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Abstract
This work offers a novel methodological framework to address the problem of generating data-driven earthquake shaking

fields at different vibration periods, which are key to support decision making and civil protection planning. We propose to

analyse the entire profiles of spectral accelerations and project their information content to unsampled locations in the

system, based on the theory of Object Oriented Spatial Statistics. The proposed methodology combines a non-ergodic

ground motion model with a fully functional model for the residual term, the latter consisting of (i) the spatially-varying

systematic effects due to source, site and path, and (ii) the remaining aleatory error. The proposed methodology allows to

generate multiple shaking scenarios conditioned on the data, jointly and consistently for all the vibration periods, over-

coming the intrinsic limitations of existing multivariate approaches to the problem. The approach is tested on a vast dataset

of ground motion records collected in the study-area of the Po Plain (Northern Italy), for which a region-specific fully non-

ergodic GMM was previously calibrated. Our validation tests demonstrate the potentiality of the approach, which is

capable to effectively simulate spectral acceleration profiles, while keeping the ability to capture the main physical features

of ground motion patterns in the region.
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1 Introduction

Seismic shaking maps are tools to support decision making

at a given site and a key-topic for civil protection planning

and engineering purposes such as for loss assessment and

risk analysis. Currently, empirical approaches adopted to

simulate seismic shaking fields are based on the use of

ground motion models (GMMs), which allow to estimate

seismic intensity measures dependent on the vibration

period as a function of several parameters related to the

reference earthquake scenario (magnitude, distance, soil

category, etc.).

One of the main hypotheses in the formulation of

GMMs is the ergodicity, which states that the variability in

ground motion at a single site-source combination is the

same as the variability in ground motion observed in a

more global dataset (Anderson and Brune 1999; Al-Atik

et al. 2010). In recent years, the increasing availability of

strong-motion data has allowed to relax this assumption

and to build non-ergodic GMMs, see, e.g., Rodriguez-

Marek et al. (2013), Villani and Abrahamson (2015),

Baltay et al. (2017), Lanzano et al. (2017), and Kuehn

et al. (2019). These GMMs, together with the associated

variability, enable one to describe the effects of earth-

quakes on a regional scale, rather than at global level as in

ergodic GMMs. The key to removing the ergodic

assumption grounds on the decomposition of model

residuals into systematic corrective terms, computed from

repeated sampling of the site, path, and source effects,

gathered from multiple events and multiple stations. Once

computed, these repeatable effects are typically considered

as adjustment terms of the median GMM prediction, which
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allow one to move (and reduce) part of the aleatory vari-

ability into epistemic uncertainty (Anderson and Uchiyama

2011; Villani and Abrahamson 2015; Kotha et al. 2016;

Lanzano et al. 2017).

Another common finding in the literature is that the

residuals of a GMM are characterized by a non-negligible

spatial correlation (Jayaram and Baker 2010; Lin et al.

2011; Walling 2009), which can be modelled through

geospatial analysis and exploited to predict shaking inten-

sities at unobserved sites with the aim to produce shaking

scenarios. This approach has been proposed for instance for

well-sampled regions in California (Landwehr et al. 2016;

Sahakian et al. 2019; Kuehn et al. 2019) and Italy (Lan-

zano et al. 2018; Sgobba et al. 2019). In these contexts, the

method adopted to model the spatial correlation is of

paramount importance, as it is found that different

approaches can lead to significantly different results on the

ground motion spatial distribution (Sokolov and Wenzel

2011). The majority of the previous studies are based on

univariate applications of the traditional spatial interpola-

tion techniques, such as kriging or conditional Gaussian

simulations (Jayaram and Baker 2010 and others). More

recent studies have focused on multivariate geostatistical

approaches (Goda and Hong 2008; Goda and Atkinson

2010; Loth and Baker 2013; Verros and Ganesh 2017;

Worden et al. 2018; Huang and Galasso 2019), which

allow predicting the intensity measures at multiple periods

and at different sites. An example is related to ShakeMap

(Worden and Wald 2016; Michelini et al. 2019), an online

tool where shaking maps are made available in near-real

time for a discrete set of spectral ordinates, thus requiring

to predict the unobserved intensities both at unsampled

locations and at different spectral periods. These multi-

variate approaches are all based on the cross-variograms of

the spatially distributed measures, thus inevitably suffering

from the curse of dimensionality as the number of con-

sidered periods increases (Weatherill et al. 2015).

The present work aims to overcome the intrinsic limi-

tations of existing approaches for multivariate scenario-

based shaking predictions, by grounding on the viewpoint

of functional data analysis (FDA, Ramsay and Silverman

2005). The latter framework allows for the statistical

analysis of datasets of curves, by generalizing the methods

typical of multivariate statistics to the infinite-dimensional

setting. In FDA, the curse of dimensionality is overcome

by considering the data as elements of a mathematical

space (e.g., the functional space L2 of square-integrable

function), whose geometrical structure should be chosen as

to capture the key features of the data (Ferraty and Vieu

2006). This work thus stems from the need to develop

advanced probabilistic and statistical tools able to appro-

priately model and account for the complex sources of

uncertainty associated with seismic hazard—as thoroughly

discussed by Porcu et al. (2017) (and references therein). In

this vein, the focus of this work shall be on the population

of spectral acceleration profiles fSAsðTÞ; T 2 T g—T

denoting the vibration periods ranging in an interval T and

s the geographic location—rather than on the vectors of

their discrete evaluations ðSAsðT1Þ; . . .; SAsðTpÞÞ. Ground-
ing on the theory of object-oriented spatial statistics (O2S2,

see e.g., Menafoglio and Secchi 2017, 2019), we here

extend to the functional setting the modeling approach of

Sgobba et al. (2019), in which the period-dependent

source, site and path systematic residuals of the reference

GMM are assumed to be varying with the geographical

location, and characterized by non-negligible spatial cor-

relation. A functional characterization of the dependence

among spectral acceleration profiles is here used to provide

data-driven simulations of shaking scenarios (Fig. 1),

which are key for several engineering applications (e.g.,

Hacıefendioğlu and Alpaslan 2014; Hacıefendioğlu et al.

2015). In this conceptual framework, the present study

takes advantage of the large availability of seismic records

in Northern Italy to build a novel model for the spectral

profiles in the region, based on a non-ergodic GMM

developed by Lanzano et al. (2017) for the same area.

The remaining part of the work is organized as follows.

Section 2 recalls the seismological background and the data

considered in the present study. Section 3 develops the

model used for the spectral acceleration profiles. Section 4

describes the results of the modeling framework when

applied to the field case here considered, whereas Sect. 5

reports an analysis for the model validation. Section 6

presents a comparison of the proposed model with state-of-

the-art univariate and multivariate approaches. The pro-

posed strategy of analysis is tested on an independent event

in Sect. 7. Section 8 finally concludes the paper. The

Supplementary Material presents further analyses and

validation.

2 Data and model

2.1 Basic definitions

In the field of engineering seismology, the effect of the

earthquake shaking is generally described through empiri-

cal GMMs, which quantify the conditional distribution of a

ground motion intensity measure IM (e.g. peak ground

acceleration, PGA or spectral acceleration, SA), given a set

of explanatory parameters (magnitude, distance or local

shear wave velocity) related to a given earthquake event

e and an observing site s in a study area D. The ground

motion parameter is typically assumed to be log-normally

1608 Stochastic Environmental Research and Risk Assessment (2020) 34:1607–1627

123



distributed (i.e., log10ðIMesðTÞÞ is derived from a normal

distribution) and, in a (fully) non-ergodic framework, it is

expressed as

log10ðIMesðTÞÞ ¼ lesðTÞ þ X rsðTÞ þ dBeðTÞ þ �sðTÞ;
ð1Þ

where lesðTÞ is the (deterministic) mean of the logarithm

of the IMes predicted by the GMM at the period T, and the

other terms are, following the notation by Al-Atik et al.

(2010), (i) a (random) spatially-varying corrective term

X rsðTÞ describing systematic effects of ground motion

related to the seismogenic source region r, (ii) the between-

event term dBeðTÞ, which is a (random) spatially constant

model bias, and (iii) a (random) remaining term �sðTÞ (i.e.
the residuals corrected for event, region, site and path

effects). For any given T in T , the terms X rsðTÞ, dBeðTÞ,
�sðTÞ are assumed to be mutually independent and Gaus-

sian. Note that, in (1), the systematic component of the

(log) IMes is described by the deterministic term lesðTÞ and
by the random terms X rsðTÞ, dBeðTÞ—characterized by

epistemic uncertainty. Here, the latter is intended as the

uncertainty due to incomplete information or incomplete

knowledge of the earthquake process. The remaining term

�sðTÞ captures a purely aleatory (i.e., not-systematic)

variability, instead, which is intended as the inherent ran-

domness of ground motion. In this sense, the non-ergodic

approach allows one to move part of the aleatory variability

to (random) systematic components characterized by

epistemic uncertainty only. In this framework, the correc-

tive term X rs appearing in (1) is obtained upon decoupling

the total residual into independent, zero-mean Gaussian

terms describing site, path and source effects, as

X rsðTÞ ¼ dS2SsðTÞ þ dP2PsrðTÞ þ dL2LrðTÞ: ð2Þ

Here the site-to-site term dS2Ss quantifies the average

misfit of ground motion at the site, with respect to the

event-corrected median value predicted by the GMM. The

location-to-location term dL2Lr indicates how the ground

motion of an event e recorded in a given small seismogenic

region r differs from the mean prediction of the events in

the entire source region. The path-to-path term dP2Psr

represents how the specific characteristics of a travel path

lead to ground motions that are systematically different

from the ground motion predicted by the GMM. It is cal-

culated as the mean of the event- and site-corrected

residuals from earthquakes recorded at the station s with

reference to the region r. One may also quantify the

aleatory standard deviation associated with the non-er-

godic IMes prediction of Eq.(1), which is that of the

remaining term �sðTÞ, and is denoted in previous works by

r (Sgobba et al. 2019). We refer the reader to Lanzano

et al. (2017) for a full account of the modeling and esti-

mation frameworks used in previous works. In Sect. 3 we

shall however discuss the compatibility of our model

assumptions with those used in previous works.

2.2 Dataset and assumptions

The present study aims to improve the existing method-

ologies on the generation of empirical multiple scenario-

based realizations, by taking into account the entire func-

tional form of the intensity measures log10ðIMesðTÞÞ; T 2
T (Fig. 1) defined in (1). For this purpose, we consider a

proper region-specific GMM and a corresponding set of

corrective terms, which are used to adjust the median

predictions of IMes.

We adopt the non-ergodic GMM developed by Lanzano

et al. (2016) (named NI15), which is specifically calibrated

Fig. 1 Schematic representation of the proposed approach
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on the area D covering the main source regions of Northern

Italy (Fig. 2): the model predicts as IMes, the geometric

mean of the horizontal components of PGAs and the 5%-

damping response spectral ordinates (SA) for 25 funda-

mental natural periods (T) ranging within the interval T ¼
½0:04; 4�s (log10 units). The use of a spectral acceleration-

based intensity measure IMes comes from its relevance in

the engineering practice, since it provides a suitable static

force for the design of structures under seismic loading.

The acceleration response spectrum SA, represents indeed

the maximum response of a single-degree-of-freedom

system of oscillators, characterised by different periods T

and damping values, and subjected to an earthquake ground

motion input. In the following, the IMs of Eq. (1) will refer

to PGA and SA, and denoted by SA(T), for T in T .

The NI15 model was calibrated on a highly dense

dataset compiled for the Po-Plain area (i.e. more than 2000

records triggered by 71 stations inside an area of 5000 km2)

after the occurrence of the 2012 seismic sequence (Mw6:1,

20/05/2012 Emilia 1st mainshock and Mw6:0, 29/05/2012

Emilia 2nd mainshock). This large availability of records

allowed the previous authors to develop the fully non-er-

godic NI15 model, and to perform residual decomposition

in a non-ergodic framework.

The corrective terms X rsðTÞ are taken from the work by

Sgobba et al. (2019), who used Eq. (1) based on NI15

model, on a regular grid across a small Po-Plain area, to

develop scenario-based shaking fields at 25 discrete periods

T in T ¼ ½0:04; 4�s. These authors considered a univariate

geostatistical approach for the simulation of the marginal

fields of corrective terms X rsðTÞ (see also Sect. 6 for a

more detailed comparison). Such a dataset of X rs includes

the dL2Lr region terms and the dP2Psr path terms related to

a single source zone (ZS912—according to the Italian

hazard map MPS04, Meletti et al. (2008)—that is the most

contributing inside the area considered for calibrating NI15

and the one generating the earthquakes of the 2012 seismic

sequence), thus resembling a single-source single-path set.

For this reason, the subscript r appearing in X rs will be

dropped in the following notation. The term dBe was also

estimated by Sgobba et al. (2019), and is here considered

as fixed, given that the analysis here presented refers to the

same datasets of events of Sgobba et al. (2019); otherwise,

analysis of the term dBe could follow a very analogous

pipeline as that detailed in this work.

Finally, the remaining term �s of Eq. (1) are herein

estimated by difference with respect to the real observed

values of log10ðSAesðTÞÞ recorded by the 71 stations and

referred to the calibration events of Sgobba et al. (2019)

(Fig. 4a). In the following, the corrective component X sðTÞ
and the term �sðTÞ are assumed to be independent as in

Sgobba et al. (2019), and thus analysed separately. More-

over, the study domain is restricted to the same geologi-

cally homogeneous area D � D of the Po plain considered

by Sgobba et al. (2019). The present application appears

suitable for comparison purposes with these previous

works, being grounded on compatible assumptions and

study areas.

For our aims, we shall consider a functional data anal-

ysis perspective, allowing to provide random realizations

both for the corrective term X s and for the residual term �s.

The combination of these realizations with the predictions

of the NI15 model will allow to provide multiple realiza-

tions of shaking fields jointly and consistently for all the

periods T 2 T . As discussed in Sect. 1, this purpose would

be hardly achievable with multivariate geostatistical

approaches based on cross-variography, due to (i) the high

dimensionality of the spectral accelerations considered in

this study (25 periods, which would require estimating a set

of 325 variograms and cross-variograms), and (ii) the

infinite dimensionality of the targeted curve IMes. The

following Sect. 3 describes the model and methods used

for the term X s (Sect. 3.1) and for �s (Sect. 3.2).

3 A functional simulation approach
for the prediction of IMs

3.1 Conditional simulation of the corrective term

The focus of this subsection is on the corrective terms X s

introduced in equations (1) and (2). At a site s 2 D, the

corrective term X s is considered as a functional random

element fX sðTÞ; T 2 T g, valued in the space L2ðT Þ (or L2
for short) of square-integrable functions, defined on the

Fig. 2 Geographic location of the study-area in Northern Italy (Po

Plain). Red triangles indicate the strong motion recording stations

belonging to the networks of the Italian Department of the Civil

Protection (DPC) and the Istituto Nazionale di Geofisica e Vul-

canologia (INGV)
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closed interval T . The collection of functional corrective

terms fX s; s 2 Dg is modeled as a functional random field

(Delicado et al. 2010; Menafoglio and Secchi 2017) in L2.

The field fX s; s 2 Dg is assumed to be a stationary

Gaussian random field, with constant spatial mean m

mðTÞ ¼ E½X sðTÞ�; T 2 T ; s 2 D;

and stationary cross-covariance operator C

Cðs1 � s2Þx ¼ E½hX s1 � m; xiðX s2 � mÞ�; x 2 L2; s1; s2 2 D;

ð3Þ

h�; �i denoting the inner product in L2. The cross-covariance
operator Cðs1 � s2Þ in (3) allows to determine the covari-

ability between elements of the field at two locations s1; s2;

it thus represents the generalization of the multivariate

covariance function (associating a covariance matrix to any

pair of locations) in use in multivariate geostatistics.

Moreover, stationarity and Gaussianity of the functional

field fX s; s 2 Dg entails the stationarity and Gaussianity of

the (univariate) marginal fields fX sðTÞ; s 2 Dg, for any

T 2 T , as assumed in Sgobba et al. (2019) (see also Sects.

2, 6). Note that, in general, the field fX s; s 2 Dg may be

nonstationary, particularly if the term dP2Psr in (2) plays a

relevant role in the determination of the variability of the

corrective term. We here detail the methodology under

stationarity, as this framework is consistent with the data at

hand, as shown in Sect. 4 and previously in Sgobba et al.

(2019). Nonetheless, extensions of these methods to non-

stationary contexts have been discussed in O2S2, e.g., in

Menafoglio et al. (2013), Menafoglio et al. (2016a). These

could be applied in this context too, without substantial

modifications of the strategy here proposed.

The purpose of the study is to provide random realiza-

tions of the field fX s; s 2 Dg, conditional to the observa-

tions available at sampled stations s1; . . .; sn in the system.

Such random realizations represent a set of scenarios which

are consistent with the corrective terms available at the

sampling locations. Note that this modeling framework is

motivated by the observation that, in the presence of an

independent event, the corrective terms at the sampling

locations would not be changed, as they represent sys-

tematic effect ‘known’ at the sampling sites. The genera-

tion of conditional scenarios thus aims to represent the

uncertainty on the corrective terms at unobserved locations

in the system.

To generate realizations from a functional random field,

this work follows the methodological proposal of Mena-

foglio et al. (2016b), and pursues an approach based on (i)

a dimensionality reduction of the functional data by pro-

jection over an orthonormal functional basis, (ii) generation

of the coefficients of the functional representation, through

multivariate (Gaussian) geostatistical simulation, and (iii)

functional kriging of the residuals of the projection, to

interpolate the data at the sampling locations. In this set-

ting, each element X s of the random field fX s; s 2 Dg is

represented as

X sðTÞ ¼ mðTÞ þ
XK

k¼1

xkðsÞukðTÞ þ nðTÞ; T 2 T ; ð4Þ

where fuk; 0� k�Kg is a truncated orthonormal basis of

L2, xkðsÞ is the coefficient of X s over the kth element of the

basis uk, i.e., xkðsÞ ¼ hX s � m;uki, and n is a residual term
from the projection, assumed to be uncorrelated of the

xkðsÞ’. In principle, any (orthonormal) basis

fuk; 0� k�Kg could be used (e.g., Fourier, polynomial,

wavelet bases). However, Menafoglio et al. (2016b) sug-

gest the use of the orthonormal basis generated by the first

K functional principal components (FPCs, see, e.g., Ram-

say and Silverman 2005), because this provides a best

approximation of the field in the mean square sense, uni-

formly in D. The use of projections over the FPCs was also

advocated by Nerini et al. (2010), Menafoglio et al.

(2016a) in the context of functional spatial prediction

(kriging). Recall that the FPCs are the directions associated

with the maximum variability of the dataset, i.e., the kth

FPC ek is found by maximizing, over u 2 L2,

Xn

i¼1

hX si �X ;ui2 subject to kuk2 ¼ 1; hu;eji ¼ 0; j\k;

where the last orthogonality constraint is meaningful only

for k[1. The FPCs are found as the ordered eigenfunc-

tions of the sample zero-lag covariance operator Sð0Þ,

Sð0Þx ¼ 1

n� 1

Xn

i¼1

hX si � X ; xiðX si � XÞ; x 2 L2; s 2 D;

ð5Þ

i.e., as solution of the eigenproblem

Sð0Þek ¼ kkek; k ¼ 1; 2; . . .

where k1 [ k2 [ � � � � 0. Note that, in some cases (e.g., if

the GMM was estimated via least-squares and all the

estimated corrected terms were considered), the mean m

and the sample mean X of the field X s may be null.

However, we prefer to keep reference to the terms m, X to

account for (i) the possible bias induced by alternative

estimation methods for the GMM, and (ii) the effect of

possible smoothing procedures in the data pre-processing,

and (iii) the possible selection of a subset of the estimated

corrected terms to perform the scenario-based analysis—as

in the present study, where the study domain D is a subset
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of the area D upon which the calibration of the GMM is

based.

Estimated the FPCs e1; . . .; eK , each observation is rep-

resented by (a) a vector of coefficients (a.k.a. scores)

xðsiÞ ¼ ðx1ðsiÞ; . . .; xKðsiÞÞT , obtained by projecting the

centered observations over the basis, i.e.,

xkðsiÞ ¼ hX si � X ; eki, k ¼ 1; . . .;K, and (b) a residual

term ns ¼ X s � X �
PK

k¼1 xkðsÞek. Conditional realiza-

tions of the functional field fX s; s 2 Dg can be then

obtained, based on (4), by generating random realizations

of the (multivariate) field of coefficients’ vector fxðsÞ; s 2
Dg conditional on the observations xðs1Þ; . . .; xðsnÞ at the

sampled sites, and by interpolating the residual term ns via
functional kriging (Delicado et al. 2010; Menafoglio and

Secchi 2017). Note that the assumptions of stationarity and

of Gaussianity for the field fX s; s 2 Dg entail the same

assumptions for the field fxðsÞ; s 2 Dg in RK . Furthermore,

the cross-covariance operator (3) is coherently estimated

via the variograms and cross-variograms of fxkðsÞ; s 2 Dg,
k ¼ 1; . . .;K, as discussed, e.g., in Menafoglio and Petris

(2016) and Nerini et al. (2010). At a target location s0, the

conditional simulation of the coefficient vector xðs0Þ may

follow any multivariate method for geostatistical simula-

tion (e.g., Chilès and Delfiner 1999; Mariethoz and Caers

2015). In this work, sequential Gaussian simulation is used,

following the approach of Abrahamsen and Benth (2001),

as implemented in the package gstat (Pebesma 2004) of

the software R (R Core Team 2013). Functional kriging of

the residual term ns can be performed by modeling its

stationary trace-semivariogram

2cðsi � sjÞ ¼ E½knsi � nsjk
2�; si; sj 2 D; ð6Þ

estimated from the data, and solving a linear system ana-

loguous to that used in the scalar case. Note that the trace-

semivariogram (6) is a real-valued function (thus inde-

pendent of the period T), which provides a global measure

of spatial dependence for the functional field fns; s 2 Dg.
The modeling effort required for its estimation is thus

virtually the same as in the univariate case (for further

details, see, e.g., Menafoglio and Secchi 2017).

3.2 Unconditional simulation of the error term

The term left to be considered in model (1) is the remaining

term �s, the term dBe being fixed and known in our case

study. The term �s describes the aleatory variability of the

(log) IMs, which cannot be ascribed to any systematic

effect. We here model the error field f�s; s 2 Dg as a zero-

mean Gaussian functional random field valued in L2,

uncorrelated in space and independent on the field

fX s; s 2 Dg. Again, these assumptions entail the similar

assumptions made in Sgobba et al. (2019) (see also the

discussion in Sect. 6). Such modeling choice is consistent

with the assumption that the entire spatial dependence of

the residual from the GMM, Rs ¼ X s þ dBe þ �s, can be

associated with the systematic effects already captured in

the term X s. In this work, we shall also assume that the

field f�s; s 2 Dg is stationary.

Simulation of the functional error term �s will follow an

unconditional approach, i.e., we will generate realizations

of the field f�s; s 2 Dg without conditioning to the obser-

vations �s1 ; . . .; �sn . Indeed, for an independent event, the

error �s at the sampling locations s1; . . .; sn would not be the

same as that already observed, as �s does not capture any

systematic effect. Unconditional simulation of �s follows a

similar scheme as that described in Sect. 3.1. It consists of

(i) dimensionality reduction (via FPCA) yielding a

decomposition �sðTÞ ¼
PL

l¼1 tlðsÞwlðTÞ, tlðsÞ denoting the

lth score and wlðTÞ the lth FPC, l ¼ 1; . . .; L, and (ii)

unconditional simulation of the scores. Note that the scores

along the FPCs can be now simulated as random realiza-

tions of a white noise, as the field f�s; s 2 Dg is assumed

Gaussian and uncorrelated. Given the purely random nature

of �s, the residual terms
PN�1

l¼Lþ1 tlðsÞwlðTÞ (N denoting the

total number of observations of �s available at the sampling

locations) will not be considered in the simulation of �s.

3.3 Simulation of the spectral acceleration

The spectral acceleration SA(T) is eventually reconstructed,

for T 2 T , as

logðSA�
es0
ÞðTÞ ¼ les0ðTÞ þ XðTÞ þ

XK

k¼1

x�kðs0ÞekðTÞ

þ n�s0ðTÞ þ dBeðTÞ þ
XL

l¼1

t�l ðs0ÞwlðTÞ;

ð7Þ

where les0ðTÞ denotes the mean acceleration predicted by

the GMM, dBe denotes a fixed and known inter-event term

(described in Sect. 2), and the other terms are associated

with the random realization of the corrective term at the

target location s0, with the kriged residual term and with

the random realization of the remaining aleatory term �s,

respectively. In the following, we shall indicate by XK
s , �

L
s

the projected component, i.e.,

XK
s ¼ XðTÞ þ

XK

k¼1

xkðsÞek; �Ls ¼
XL

l¼1

tlðsÞwlðTÞ;

respectively, and by X�K
s , ��Ls the corresponding simulation,

i.e.,
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X�K
s ¼ XðTÞ þ

XK

k¼1

x�kðsÞek; ��Ls ¼
XL

l¼1

t�l ðsÞwlðTÞ:

Note that the described simulation procedure reproduces

the projected components XK
s , �

L
s , whereas it neglects part

of the variability associated with the residual term ns, and

the entire variability of
PN�1

l¼Lþ1 tlðsÞwlðTÞ. The latter

sources of uncertainty are however marginal with respect

to the variability of the terms XK
s , �

L
s , as these are precisely

found as to capture the respective main modes of vari-

ability. The choice of the truncation orders K, L reflect

directly on the amount of variability captured by the rep-

resentation—hence by the simulation. A trade-off in the

choice of K, L is however apparent, as they need to balance

the ability to reproduce the system variability and the

modeling/computational effort needed for the simulations,

particularly for the term X�K
s , whose scores require spatial

modeling (i.e., variography analysis). Further discussion on

the point is provided in Sect. 4.

4 Generation of shaking fields in the study
area

Data preprocessing To apply the methodology detailed in

Sect. 3, raw data (Figs. 3a– 4a) were smoothed by using

cubic splines. Interpolating cubic splines with 25 equally

spaced knots were used to represent the corrective terms,

yielding the functional forms reported in Fig. 3b. Analyses

were also performed upon considering data smoothed via

smoothing B-splines, without substantial differences in the

results described hereafter (not shown). Error terms were

smoothed by using smoothing cubic splines with 25 equally

spaced knots. Smoothing coefficients were determined by

minimizing a least squares criterion with a penalization on

the curvature of the resulting solution. The weight of the

penalization was selected via generalized cross-validation

(Ramsay and Silverman 2005). Figure 4b reports the

smoothed data. This set of choices allowed to cope with the

fact that some error terms were only partially available

along the whole domain T, as the set of accelerometric

waveforms originally used to compute the corrective terms

were processed assuming variable high- and low-pass filter

periods (Lanzano et al. 2018), thus leading to different

usable period ranges for each signal.

4.1 Spatial analysis of the corrective term

Dimensionality reduction of X s Functional principal com-

ponent analysis was performed on the smoothed data dis-

played in Fig. 3b; results are reported in Fig. 5. The first

K ¼ 4 FPCs together explain about the 98% of the vari-

ability of the dataset. The reconstruction of the data when

using the first K ¼ 4 principal components (i.e., XK
si
,

K ¼ 4, i ¼ 1; . . .; 71) is displayed in Fig. 5h. A comparison

with the smoothed data suggests that the FPC representa-

tion tends to smooth the small fluctuations presented by the

data at long periods. Fluctuations in the data at short

periods are better reproduced by the FPC approximation, as

these are precisely associated with the second FPC (see

Fig. 5d). The variability of the sample for high periods

could be better captured if a higher number of components

was considered (K[ 10). Such a high truncation order

would lead to a simulation procedure more demanding than

that described here, and devoting a significant effort to

explore only a small portion of the data variability. Note

that, even as one was resorting to K ¼ 10 FPCs, a relevant

dimensionality reduction would be attained with respect to

a standard multivariate setting, yielding a substantially

smaller cross-variogram structure (55 models for K ¼ 10

against the 325 models needed in the multivariate frame-

work), with the further advantage of obtaining predictions

for the full profile instead of a discrete set of periods.
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Fig. 3 Corrective terms at the 71 recording stations. a Raw data. b Smoothed data
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Further comparison with a multivariate approach is dis-

cussed in Sect. 6. In the following, we consider a K ¼ 4-

dimensional approximation of the data, and ascribe the

residual variability to the term ns in (4).

Geostatistical analysis of the scores xs The variograms

and cross-variograms of the coefficient vectors

xðs1Þ; . . .; xðsnÞ where modeled by fitting a linear model of

coregionalization to the empirical estimates. Figure 6

depicts the estimated linear model of coregionalization,

based on an exponential model. Empirical variograms,

represented as points in Fig. 6, support the stationarity

assumption. Furthermore, one can notice that the random

field of coefficient vectors displays a non-negligible spatial

correlation, indicating that a systematic component is

indeed present in the residuals of the GMM.

The estimated model was used to generate the realiza-

tions of the coefficient vectors, over a grid of locations in

the spatial domain D having resolution 750 [m] in both

directions X and Y. The conditional realizations were

obtained by sequential Gaussian simulation (Chilès and

Delfiner 1999), setting to 0 the mean of the fields

fxkðsÞ; s 2 Dg, k ¼ 1; . . .;K. The realizations of the coef-

ficient vectors were used to determine the associated real-

izations X�K
s0

of the projected component XK
s0
, as in (7). An

example of realization is displayed in Fig. 7a.

Geostatistical analysis of the residual term ns The trace-
semivariogram of the residual term ns was modeled by

fitting an exponential model with nugget to the empirical

estimate (estimated parameters: nugget 0.0014; partial sill

0.0020; practical range 59.34 km). The empirical estimate

supports the stationarity assumption (not shown). The

estimated trace-semivariogram model was used to perform

functional kriging of the residual term. A sample of kriged

residuals ns0 is reported in Fig. 7b. Visual comparison

between Fig. 7a, b confirms that the residual terms indeed

represent a marginal variability of the corrective term.

Simulation of the corrective term The realizations of the

corrective term X�
s0
were eventually obtained by adding the

kriged residuals to the realization of the projected com-

ponent. Figure 8 displays a spatial representation of the

sample realization X�
s0
of the functional field, evaluated at

the periods T ¼ 0 [s] (PGA) and T ¼ 4 [s].

The obtained fields are also consistent with the results

provided by Sgobba et al. (2019) for the univariate

approach (see also Sect. 6 and the Supplementary Mate-

rial). Hence, the functional fields of the corrective terms,

while reducing the high dimensionality of the problem, also

allow to capture the physically-related aspects of the

shaking pattern. Indeed, the simulated fields reproduce the

main spectral features compliant with the geomorphology

of the area, such as the systematic enhancement effects

observed at long-periods (T ¼ 4 [s]) in ground motion

amplitudes along the North–South direction (Fig. 8).

It is worth noting that several authors (see Schiappapi-

etra and Douglas 2020 for a review) demonstrated that the

systematic terms constituting X sðTÞ (see also Eq. (2)) are

characterised by different scales of variability that are also

period-dependent. Indeed, the site terms are generally

found to be stationary in space, whereas the path terms

often reveal a non-stationarity, being dependent on the

absolute position of source and site, particularly at long-

periods; finally, the source term is typically spatially

uncorrelated. However, the peculiar features of the con-

sidered dataset led Sgobba et al. (2019) to model the spa-

tial correlation of the corrective terms as a univariate and

stationary Gaussian field. The functional analysis here

performed on the same dataset also do not find evidences of

non-stationarities. This provides an indication that the

dominant features in the dataset variability may be repre-

sented by the site terms and the short periods (the latter

aspect being also evidenced by FPCA).
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Fig. 4 Error �s at the 71 recording stations. a Raw data. b Smoothed data
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4.2 Analysis of the aleatory term �s

The viability of the assumption of spatial uncorrelation was

assessed by inspection of the estimated trace-variogram of

the field (Fig. 9a), which is well represented by a pure-

nugget model. To assess the spatial homoscedasticity of the

error terms, for each site si, i ¼ 1; . . .; n, an estimate of the
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Fig. 5 Results of the FPCA on the dataset of corrective terms X s1 ; . . .;X sn (n ¼ 71)
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global variance of �si was computed from the available

repetitions �si;1; . . .; �si;ni , i.e.,

br2
si
¼ 1

ni

Xni

j¼1

k�si;jk
2:

As shown in Fig. 9b, the estimated variances br2
s1
; . . .; br2

sn

(n ¼ 71) do not display any relevant spatial pattern.

Stochastic simulation of the term �s thus followed two

steps, namely (i) dimensionality reduction via FPCA,

obtaining a set of scores and a set of eigenfunctions, and

(ii) simulation of the scores from a Gaussian random field,

uncorrelated in space. Dimensionality reduction was per-

formed by considering L ¼ 10 FPCs, that together explain

almost 100% of the variability. A summary of the results of

FPCA on �s is presented in the Supplementary Material.

Note that, when considering the term �s, the dimensionality

of the FPCA representation has a relatively low impact on

the modeling and computational effort required for the

simulation, as the spatial autocorrelation (i.e., variogram)

does not need to be estimated for the scores. Eventually, for

l ¼ 1; . . .; L and a target location s0 in D, the scores tlðs0Þ
corresponding to the lth FPC were simulated from a zero-

mean Gaussian random noise, uncorrelated in space, with

variance equal to the variance of �s along the lth FPC.

4.3 Shaking fields

The shaking fields were built by combining the prediction

of the GMM, the realizations of the corrective term and the

realization of the error term, as in (7). Figure 10 displays

the simulation of the shaking field for the first mainshock
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(Mw 6.1, 20/05/2012) of the Emilia sequence (data from

the ITalian ACcelerometric Archive database—ITACA,

http://itaca.mi.ingv.it/; Pacor et al. 2011). This was com-

puted as the sum of the GMM and the simulated terms. For

comparison, the left panels of Fig. 10 report the prediction

of the GMM. Simulations show that a non-negligible

variability can be ascribed to the corrective and error terms.

Near the epicenter of the event, the simulated shaking

fields present higher values of spectral acceleration than

those predicted by the GMM only, which cannot capture

realistic near-source pattern as it would assign constant

values to the entire area within the surface projection of the

fault. At long-periods (T ¼ 4 [s]), the simulated ground

motion pattern reflects the enhancement observed on the

fields of the corrective terms, which is reported as the

consequence of focalization effects of the seismic waves at

the regions bordering the Po basin (Paolucci et al. 2015;

Sgobba et al. 2019).

5 Model validation

Validation of the model was performed by cross-validation.

Cross-validation analysis focused on the model of the

corrective terms, whose spatial component is non-negligi-

ble. The error term was not included in the cross-validation

analysis, as it is not associated with systematic spatial

patterns. The effect of the error term �s is further discussed

in the Sect. 7, which illustrates the application of the cal-

ibrated model to an independent event. We remark that

validation of the GMM was already presented by Lanzano

et al. (2016), and it is thus outside the scope of the present

work.

A nine-fold cross-validation analysis was performed on

the corrective terms, to assess the capability of the model to

correctly capture the systematic component observed at the

sites, and not described by the GMM. The observations

X s1 ; . . .;X sn , n ¼ 71, where randomly divided in j ¼ 9

batches fXðkÞg, k ¼ 1; . . .; 9, of which the first eight were
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made of nk ¼ 8 observations, and the last of nj ¼ 7

observations.

For a batch fXðkÞg, k ¼ 1; . . .; 9, the dataset was split in
training and test set, the test set consisting of the batch

fXðkÞg, the training set of the remaining n� nk data. The

training set was used to fit the model, by following the

methodology described in Sect. 3. A set of B ¼ 1000

conditional realizations of the field was generated at each

test site, and compared with the corresponding data point in

the test set. Figure 11 displays with colors the sites asso-

ciated with the j ¼ 9 batches (Fig. 11a), and the results

obtained for two locations in the first test set fXð1Þg
(MIR05 and MNS, Fig. 11b–c). The latter locations were

selected as representative of best/worst scenarios in the
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Fig. 10 Comparison between the prediction from the GMM and a

realization of the shaking field for the Mw6.1 first-Emilia mainshock.

Maps in a and c refer to the GMM prediction for T ¼ 0 [s] (PGA) and

T ¼ 4 [s], respectively. Maps in b and d refer to the simulated

shaking fields for T ¼ 0 [s] (PGA) and T ¼ 4 [s], respectively. The

star indicates the epicenter of the Mw6.1 first-Emilia mainshock. The

corresponding fault plane is shown as a closed rectangle. Colors are

given on a log-scale
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model performances. To enhance the interpretation of the

plots, functional boxplots based on modified band depths

(MBD, Sun and Genton 2009; Ieva and Paganoni 2013)

were used to represent the simulated curves. Here, simu-

lated curves are represented as colored light blue lines; the

shaded bands represent the envelop of the 50% most cen-

tral curves in the simulated sample, according to the

ordering induced by the MBD measure. The outermost

thick blue lines represent the functional analogue of the

whiskers in a classical boxplot. The target corrective terms

(i.e., the corrective term at each test location) are repre-

sented as thick red lines. At the station MIR05, Fig. 11b the

target corrective term is very central with respect to the

simulated sample, showing that the model correctly cap-

tures the systematic residual of the GMM at that location.

On the contrary, the dynamic observed at site MNS, Fig-

ure 11b displays a more extreme behavior with respect to

the simulated sample, particularly for periods T [ 1 [s].

Note that errors in cross-validation may also be indicative

of informative data in the training set, particularly if the

test sites are located at the boundary of the domain (as in

the case of the site MNS, see Sect. 7).

A summary of the results obtained for all the n ¼ 71

stations is reported in Fig. 12. Figure 12b displays, through

colors, a table T whose element Ti;j,

i ¼ 1; . . .; j, j ¼ 1; . . .; ni (j ¼ 9), represents the propor-

tion of simulations more extreme than the jth target curve

of the ith test set, XðiÞ
j . More precisely, Ti;j was built by

evaluating the depth of XðiÞ
j (in terms of MBD) with respect

to the sample of simulations, and by computing the pro-

portion of simulations less deep (i.e., more extreme) than

the target corrective term. A low (resp. high) value of Ti;j

represents a target curve which is very central (resp. very

extreme) with respect to the simulated curves. The same

color scheme is used for the representation of sites in the

map of Fig. 12a. The three stations where the corrective

terms are more extreme than 95% of the simulated samples

are MODE, FIC0 and T0828. These stations are those

where the method shows the worst cross-validation per-

formances. We note that, in the functional context, the

definition of quantiles is highly non-trivial (see, e.g.,

Chakraborty and Chaudhuri 2014) and building prediction

bands of given coverage is still a field of open research.

Although functional boxplots only provide empirical cov-

erage, cross-validation results show that only 4% of the

stations are not covered by the deepest 95% of the simu-

lations, confirming a good overall performance of the

method.

6 Comparison with finite-dimensional
approaches

To further explore the relation between our approach and

competitor finite-dimensional approaches, we here com-

pare our results with those obtained in the following

settings

• Case UVT Univariate analysis of the corrective terms

X siðTÞ, i ¼ 1; . . .; n at the single periods T ¼ 0:01 s and

T ¼ 4 s, as in the previous work Sgobba et al. (2019);

• Case MVT-a Multivariate analysis of the corrective

terms ðX siðT1Þ; . . .;X siðTKÞÞ at K ¼ 4 selected periods,

namely Tk 2 f0:1; 0:3; 1; 3g representative of low

(PGA), medium (0.3–1 s) and long periods (3 s);

• Case MVT-b Multivariate analysis of the discrete

corrective terms ðX siðT1Þ; . . .;X siðTpÞÞ, i ¼ 1; . . .; n at

the p ¼ 25 periods available in the dataset, by using a

dimensionality reduction based on the first K ¼ 4

multivariate principal components of the data.

The first case is considered to check the consistency of the

obtained results with the state-of-the-art approach to the

same field case. Cases MTV-a and MVT-b were selected as

competitor multivariate methods.

Fig. 11 Cross-validation results. a Functional boxplot for the site

MIR05 (s ¼ ð666134; 4982978Þ). b Functional boxplot for the site

MNS (s ¼ ð713603; 5014520Þ). Site coordinates are in Lat/Lon UTM

Zone 32N. In both panels, the thick black line represents the test

corrective term, colored curves represent simulated curves
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From the methodological viewpoint, the first key

advantage of the functional approach over the competitor

approaches is that it is the only framework allowing for a

joint analysis and uncertainty quantification (UQ) of the

entire profile of the corrective term (corrective profile for

short). Indeed, univariate models focus on a marginal UQ

for fixed periods, whereas multivariate models allow for a

joint representation of discretized profiles. This appears to

be a crucial point, since spectral ordinates left out in the

analysis may contribute to a full assessment of seismic

structural response. Beside this, hereafter in this section we

quantitatively compare the results of the analyses sepa-

rately in the univariate and multivariate cases.

6.1 Case UVT

We here perform a comparison of our results with those of

Sgobba et al. (2019). These authors analysed the same

dataset of corrective terms as that here considered, but with

a univariate approach applied separately to the periods T

(thus neglecting cross-correlations among different peri-

ods), with particular reference to T ¼ 0:01 s and T ¼ 4 s.

For a given period T, the analysis of the corrective terms

made by Sgobba et al. (2019) was based on the following

key steps: (i) geostatistical analysis of the corrective terms

X s1ðTÞ; . . .;X snðTÞ, and (ii) stochastic simulation of

X s0ðTÞ and �s0ðTÞ for the sites s0 in a computational grid G
covering the target area. For step (i), the authors estimated

a variogram model as in univariate geostatistics (Cressie

1993), and accordingly performed kriging at target loca-

tion(s) s0. For step (ii), they considered for X s0ðTÞ a

Gaussian random noise uncorrelated in space, centered in

the kriging prediction and having variance equal to the

kriging variance at s0 in G; for the term �s0ðTÞ, they

considered a zero-mean Gaussian random noise uncorre-

lated in space, having variance equal to the estimated

aleatory variance (denoted by r in Sect. 2). The approach

proposed in this work differs from that of Sgobba et al.

(2019) for two main aspects: (a) a functional approach is

considered, and (b) conditional stochastic simulation is

used for the corrective terms instead of using an uncorre-

lated random error. This set of differences leads to mark-

edly different methodological strategies. In particular, the

methodology proposed in this work is precisely built to

account for the cross-correlations among different periods,

and to reflect the spatial covariance structure estimated for

the (functional) field of corrective terms (particularly its

spatial continuity). We here aim to show that, as far as the

mean marginal patterns of the corrective terms are con-

cerned, both the approaches provide consistent results. In

terms of UQ, the inference attained by the two models is

intrinsically different and not directly comparable. A

comparison between UQ properties of functional and finite-

dimensional approaches is further discussed in Sect. 6.2.

To allow for a comparison of the results of our model

with the mean values of the corrective terms presented by

Sgobba et al. (2019), we used the calibrated model as

described in Sect. 4, but considered as spatial grid that of

Sgobba et al. (2019)—who refer to a smaller target area

than that considered in Sect. 4. We thus obtained (i) a set of

B ¼ 100 conditional realizations of the corrective profiles

X�;b
s , and (ii) a set of B ¼ 100 unconditional realizations of

the error terms ��;bs . We selected the same periods analyzed

in details by Sgobba et al. (2019), namely T ¼ 0:01, and

T ¼ 4 s, and built a set of realizations of the (log-) spectral

acceleration for the 20th May 2012 Mw 6.1 Emilia first

mainshock at these selected periods (following Sect. 3.3
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Fig. 12 Cross-validation results. a Sampled locations. b Representa-

tion of the depth (MBD) of the test observations with respect to the

simulated realizations; the element i, j represents the proportion of

simulated realizations whose MBD is higher than that of the jth

observation in the ith test set. Colors in panels a and b are given

consistently. Codes in the cells in panel b correspond to the

identification codes of the observation sites
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and Eq. (7)). To compare the results of our model with

those of Sgobba et al. (2019), we computed the average of

our marginal simulations of log10ðSA�
esðTÞÞ at T ¼ 0:01,

and T ¼ 4 s, and compared them with the maps presented

in Sgobba et al. (2019). The latter were obtained by adding

the prediction les0ðTÞ of the GMM, the term dBeðTÞ and

the kriging prediction X�
s0
ðTÞ. We show these maps in

Fig. 13, and report the summary statistics of their differ-

ences in Table 1 (the sign referring to the difference Fn-

UVT). One can clearly see that the results obtained with the

two methods are fully consistent. This confirms that, as far

as mean values are concerned, the marginal results of the

proposed approach are generally in agreement with the

results of univariate approaches.

6.2 Cases MVT-a and MVT-b

Cases MTVa and MVTb are chosen as representative of

alternative dimensionality reductions of the dataset leading

to substantially equivalent burden for the analysis as the

functional approach. Indeed, in all these cases, the

bottleneck stands in the conditional stochastic simulation

of the K-dimensional vectors summarizing the profiles,

which directly depends on the dimension K.

We run the analyses for both cases MVT-a and MVT-b,

and compared the performances of all the methods in terms

of (1) results at fixed period T, and (2) cross-validation

results. For the sake of brevity, a detailed account of point

(1) is provided in the Supplementary Material. We limit to

mention that, as far as prediction and UQ at fixed period T

is concerned, multivariate and functional approaches pro-

vide substantially consistent result for T ¼ 0:1; 0:3; 1 s.

The major difference between the multivariate approach

MVT-a and the others is observed for long periods (T ¼ 3

s), where the standard deviations of simulated fields is

significantly lower for case MVT-a than for the others. This

shows a limitation in approach MVT-a in appropriately

characterizing the marginal and joint uncertainty of the

corrective profiles, as further demonstrated by the cross-

validation analyses detailed hereafter.

To quantitatively compare the method’s performances,

we run a 9-fold cross-validation analogous to that
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Fig. 13 Comparison between marginal results of the functional

approach and the results of Sgobba et al. (2019), for T ¼ 0:01 s (a–b)
and T ¼ 4 (c–d). The star indicates the epicenter of the Mw6.1 first-

Emilia mainshock. The corresponding fault plane is shown as a closed

rectangle. The calibration sites are depicted as black triangles
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considered in Sect. 5. Here, for each training set, the four-

dimensional vector data of both cases MVT-a and MVT-b

were modelled as multivariate random fields; the four-di-

mensional cross-covariance structures were estimated by

using a linear model of coregionalization; the estimated

models were then used to perform kriging prediction and

stochastic simulation in the respective cases. To allow for a

comparison with the functional setting, we considered a

linear interpolation of the discrete predictions of spectral

accelerations in both cases MVT-a and MVT-b. Figure 14

reports an example of simulated corrective terms at the

same location MIR05, as mentioned in Fig. 11. Evaluation

of Fig. 14a clearly shows that a relevant part of the infor-

mation contained in the corrective profiles is lost when

selecting a subset of 4 spectral ordinates (case MVT-a). In

particular, the shape of the curve is hard to be reconstructed

from the discrete representation. Note that, in case MVT-a,

only the spectral ordinates in the range [0.1, 3] can be

reconstructed by linear interpolation. Figure 14b shows that

a multivariate approach based on the first K ¼ 4 multi-

variate principal components allows one to fairly represent

the shape of the profile. Indeed, it can be shown that case

MVT-b represents a numerical approximation of the

functional setting proposed in the manuscript. The

approximation is however suboptimal, as it does not

account for the uneven distribution of the 25 periods over

the domain [0.01, 4]. This brings a slight discrepancy

between the results of multivariate PCA on the vector data

and the FPCA on the functional data. For instance, the first

K ¼ 4 multivariate PCs allows explaining 97.4% of the

data variability, whereas the first K ¼ 4 FPCs capture

98.3% of the data variability. This turns in an over-

smoothing of the right part of the domain of spectral

acceleration (see the Supplementary Material for a graph-

ical comparison of FPC results). In terms of coverage

properties of the simulated sample of corrective terms, we

refer to Fig. 15, which reports tables analogous to that

reported in Fig. 12. We again recognize a high degree of

similarity between the case MVT-b and the functional one.

Concerning the case MVT-a, one clearly observes a

detrimental effect of this type of dimensionality reduction

on the capability to make inference on the corrective

profiles.

These analyses justify the use of a functional approach

for prediction and UQ on both point-wise evaluations (i.e.,

at fixed period T in the context of a marginal inference) and

on the complete profile (in the context of a joint inference).

Overall, our approach seems to perform significantly better

than the multivariate approach MVT-a in terms of mar-

ginal/joint inference on the corrective profiles. The case

study at hand does not evidence dramatic differences

between the functional approach and the multivariate

approach MVT-b, although the latter just represents a (sub-

optimal) discretized implementation of the proposed

model.

7 Application to an independent event

The model for the spectral acceleration calibrated in Sect. 4

was used to generate shaking scenarios for an independent

event registered in Northern Italy (Ml 4.2, 21/08/2018).

Table 1 Summary statistics of

the differences between the

fields represented in Fig. 13a–b

(first line) and b–c (second line)

Min Q1 Median Mean Q3 Max

T = 0.01 s – 0.1441 – 0.0211 0.0017 0.0011 0.0240 0.1419

T = 4 s – 0.0995 – 0.0222 – 0.0037 0.0024 0.0158 0.1322

Fig. 14 Comparison of simulated corrective terms at location MIR05, for the cases MVT-a and MVT-b. Note that, in panel a, the x-axis ranges in
[0.1, 3], while in panel b it ranges in [0.01, 4]
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Fig. 16a reports the positions of the training measurement

stations (grey symbols) and those where measurements for

the independent event were available (red symbols). Fig-

ure 16b displays the estimation of the expected value of

log10ðSAÞ at the test stations as predicted through the NI15

model; here, the values obtained through the NI15 model

for a set of 25 periods were interpolated via cubic splines

yielding the functional representation of the estimates

(light grey curves). Figure 16b also depicts the measured

spectral acceleration at the same stations (dark grey

curves). A general agreement in the shape of the predicted

log10ðSAÞ can be noted.

The functional geostatistical model estimated in Sect. 4

was used to generate B ¼ 1000 realizations of the correc-

tive term (conditional simulation), and of the error term

(unconditional simulation). These were added to the esti-

mated GMM as in (7), to obtain B ¼ 1000 realizations of

the field at the test locations. Figure 17b-c report a visu-

alization of the shaking scenarios simulated at two test

stations (MODE in Fig. 17b, MNS in Fig. 17c); the results

at the remaining 30 test stations are reported in the

Supplementary Material. In Fig. 17b and c, similarly as in

Sect. (5), functional boxplots are displayed to enhance

visualization of the generated curves; thick red lines rep-

resent the actual measures, whereas dashed lines represent

the estimation of the GMM. At the test station MODE,

results on the test set show an overall slight overestimation

of the shaking field for T [ 1 [s]. Comparison of the

observed measure with the prediction of the GMM suggests

that the bias may be due to the corrective terms X s. Note

that this result is in agreement with the analysis shown in

Sect. 5, as the station MODE was associated with an

extreme behavior in terms of the corrective component. On

the contrary, beside the relatively high CV-error at station

MNS (see Sect. 5), the corrective term appears to balance

the error due to the GMM, leading to a set of simulated

scenarios perfectly resembling the actual measures.

The map in Fig. 17a displays with colors the centrality

of the observed measures with respect to the corresponding

set of simulations. Here, the color assigned at a given

location is representative of the proportion of simulated

responses less deep (in the sense of MBD) than the actual
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observations (i.e., red colors are given if the observation is

extreme with respect to the simulated sample, blue colors

otherwise). Results suggest that a number of stations

(particularly OPPE, ISD, CADC) would deserve further

attention, as they appear to be associated with ineffective

predictions of the corrective components, possibly due to

non-systematic effects related either with source or site and

only partially captured by the model. Nonetheless, overall,

the simulated scenarios appear in agreement with the actual

independent measures.

8 Conclusions and discussion

In this work, a novel approach to the analysis of the cor-

rective terms of a ground motion model (GMM) has been

proposed, leading to the following key conclusions.

1. Spectral accelerations fSAsðTÞ; T 2 T g in a GMM

have been here interpreted as functional data, dis-

tributed in space. In this vein, we used the theory of

Object Oriented Spatial Statistics (O2S2, Menafoglio

and Secchi 2017) to provide a novel modeling frame-

work where stochastically generated scenario-based

spectral acceleration profiles can be built. A key

advantage of our approach over previous methods

relies in the possibility of obtaining shaking fields

jointly and consistently for all the spectral periods.

2. The modeling effort of this work has been focused on

the residual terms of the region-specific GMM model

by Lanzano et al. (2016) and the corrective terms

calibrated for the Po-Plain area by Sgobba et al.

(2019). A functional approach to the estimate of the

GMM model (i.e., model for the term les in (1)) is

currently under investigation by the authors. The

combination of the latter model, with that provided in

Fig. 17 Shaking scenarios for the independent event Ml4.2 registered

on Aug. 21st, 2018. a Locations in the training and test set. b Shaking

scenarios simulated for the test site MODE (s=(654613, 4943664)).

c Shaking scenarios simulated for the test site MNS
(s ¼ ð713603; 5014520Þ). Site coordinates are in Lat/Lon UTM Zone

32N. Colors in panel a are given according to the proportion of

simulated realization that are less deep (in terms of MBD) than the

actual measure in the test set. In panels b and c, simulated profiles are

represented as blue curves, profiles predicted via GMM as dashed

black curves, observed profiles as red curves
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this work will eventually allow for a fully functional

approach to the analysis of spectral acceleration

profiles.

3. The method was validated through 10-fold cross-

validation. Data left in the test set were compared with

the simulated scenarios by using functional boxplots

based on Modified Band Depth (MBD) measures.

Analyses suggest very good performances of the

method. Indeed, test observations were mostly well-

captured by the simulated scenarios, in terms of their

MBD with respect to the simulated curves.

4. The application of the calibrated model to an indepen-

dent event Ml4.2, recorded on Aug. 21st, 2018,

demonstrates the ability of the method to well-repro-

duce shaking scenarios in a predictive framework.

Some inconsistencies detected on specific sites may be

dependent on non-systematic effects related either with

source or site. For instance, the observed shaking

pattern of this event provided by Shakemap (http://

shakemap.rm.ingv.it/) appears to be mainly elongated

along the NW–SE direction, thus reflecting some azi-

muthal effect that cannot be captured by the systematic

terms.

In conclusion, the proposed approach, based on the adop-

tion of a fully non-ergodic model in combination with a

functional spectral analysis, results in a novel data-driven

methodology for shaking simulations that could be poten-

tially implemented as a new tool to reproduce shaking

maps. Compared to the existing strategies, it allows to

predict the whole spectrum, jointly and consistently on a

continuous period range with reasonable computational

burden, as opposed to the standard approaches, which

typically provide spectral patterns at a discrete set of

vibration periods. The possibility to reproduce more

spectral parameters could be important to represent the

structural response to shaking more thoroughly, for emer-

gency planning. The method is also suitable to reproduce

hypothetical scenarios of potential future events, to be used

for region-specific risk analysis and loss models. Finally,

the application-oriented potential of the method enables for

an effective reproduction of the local patterns, which could

be designed for near-real time applications, as well as for

post-processing of historical earthquake shaking wherever

poorly-constrained by a limited number of sampled

records.
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