for the pixels presenting an
observed value different from zero. The magenta pixels indicate the observations falling outside the
range of the m ensemble values computed for the specific pixel. Dotted lines show the numerically
predicted ash cloud.

At each assimilation time, True Positive, False Positive and False Negative areas were computed
from the observed and the forecast clouds (Figure 11). The number of pixels forming each region
was used to calculate indices Rj, Rmp and Rms by applying Equations (12)–(14). As previously stated,
high values of Rms are necessary to ensure reliable assimilation results. We found that the creation of
the ensemble members through perturbed versions of a reference wind-field allows us to obtain high
values of Rms. Indeed, excluding the first assimilation cycle (12:30), Rms computed for the following
cycles is close to 100% for all the experiments, see Table 4.

forecast observed

TPFP FN

TN(h)

12:30 UTC 13:30 UTC 14:30 UTC 15:30 UTC

16:30 UTC 17:30 UTC 18:30 UTC

(b) (c) (d)

(e) (f) (g)

(a)

Figure 11. Each panel from (a–g) shows the True Positive (TP), False Positive (FP) and False Negative
(FN) regions computed for each time slice. The number of pixels forming each region is used to
compute indices Rj, Rmp and Rms. Panel (h) shows the definition of such regions, with the blue area
representing the forecast cloud, the magenta area the observed cloud and yellow area the common area
between the forecast and the observed cloud.

The performance of the filter has been evaluated through the RMSEs computed by applying
Equation (15) for the forecast and the analyzed states and Equation (16) for the observations.
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Figure 12 shows the RMSEs evaluated for the 6 experiments. It can be noticed that the RMSEs of
the forecast and the analyzed states decrease as the assimilation cycles are performed. This trend is
shared by all the experiments and indicates that the assimilation progressively reduces the uncertainty
of the simulated ash clouds, both forecast and analyzed. Moreover, at each assimilation cycle,
the analyzed states have a RMSE lower than the forecast states. This means that the assimilation
procedure results in a new state where the uncertainty on ash amount and spatial distribution is
minimized with respect to the predicted state.

Results of EXP1, EXP2 and EXP3 (Panels (a), (b) and (c) in Figure 12) are similar in terms of
RMSE, while a variation can be observed for EXP4, EXP5 and EXP6 (Panels (d), (e) and (f) in Figure 12).
This means that similar filter performance is obtained varying the angle used to perturb the wind-field
(15◦ for EXP1, 10◦ for EXP2 and 20◦ for EXP3).

On the contrary, the observation sampling time (1 h for EXP1, EXP2 and EXP3; 30 min for
EXP4 and 2 h for EXP5) plays a more incisive role in filter performance. Indeed, short observation
sampling times (30 min of EXP4) force the convergence of the analyzed state toward the forecast state.
This is because, after each model re-initialization, the advection/diffusion mechanisms acting on the
puffs forming the cloud have a limited time window to act before a new assimilation is done. Thus,
the forecast state at time tk+1 remain similar to the analyzed state at time tk and so their RMSEs.

Table 4. Indices Rj, Rmp and Rms calculated for each experiment and assimilation time. RMSEana (t)
is the root mean square error of the analyzed states. A decrease in RMSEana can be observed for all
the experiments.

EXP Index 12:30 13:30 14:30 15:30 16:30 17:30 18:30

EXP1
Rj 50.88 50.00 53.01 49.67 50.30 53.38 52.84

Rmp 67.44 50.75 53.57 50.00 51.30 53.50 53.14
Rms 67.44 97.10 98.36 98.71 100.00 99.59 98.94

RMSEana 3.732 2.142 1.456 1.074 0.857 0.727 0.674

EXP2
Rj 53.06 50.89 58.03 55.15 56.60 57.65 57.00

Rmp 81.25 57.00 61.20 56.18 57.10 58.35 58.08
Rms 60.46 82.60 91.80 96.77 98.47 97.97 96.80

RMSEana 3.611 2.209 1.492 1.120 0.923 0.796 0.727

EXP3
Rj 55.93 44.74 48.59 44.41 46.00 61.41 48.53

Rmp 67.35 45.03 48.79 44.41 46.00 63.41 48.61
Rms 76.74 98.55 99.18 100.00 100.00 95.12 99.64

RMSEana 3.667 2.000 1.343 1.003 0.802 0.667 0.610

EXP4
Rj 50.88 54.76 57.34 55.75 59.57 62.30 63.64

Rmp 67.44 54.76 57.62 55.75 59.57 62.79 65.00
Rms 67.44 100.00 99.18 100.00 100.00 98.78 96.80

RMSEana 3.723 1.178 0.774 0.609 0.522 0.476 0.458

EXP5
Rj 50.88 45.25 38.73 39.69

Rmp 67.44 45.77 38.73 39.74
Rms 67.44 97.54 100.00 99.64

RMSEana 3.728 2.513 1.495 1.063

EXP6
Rj 37.62 24.03 37.15 30.45 32.13 35.92 46.15

Rmp 39.58 24.11 37.38 30.45 32.13 35.98 46.62
Rms 88.37 98.55 98.36 100.00 100.00 99.59 97.87

RMSEana 75.456 12.531 5.157 2.682 1.722 1.273 1.059
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RMSEs of the observations are independent from the sampling time interval and, for this case
study, are always higher than the RMSEs of the forecast states. For this reason, the forecast states have
a higher influence on the assimilated states than the observations. From Figure 12 it can be seen that
long observation sampling times (2 h for EXP5) allow the advection/diffusion mechanisms to increase
cloud spreading and thus to reduce filter convergence rate. A different trend emerges for EXP6 for
which ensemble members have been created both by perturbing the wind-field and by considering the
height of the eruptive column unknown (1000, 4000, 8000 and 12,000 m above the vent). The forecast
RMSE computed for the first assimilation cycle (12:30) is about 250 t. This value is one order of
magnitude higher than that computed for the other experiments (11 t). However, the analyzed state
resulting from the first assimilation cycles has a RMSE of 75 t, which is 70% lower than the RMSE of
forecast state. This trend is maintained for the following cycles and starting from the 14:30 assimilation
cycle the forecast and analyzed RMSEs are consistent with what found in the previous experiments.
EXP6 shows that DA enables a strong reduction to the uncertainties deriving from the initialization
of the numerical model with highly uncertain ESPs. This result is of great value for the number of
applications where ESPs are unknown or difficult to estimate in real time. Indeed, while Mt. Etna
is extensively monitored from the ground and from space, the majority of worldwide volcanoes are
not monitored [89] and ESPs are difficult to be assessed in real time when eruptions occur. In such
cases, we found that the effects of highly uncertain ESPs are limited to the first assimilation cycles only
and that the filter allows a significant reduction of the RMSE leading to results which are similar to
well-constrained cases (i.e., EXP1, EXP2 and EXP3).

Figure 13 shows the total atmospheric ash mass loading computed for the observed, forecast and
analyzed states as the assimilation cycles are performed. Satellite retrievals report about 10 kt of fine
ash released during the eruption. It is worth noting that the forecast ash loadings are higher than
the analyzed loadings computed at the previous assimilation cycle. This because a continuous ash
emission is simulated during the experiments. The trend shared by the 6 experiments is the tendency
of the analyzed ash loading to converge to the observed one as the assimilation cycles are performed.
This is particularly evident for EXP6, where the forecast ash loading at the first assimilation cycle
(12:30) is 253 kt. This high value is due to the creation of the ensemble members through perturbations
of volcanic column height, and thus mass flow rate. Thanks to the assimilation, the analyzed ash
loading at 12:30 drops to 70 kt. This value further decreases to 31 kt at 13:30 and to 22 kt at 14:30.
At the end of the assimilation experiment (18:30), the analyzed ash loading is 12 kt, which is a value
in line with the 10 kt retrieved from space. This example highlights that sequential EnKF does not
need a precise initialization of the numerical model. It is the filter that calibrates the analyzed state
considering the uncertainties on observations and numerical predictions.
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Figure 12. RMSEs computed for observations (green lines), forecast states (blue lines), analyzed states
(red lines) and non-assimilated states (cyan lines). Panels (a–c) are for EXP1, EXP2 and EXP3. These
experiments differ for the angle used to perturb the wind-field (15◦, 10◦ and 20◦ respectively). Results
of EXP4 are shown in Panel (d), while results of EXP5 are presented in Panel (e). These two experiments
present the same input of EXP1, but the observation sampling time is 30 min and 2 h respectively (it
was 1 h for EXP1). Finally, results of EXP6 are displayed in Panel (f). The inset is a zoom of the RMSEs
computed for the first assimilation cycles. EXP6 was initialized with uncertainties on both wind-field
and ESPs.
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Figure 13. Total atmospheric ash mass loading of observed, forecast and analyzed states. Panels from
(a–f) show the results for the different experiments ordered as in Figure 12.

8. Conclusions

We presented the implementation of a Data Assimilation procedure inside the VATD model
HYSPLIT. The aim was developing a methodology to correct the predictions done by HYSPLIT with
satellite observations of ash columnar content. To properly simulate explosive eruptions, HYSPLIT
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was initialized with the results of the eruptive column model PLUME-MoM. The coupling between
the two codes has been completely automated and the two models allow us to simulate the release
and atmospheric transport of volcanic ash clouds produced by explosive eruptions. The toolkit used
to perform the assimilation is the Parallel Data Assimilation Framework (PDAF). PDAF routines
were linked to the numerical model to perform the assimilation cycles in an automated way and
at prescribed times (i.e., when observations are available). We used the Local Ensemble Transform
Kalman Filter and tested it to track the ash cloud produced by the explosive eruption occurred at Mt.
Etna on 24 December 2018. Measurements of ash columnar content done by the sensor SEVIRI were
used as observations to be assimilated.

We performed different experiments (6 in total) varying both the type of parameters included in
the ensembles, their respective ranges, and the observations sampling time. We showed that even the
simple application of an ensemble strategy (without EnKFs) makes model predictions more similar
to the observed ash cloud than those resulting from single deterministic simulations. This first result
enhances the importance of ensemble-based ash forecasting.

Next, we showed how assimilation of satellite data further improve ash monitoring and
forecasting. Indeed, the analyzed ash states are less uncertain with respect to both forecast and
observed states and the peak in ash column amount is calibrated in agreement with what observed
from space.

The ability of EnKF to reduce state uncertainty when ESPs are highly uncertain is another
important feature of this kind of filter. In this way, accurate knowledge of ESPs is not mandatory
for model initialization enforcing the use of EnKFs for ash forecasting of not routinely monitored
volcanoes. Future research could aim at implementing variational filters for the retrieval of initial
eruptive parameters from satellite observations.

Although we developed and applied the assimilation procedure to an historical eruption,
Data Assimilation is perfectly suitable for real-time applications to track and forecast the
advection/dispersal patterns of any ash cloud. Indeed, estimates of ash columnar content are furnished
in real time by a variety of satellite sensors. For this reason, this kind of approach has the potential to
greatly improve reliability of volcanic ash forecasting done by VATD models, with implications on
aviation hazard avoidance. However, additional research is needed to improve the present approach
in the context of aviation safety. First, while VAACs respond to volcanic crises producing 3-D ash
concentration charts, the retrievals of volcanic clouds made from satellite measurements are in the form
of 2-D maps. Information on cloud height and cloud thickness are needed to convert 2-D satellite maps
into 3-D data. To that end, some approaches have been developed [49], but they rely on assumptions
about cloud thickness, which is a parameter very difficult to estimate. Thus, additional research is
needed to improve the conversion of 2-D satellite maps into 3-D charts. In this way, it will be possible
to assimilate directly the 3-D ash concentration and thus to produce outcomes ready to be used for
aviation avoidance. Secondly, a distinction between ash-contaminated and ash-free pixels based on
concentration statistics and not on a purely binary approach would help to develop a more robust
method for aviation risk assessment.

Finally, our approach could be effective also for monitoring and forecasting volcanic SO2 clouds.
Indeed, as for ash clouds, many satellite sensors can detect and measure volcanic SO2. Beyond SEVIRI,
recent example instruments are the sensors TROPOMI [90] and EPIC [91]. In particular, TROPOMI
enables the detection of SO2 produced by passive degassing activity and low intensity eruptions. Since
SO2 is extremely dangerous for human health, the possibility to accurately forecast the dispersion
patterns of such gas is of great value for volcanic risk mitigation.

Overall, we highlight that Data Assimilation aimed at monitoring and forecasting volcanic
emissions (both ash and gases) can represent a real breakthrough for improving our assessment of
volcanic hazards.
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