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ABSTRACT2

This paper detects the presence of seasonality, stationarity, and long-range memory structures3
in daily radon measurements in a permanent monitoring station in central Italy. The transient4
dynamics and the seasonality structure are identified by power spectral analysis based on the5
continuous wavelet transformation and a clear 1-year periodicity emerges. The stationarity in6
the data is assessed with the Dickey-Fuller test; the decay of the estimated autocorrelation7
function and the estimated Hurst exponent indicate the presence of long-range dependence. All8
the main characteristics of the data have been properly included in a modelling structure. In9
particular, an autoregressive fractionally integrated moving average (ARFIMA) model is estimated10
and compared with the classical ARMA and ARIMA models in terms of goodness of fit and,11
secondarily, of forecast evaluation. An autoregressive model with a non-integer value of the12
differencing parameter (d = 0.278) resulted to be the most appropriate on the basis of Akaike13
Information Criterion, the diagnostic on the residuals, and the Root Mean Squared Error. The14
results suggest that there is statistically-significant evidence for not rejecting the presence of long15
memory in the radon concentration. The radon measurements are better characterised as being16
stationary, but with long memory and so the statistical dependence decays more slowly than an17
exponential decay.18
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1 INTRODUCTION
The monitoring of soil radon (222Rn) emission is a relevant topic for the risk that this radioactive gas20
poses to human health but also for its relationship with environmental and geological processes. The radon21
signals usually present a complex dynamic structure that is directly and indirectly influenced by several22
factors, such as environmental and climatic conditions of the site, characteristics of the ground soil, tide,23
solar effect, etc (Pinault and Baubron, 1996; Piersanti et al., 2015; Siino et al., 2019b). All these factors24
have a different effect on the signal, as they can result either in a trend, seasonal, or stochastic component.25
For instance, climate or tidal forces, reflect in a multiple-seasonality of the radon time series: hourly,26
diurnal, multi-day, annual, and even multi-annual cycles have been detected in different studies worldwide27
(Crockett et al., 2006, 2018; Udovičić et al., 2014; Yan et al., 2017; Siino et al., 2019b; D’Alessandro et al.,28
2020). Of particular interest is the role of Rn as a potential earthquake precursor (Barbosa et al., 2015;29
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Woith, 2015; Baskaran, 2016; Morales-Simfors et al., 2019), because the fracturing processes in the crust30
could enhance the mobility of Rn towards the surface (Toutain and Baubron, 1999; Woith, 2015). Similarly,31
anomalies can be the result of weather episodes which cannot be explained by the meteorological variables.32
Whatever the cause, these anomalies can be masked within the signal, and a way to bring them to light33
would be to de-noise the signal from the trend and/or periodic components (Baykut et al., 2010; Siino et al.,34
2019b). As a matter of fact, it is a challenging task to untangle and properly quantify all of these effects on35
the radon fluctuations because Rn time series present generally a non-stationary behaviour, not constant36
variability over time and a long-term memory (Donner et al., 2015).37
Methodologically, time series analysis techniques are proper statistical tools to extract meaningful38
characteristics from data. Moreover, because long-term records of environmental variables show often39
long-range memory, some other tools are usually applied. The fractionally integrated moving average40
models (ARFIMA(p,d,q)) have been widely used in the literature to describe meteorological variables41
(Yaya and Fashae, 2015; Bowers and Tung, 2018), pollutants and soil gas (Pan and Chen, 2008; Donner42
et al., 2015; Belbute and Pereira, 2017; Reisen et al., 2018), and hydrological time series (Montanari et al.,43
1997; Wang et al., 2007). This class of models is used when the long-term correlations in the data decay44
more slowly than an exponential form, that is a typical shape of autocorrelation in the autoregressive45
moving average (ARMA(p,q)) processes (Box et al., 2015). Furthermore, several papers investigate the46
predictability of ARFIMA model assessing multi-step ahead performance with respects to others univariate47
time series forecasting methods such as a naive method, random walk (with drift), ARMA with trend and48
seasonality, and the exponential smoothing (Papacharalampous et al., 2018a,b).49
In the literature, the radon data have been described with different methods. Dunn and Henschel (1989)50
characterise a three weeks record at an hourly frequency using simple autoregressive-moving average51
(ARMA) models. Later, the Box–Jenkins methodology often used in econometrics, was applied to describe52
five years long radon time series considering a seasonal integrated, autoregressive moving averages model53
with exogenous variables (SARIMAX) also adding external covariates such as delayed atmospheric54
parameters (Stránský and Thinová, 2017). Donner et al. (2015) present complementary methods that have55
been applied for evaluating the presence of long-range correlations and fractal scaling in environmental56
radon measurements.57
In this paper, we analyse a 3 years long radon concentration signal aiming at the assessment of a58
model which describes its dynamics with time series methodologies (Shumway and Stoffer, 2017). A59
comprehensive analysis of the seasonality structure is performed to detect clues about the stationarity60
and the presence of long-range memory in the data that could be related to geological processes. We61
estimate some ARFIMA models which explicitly consider simultaneously both the short-term and long-62
term correlation structure of the series. Moreover, we tested the forecast performance of the obtained63
models. The novelty of this analysis relies on the simultaneous estimation of seasonality and long-range64
memory in the estimation of proper ARFIMA stochastic models.65

66

2 MATERIALS AND METHODS
In this section, the time series methods used in the analysis of daily radon measurements are described67
following Shumway and Stoffer (2017) and Beran (2017). We briefly present some tools useful to check in68
an observed time series the presence of non-stationarity (in terms of seasonality and trend) and long-range69
memory behaviours.70
The seasonality behaviour in the data is studied by power spectral density based on the time-averaged71
continuous wavelet spectrogram (Daubechies, 1992; Conraria and Soares, 2011). To properly apply the72
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stochastic models, the daily radon time series is examined for the presence of stationarity. The Dickey-73
Fuller test (Dickey and Fuller, 1979) is used for this purpose to determine the presence of a unit root in an74
autoregressive model. The presence of long-range memory has been assessed on the data estimating the75
Hurst exponent (Hurst, 1950) and looking at the shape of the estimated autocorrelation coefficients for76
several lags. The presence of long-term memory can justify the estimation of the ARFIMA models, and77
their structure is also explained.78

79

2.1 Spectral analysis for seasonal detection80

In this paragraph, we briefly describe the spectral analysis in the time-frequency domain based on81
continuous wavelet transformation following the notation in Daubechies (1992) and Conraria and Soares82
(2011).83
The space L2() is the set of square integrable functions satisfying

∫ +∞
−∞ |g(t)|2dt < ∞, and denote by84

the capital letter, G(t) the Fourier transformation of a given function, G(ω) =
∫ +∞
−∞ g(t)e(−iωt)dt. A85

function ψ(t) ∈ L2(R) that satisfies the admissibility condition Ψ(0) =
∫ +∞
−∞ ψ(t)dt = 0 is called “mother86

wavelet”, and a doubly-indexed family (“wavelet daughters”) is generated by scaling and translating87
ψ(·): ψτ,s(t) = |s|−1/2ψ

(
t−τ
s

)
with s, τ ∈ and s 6= 0. In this analysis, we use the well-known, quite88

flexible, and complex-valued Morlet mother wavelet that takes the form ψ(t) = π−1/4eiωte−t
2/2. The local89

wavelet power spectrum (WPS) based on the continuous wavelet transformation (CWT) of a given function90
g(t) ∈ L2() with respect to the wavelet family91

|WPS|g(τ, s) = |Wx;ψ(τ, s)|2 =

∣∣∣∣ ∫ +∞

−∞
g(t)|s|−1/2ψ∗

(
t− τ
s

)
dt

∣∣∣∣2 (1)

where ∗ represents the complex conjugate operation, s is the scale parameter controlling the wavelet width92
and τ controls the wavelet location in the time domain. The wavelet power spectrum (1) can be interpreted93
as the local variance of the time series.94

To do a comparison with the classical spectral method, the previous quantity can be averaged over time95
(τ ) obtaining the global wavelet power spectrum,96 ∫ +∞

−∞
|Wx;ψ(τ, s)|2dτ (2)

The peaks in the global power spectral density indicate the prevalent periods in the data. In this paper,97
the wavelet transformation and the computation of the global power spectrum are computed with the98
WaveletComp package (Roesch and Schmidbauer, 2018) in the R statistical software (Team, 2005).99

100

2.2 Autocorrelation and partial autocorrelation functions101

Given a time series {yt}, the autocorrelation is the similarity between the observations as a function of102
the time lag between them. The jth order autocorrelation ρ(j) can be estimated by using the formula103

ρ̂(j) =
Ĉov(yt, yt−j)

V̂ ar(yt)
(3)
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where104

Ĉov(yt, yt−j) =
1

n− 1

n∑
t=j+1

(yt − ȳ)(yt−j − ȳ) (4)

and105

V̂ ar(yt) =
1

n− 1

n∑
t=j+1

(yt − ȳ)2 (5)

In equations 4 and 5, ȳ is the mean of the yt, and 5 is just the special case of 4 in which j = 0. The106
empirical autocorrelation function (ACF) is ρ̂(j) defined in equation 3, computed in the data as a function107
of the lag j.108
Moreover, another way to characterise the relationship between |{yt} and its lagged values is by the partial109

autocorrelation function, or PACF . The partial autocorrelation coefficient of order j, ρ(j)j measures the110
effect (linear dependence) of yt on yt−j after removing the effect of yt−1, yt−2, . . . yt−j−1 on both yt and111
yt−j . Each partial autocorrelation can be obtained as a series of regressions of the form:112

yt = γ(j) + ρ
(j)
1 yt−1 + · · ·+ ρ

(j)
j yt−j + εt (6)

The empirical PACF of order J is computed by running 6 for j = 1, . . . , J and retaining only the estimate113

ρ
(j)
j for each j. The shape of both the sample ACF and PACF provides a way to see which is the pattern of114

serial dependence, and it may help to suggest which kind of stochastic process would fit well the data.115
If {yt} presents long-range memory, the correlation function 3 decays hyperbolically showing a power law116
distribution (Höll et al., 2019). Clauset et al. (2009) give an overview of the statistical methods that can be117
used to detect and characterise power-law distribution in empirical data.118

119

2.3 The Hurst coefficient and the rescaled range (R/S) method120

The Hurst exponent (H) is an index of long-term memory of time series {yt} originally developed for121
hydrological data (Hurst, 1950; Hurst et al., 1965). It is defined in asymptotic terms of the rescaled range122
as E [R(n)/S(n)] = CnH as n → ∞, where n is the number of data points in a time series, E is the123
expected value, C is a constant, R(n) is the range of the first n cumulative deviations from the mean, and124
S(n) is their standard deviation.125
We consider the rescaled range (R/S) method to estimate H (Mandelbrot and Wallis, 1968, 1969).126
Given yt, the mean is computed (m = 1

n

∑n
i=1 yi) and the mean adjusted series xt = yt − m127

for t = 1, 2, . . . , n. Then, the cumulative series is zt =
∑t

i=1 xi and the range series is Rt =128
max (z1, z2, . . . , zt)−min (z1, z2, . . . , zt) for t = 1, 2, . . . , n. A standard deviation series S is computes129

as St =
√

1
t

∑t
i=1 (yi −m(t))2 for where m(t) is the mean for the time series values through time t. The130

following series of ratio is considered (Rt/St) for t = 1, 2, . . . , n.131
The Hurst exponent is estimated as the slope of the line between log[Rt/St] and log t. The long memory132
structure exists when 0 < H < 1. If H ≥ 1, the process has infinite variance and is non-stationary. If133
0 < H < 0.5 an anti-persistence structure exists, if 0.5 < H < 1 the series is persistence, instead when134
H = 0.5, the process is a white noise. Other methods have been proposed in the literature to detect the135
presence of long-range temporal correlations in the presence of non-stationary in the data, i.e. the detrended136
fluctuation analysis (Höll et al., 2019).137

138
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2.4 Autoregressive fractionally integrated moving average model139

Environmental data, and also radon measurements, can exhibit characteristics consistent with long-range140
memory in time series (Donner et al., 2015). Such characteristics consists in a specific structure of the141
autocorrelation function of the process.142
If {yt} presents long-range memory, the correlation function 3 decays hyperbolically, rather than showing143
the exponential decay that is a characteristic of an ARIMA(p, 0, q) process. A way of characterise long-144
range dependence in observational data is by fitting autoregressive fractionally integrated moving average145
(ARFIMA(p, d, q)) models and they are a natural extension of the classic ARIMA(p, d, q) models (Hosking,146
1981). The ARFIMA models allow to handle explicitly both the short-term and the long-term correlation147
structure of a series. Let {yt} be a stationary process, an ARFIMA(p, d, q) process where p and q are148
integers and d is real, is represented as149

φ(B)∇d(yt − xtβ) = θ(B)εt t = 1, . . . , T (7)

∇d is the fractional differencing operator ∇d = (1 − B)d =
∑∞

k=0

(d
k

)
(−B)k, B is the backward-shift150

operator defined by Byt = yt−1 and {εt} is a white noise with variance σ2ε . φ(B) = 1−φ1B−· · ·−φpBp151
and θ(B) = 1− θ1B − · · · − θqBq are the autoregressive and the moving average operators, respectively.152

Note that the binomial coefficient can be defined for real values of d,
(d
k

)
= d(d−1)(d−2)...(d−k+1)

k(k−1)(k−2)...1 for k ∈ N153

and an arbitrary d.154
The row vector xt contains the exogenous variables, and in our analysis, they are harmonic terms used to155
describe the seasonality in the radon time series. The parameter d in (7) describes the high-lag correlation156
structure of a time series while the p and q parameters are chosen to describe the low-lag correlation157
structure.158
An important aspect to assess in a time series is its stationarity; a process is defined as stationary159
when its mean, variance, or autocorrelation structure remain constant over time. For stationary series,160
d ∈ (−0.5, 0.5), and the Hurst exponent associated with the process is given by H = (2d + 1)/2.161
Consequently, long-range memory is present for d ∈(0, 0.5), while d ∈ (-0.5, 0) indicates anti-persistent162
fluctuations. When |d| > 0.5, the process is nonstationary and its variance is infinite. The process exhibits163
short memory for d = 0, corresponding to stationary and invertible ARMA (autoregressive moving average)164
model. Instead, the arbitrary restriction of d to integer values correspond to the standard autoregressive165
integrated moving average (ARIMA) model and in this case the variable is I(d) and it becomes stationary166
after d differences and it is non-stationary after d-1 differences. For instance, an I(1) variable can have a167
linear trend but no quadratic trend and it can be transformed into a stationary series with the first order168
differences. If a series exhibits long memory, it is neither stationary (I(0)) nor it is a unit root process169
(I(1)); it is an I(d) process, with d a real number.170
There are statistical tests to check stationarity, named unit root tests. The results are traditionally interpreted171
as that the effects of one-time shocks to the series are either transitory (if the series is stationary), or172
permanent (if the series is not stationary). The Dickey-Fuller test (DF) (Dickey and Fuller, 1979) tests173
the null hypothesis that the series is non-stationary, however DF only considers the dichotomy between174
stationarity and non-stationarity. The rejection of the null provides evidence for a stationary series, then175
the ARMA model can be directly applied. Instead, if the null hypothesis is accepted the series needs to be176
made stationary through differencing.177
The model in (7) is estimated with exact maximum likelihood estimation explained in Veenstra (2013)178
using the arfima package of the R statistical software (Team, 2005).179
Usually, the model selection is performed evaluating simultaneously the goodness of fit and the forecast180
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performances. The assessment of the goodness of fit can be done using the Akaike Information Criteria,181
AIC = 2k − 2ln(L) where k is the number of estimated parameters in the model (7), and L is the182
maximised value of the likelihood function for the estimated model, and the model with the smallest AIC183
value is preferred. Moreover, the assumptions of the model on the random component (εt) are checked184
assessing the constant variability, the normality assumption, and the absence of correlation structure in the185
model residuals (ε̂t).186
The model family in (7) is fitted to time series data both to understand the data and to forecast (to predict187
future points in the series). Forecast evaluation can be done when the observed values are available.188
Usually, the observed data are divided into training and test samples. The model is fitted to the training189
sample and then its k-step ahead forecast performance is evaluated on the test one. The Root Mean190
Square Errors (RMSE) is used to check the forecast accuracy of the estimated models, it is given by191
RMSE =

√∑n
i=1(yi − ỹi)2n−1 where yi is the observed value for the i-th observation and ỹi is the192

predicted one.193
194

3 RESULTS
3.1 Data195

The analysed radon time series is recorded at Pietralunga (PTRL, Italy, lat 43.44N and long 12.44E)196
between 28/09/2012 and 01/08/2015 for a total of 1038 days. The PTRL station is in a framework of near197
real-time monitoring of soil radon emission to study earthquake preparatory processes, the Italian radon198
monitoring network (IRON) (Cannelli et al., 2018). The selected station is equipped with a Lucas cell, an199
alpha scintillation detector with an acquisition window of about 2 hours (115 minutes of data acquisition200
followed by a 5 minutes standby time). In detail, the Lucas cell consists in a flask which inner surface is201
coated with silver-activated zinc sulphide (ZnS). It integrates a front-end electronics and measures radon202
concentration by counting the radon decay signals in the given acquisition window. The radon detector is203
located in a small room of a school basement, not disturbed by anthropogenic influences and without any204
kind of opening and/or aeration system. However, the pressure and the temperature could affect the radon205
measures. The PTRL site is characterized by a contained seasonal variability also if compared with other206
sites of the same network, even equipped with a borehole probe which should be more immune from such207
effects (c.f. Fig. 2 in Siino et al. (2019b)). The radon concentration is measured in Bq/m3, becquerel per208
cubic metre.209
The raw time series of the mean daily concentrations is shown in Figure 1; the measured values range210
between 20.35 Bq/m3 to 377.86 Bq/m3 and they show a clear seasonal signal connected with the211
temperature (Cannelli et al., 2018; Siino et al., 2019b), and the higher values are during the summer period.212
The 0.87% of the daily data are missing. Generally, it is a challenge to handle missing values especially for213
time series data. Two possible ways to deal with the incomplete data can be omit the entire record that214
contains information or impute the missing values. However, since a small percentage of the analysed215
data presents missing values, they are filled by the weighted moving average method with a semi-adaptive216
window of 4 days. Weighted moving averages assign a linear weighting to the data points used to perform217
the imputation.218
The data are divided into two subsets, the training set used to do the main analysis and to fit the stochastic219
models, and the test set (5% of the data identified by a vertical line in Figure 1) used to compare the models220
in terms of forecasts.221

222
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3.2 Seasonality, stationarity and long-memory detection223

We report the main results about the seasonality detection, the autocorrelation, and the long-memory224
analysis of the observed series.225
For the study of the dynamical and seasonal behaviours of the observed radon concentrations, we compute226
the spectral density analysis in the time-frequency domain based on the continuous wavelet transformation.227
The wavelet power spectrum is shown in Figure 2 where the period ranges from 16 to 512 days. The228
time-frequency regions with warm colours are characterized by high power, the black lines indicate the229
significant maxima of the undulations of the wavelet power spectrum, and they give an indication of the230
permanent cycle period. The thick black contour indicates the 90% confidence level and the lighter shade231
indicates regions inside the cone of influence due to the border effect.232
Clearly, the series exhibits transient dynamics and the magnitude of the WPS is not constant over time233
fixing a specific frequency. We can observe a high value of the spectral power density at about 1-year234
periodicity that is persistently significant. Other high-power periodicities are present, even though not235
continuous over the entire period. A medium-power, ∼ 180-day cycle is recognizable in the first half of236
the series, and a ∼ 22-day cycle characterized by high-power appears around summer 2014. These cycles237
can be also observed in the Figure 2 which shows the global wavelet power spectrum; the horizontal lines238
provide a reference at 180, and 365 days. The series shows a clear 1-year periodicity and subordinate239
periodicities at about 180-days and three weeks. The longer cycles are probably related to the annual and240
semiannual cycles of the climatic variables (temperature, pressure, and rainfall), while the ∼ 22-day cycle241
is likely ascribable to the luni-solar gravitational influence which results in a tide-effect on the flux or242
radon (see Siino et al. (2019b)). This descriptive analysis is preparatory to decide which seasonality terms243
include in the model formulation for the explanatory variables (xt in Equation 7). In particular, we consider244
harmonic terms to describe the 1-year periodicity that is the only one persistent with a constant power over245
time. Figure 2 shows the estimated curves considering a regression linear model fitted on the data with246
harmonic terms for 365-day period (with R2 coefficient equals to 0.34).247
The shapes of the correlogram and the partial correlogram provide indication about the properties of248
the time series and could indicate a plausible structure of the stochastic model in (7). In Figure 1, the249
estimated autocorrelation up to 400 lags seems to decay slower than an exponential one. Also from the250
autocorrelation, it is clear that the data exhibit a prevalent seasonal cycle which dominates the dependence251
structure. The partial autocorrelation coefficient is defined as the autocorrelation at each lag after controlling252
for the autocorrelation due to all preceding lags. It helps to determine how many AR terms (i.e., lagged253
observations as predictors) should be included in (7). If there is a sharp drop in the PACF after p lags, then254
the previous p-values are responsible for the autocorrelation in the series, and the model should include255
p autoregressive terms. In our case, the highest and also significant value is at lag 1, with a value of the256
correlation equals to 0.792, and in the following lags (p > 1) the autocorrelation coefficients are close to257
zero. It indicates that an autocorrelation term (p = 1) can be included in the model.258
The estimate of the Hurst exponent (H) with the rescaled range analysis (section 2.3) is used to assess259
the presence of long memory. The obtained value is 0.785 indicating that the mean daily measurements260
have a persistent long-memory structure since 0.5 < H < 1. In the literature, there are several results261
consistent with our analysis. For instance, in Cuculeanu et al. (1996) the determined values of Hurst’s262
coefficient (0.809) highlight a persistent behaviour of the gas. Also, Nikolopoulos et al. (2018) compute263
the rescaled-range analysis for several time intervals obtaining a persistent Hurst exponent between 0.7-0.9264
and in some periods, between 0.9-1.265
The Dickey-Fuller test is used to check the null hypothesis that the series is non-stationary, and thus, the266
rejection of the null provides evidence for a stationary series. The value of the test on the data in Figure 1267
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Table 1. Estimates of ARFIMA models with different orders where the response variable is the average
daily radon measurements in Figure 1. Model(a) is a fractional model without autoregressive and moving
average terms. Model(b) is an autoregressive model (AR(1)), with d fixed to 0. Model(c) is a fractional
autoregressive model. Model(d) is an integrated moving average model with order of integration equals to
1 (d=1). φ1 is the estimate of the autoregressive coefficient in equation 7. β1 and β2 are associated to the
harmonic terms (sin(2πtω) and cos(2πtω), where t is the time and ω = 1/365) introduced in the model 7
as external variables xt to describe the observed seasonality at 365-days. The log-likelihood, the Akaike
Information Criterion and the range of the model residuals are shown. The root mean square errors (RMSE)
for the rolling forecasts at 1-lag and 5-lag are reported. The significance of the estimates is in terms of
p-value.

Models

ARFIMA (p,d,q)

(0,d,0) (1,0,0) (1,d,0) (1,1,0)
(a) (b) (c) (d)

φ1 0.687 *** 0.347 *** -0.164 ***
(0.023) (0.056) (0.031)

d 0.488 *** 0.278 ***
(0.014) (0.045)

β1 -42.570 *** -40.101 *** -40.966 *** -52.456
(11.336) (5.007) (7.293) (82.747)

β2 34.138 *** 30.380 *** 31.942 *** 33.731
(11.256) (4.908) (7.183) (84.475)

Intercept 139.986 140.042 *** 141.287 *** -0.046
(118.533) (3.519) (11.828) (1.020)

Observations 985 985 985 985
Log Likelihood -3490.32 -3484.35 -3467.65 -3550.49
AIC 6990.635 6978.698 6947.309 7110.988
σ2 1192.12 1182.27 1143.44 1362.99
Range res. [-127.690;204.301] [-108.365;207.550] [-104.312; 204.553] [-135.772 ;214.456]
RMSE1lag 44.214 44.626 44.511 49.921
RMSE5lag 51.719 49.087 49.838 66.994

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

is -5.285 and the value of the p-value (1.53e-07) is lower than the significant level α = 0.05 and we can268
reject the null hypothesis that the series has a unit root and hence is not stationary. According to this result,269
for our data, integration (first order differences) is not necessary.270

271 3.3 Modelling results272

The obtained results indicate that the studied radon concentrations present persistent long-memory273
structure, 1-year seasonality and an absence of a trend. Also, according to the PACF, an autoregressive274
term can be appropriate to describe the short-term correlation.275
Starting from these evidences, four models are estimated and compared and all of them have the harmonic276
terms (sin(2πtω) and cos(2πtω)) as external covariates to describe the seasonality. Four candidate models277
are estimated:278

• Model(a) is a fractional model with p = q = 0, ARIMA(0, d, 0)

∇d(yt − xtβ) = εt t = 1, . . . , T
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• Model(b) is an ARMA(1, 0), so it is an autoregressive model of order 1 without differencing (also it
can be indicated as an ARIMA (1,0,0) model)

(1− φ1B)(yt − xtβ) = εt t = 1, . . . , T

• Model(c) is an ARFIMA(1, d, 0) model

(1− φ1B)∇d(yt − xtβ) = εt t = 1, . . . , T

• Model(d) is ARIMA(1, 1, 0) model with order of integration equal to d = 1

(1− φ1B)∇1(yt − xtβ) = εt t = 1, . . . , T

The Models (b), (c), and (d) have an autoregressive term (p = 1) since doing several comparisons a279
parsimonious model is obtained without moving average terms (q = 0). Only in the Models (a) and (c), the280
fractional-integration parameter is freely estimated. The estimated parameters, their standard errors, and281
significance are reported in Table 1. Also, additional information for each model such as the log-likelihood,282
the AIC, the range of the residuals, and the RMSE at 1-lag and 5-lag are shown.283
The results of the estimate models suggest that for all of them the coefficients associated to the harmonic284
terms are significant, and the comparison with the models without the external covariates are worse (the285
results are not shown).286
Examining the results of Model (a) and (c) where the parameter d is estimated varying in the real values,287
the fractional parameter for both models is between 0 and 1, thus allowing us to reject both the case of pure288
stationarity (I=0) and the unit root model (I=1). The estimated parameters are statistically significant at the289
1% level, and lie within the interval (0, 0.5). The confidence intervals for the estimated fractional-integration290
parameters are relatively narrow and always in the positive range of persistent long-memory.291
The results show that Model (c) is the best model in terms of fitting since it has the lowest AIC, and the292
shorter range of the residuals. For the RMSE at 1-lag and 5-lag forecast, Model (a) performs slightly better293
than Model (c), however, the fractional model has too simple parametrisation and it is not able to describe294
the autocorrelation dynamic in the data (see diagnostics on the residuals Figure 4 and Figure 5). The plots295
of observed and estimated values obtained with the four model at 1- and 5-lags are shown in Figure 6 and296
7, respectively.297
For all the estimated models, the assumption of constant variability along time appears respected (Figure 3)298
and there is not a marked pattern in the residuals, in particular the seasonality behaviour in the original data299
is not present (Figure 1). The residual ACF (Figure 4) and PACF (Figure 5) of the fitted Models (a), (b), and300
(d) show that there are significant estimated correlation coefficients at short lags, therefore these models301
are not adequate. Instead, for the Model (c) the residual ACF and PACF are not significant. The Ljung-Box302
test from 1 to 10 lags is computed to assess the absence of serial autocorrelation in the residuals. For the303
model (c), the null hypothesis is not rejected for all the considered lags. The q-q plot of the residuals is304
used to assess the normality assumption of the considered models. In Figure 8, for all the four models there305
is a slight departure from the normality in the tails.306

4 DISCUSSION AND CONCLUSIONS
Being sensitive to crustal stress, the soil radon discharge is widely considered as a promising earthquake307
precursor. Because of the influence of several environmental factors and local geological conditions,308
pre-seismic radon anomalies cannot be easily detected with conventional statistical methodologies.309
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The general approach is to model the observation and highlight the anomalies. This article tests a radon310
concentration time series, covering almost 3 years, for the presence of non-stationarity (seasonality and311
trend) and long-memory. Overall, our results indicate that the radon series are better characterised as being312
stationary in the trend, but with persistent long-memory and 1-year seasonality. It is widely accepted that313
the periodic annual component in radon concentration time series is correlated to the climatic variables as314
temperature, atmospheric pressure, and rainfall (Siino et al., 2019a,b; D’Alessandro et al., 2020).315
The class of ARFIMA model presented here provides a general framework for representing radon time316
series that display both short- and long-term persistence. The analysis of daily radon shows that the317
ARFIMA approach provides a better representation of the observed data with respect to the traditional318
ARMA and ARIMA models. More specifically, according to the model comparison, an ARFIMA model319
with an autoregressive term has a better fitting to the data. The estimated fractional-integration parameters320
of this ARFIMA model is positive and smaller than 0.5 (d = 0.278). It corresponds to a Hurst’s coefficient321
of H=0.778 that is consistent with the results obtained with the rescaled range analysis and in general322
with other literature results (Cuculeanu et al., 1996; Nikolopoulos et al., 2018). The proposed model has323
been also assessed in terms of its predictive capacity, however the performances are quite poor especially324
increasing the lag of prediction (moving from 1-day forecast to 5-day forecast).325
The occurrence of long-range correlation in the time series has been also tested by the application of326
Detrended Fluctuation Analysis (DFA) (Höll et al., 2019). Also, this method indicates that the radon327
concentration can be considered as coming from a fractional Gaussian noise (fGn).328
It is widely recognised that radon time series are strongly controlled by the combination between site-329
specific factors and large-scale variations (i.e. astronomical cycles) (Schery et al., 1984; Schumann et al.,330
1988; Aumento, 2002; Piersanti et al., 2015; Crockett et al., 2018). It is note worth that the proposed331
approach (based only on radon measurements) is able to describe with good reliability the data and also to332
perform short-term forecasts when accurate radon measurements are taken for a reasonably long time span.333
Model residuals could be retrospectively compared with external evidence of transitory phenomena in the334
study area (seismic, meteorological, etc.). Having available the seismic catalogue of the area, we make an335
attempt to find the relationship between the found anomalies in the radon time series and the earthquakes.336
In this case study, there is no evidence between the residuals of the fitted model and the seismicity in the337
study area. However, it should be considered the absence of any relevant earthquakes during the observation338
period, but only the occurrence of background seismicity. In fact, even though the well-known seismicity339
of the area, the larger recorded event was a Mw = 3.9 located at 9.5 km from the radon monitoring site.340
In conclusion, our findings on the long-memory nature of radon measurements have important implications341
that can be useful for further analysis. The long-memory structure is the result of a long-lasting and aperiodic342
process such as a weather episode, changes in the circulation of geofluids, ground sealing, etc. However,343
at this stage (i.e. a single time series) is not possible to propose a comprehensive physical/geological or344
physical/meteorological mechanism that could account for the long-memory in radon concentration time345
series; moreover, it would also be out of the purpose of this work. The extension of this methodology by346
applying the ARFIMA models to longer radon time series, or to series with a different measurement range,347
or recorded in other monitoring sites, could provide the missing hints.348
The proposed approach represents an effective tool to analyse radon signals, and in particular to detect349
long-range memory in the times series, which are the necessary preliminary steps to explore the relationship350
between radon anomalies and seismic activity. Finally, it would be interesting for further analysis, to351
compare the forecast of radon observations, or the identification of pre-seismic anomalies with those352
obtained with other methods such as the linear regression analysis (Stojanovska et al., 2017), the artificial353
neural network approach (Pasini and Ameli, 2003), or the decision tree method (Zhang et al., 2020). It354
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would also be interesting to consider other external covariates in the model formulation (7), such as weather355
variables (Stránský and Thinová, 2017).356
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Cuculeanu, V., Lupu, A., and Sütö, E. (1996). Fractal dimensions of the outdoor radon isotopes time series.389
Environment International 22, 171–179390

D’Alessandro, A., Scudero, S., Siino, M., Alessandro, G., and Mineo, R. (2020). Long-term monitoring391
and characterization of soil radon emission in a seismically active area. Geochemistry, Geophysics,392
Geosystems , e2020GC009061doi:https://doi.org/10.1029/2020GC009061393

Daubechies, I. (1992). Ten lectures on wavelets, vol. 61 (Siam)394
Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a395

unit root. Journal of the American statistical association 74, 427–431396
Donner, R. V., Potirakis, S. M., Barbosa, S. M., Matos, J. A., Pereira, A. J., and Neves, L. J. (2015).397

Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. The398
European Physical Journal Special Topics 224, 741–762399

Dunn, J. and Henschel, B. (1989). Statistical aspects of autoregressive-moving average models in the400
assessment of radon mitigation. Environment International 15, 247–252401
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Figure 1. (Left) Data, mean daily radon observations in Bq/m3 at Pietralunga (Umbria, Italy). The red
vertical line separates the training set and the remaining 5% of the test set. (Central) Autocorrelation
coefficient and (Right) partial autocorrelation coefficient of the time series.

Figure 2. (Left) Wavelet power spectrum of daily radon series in time-frequency domain with the CWT
method. The black contour indicates the significant period with 90% confidence level. The lighter shade
is the regions influenced by edge effects. (Central) The corresponding global power spectrum density
marginalising over time. The horizontal lines are for 180-day and 365-day periods. (Right) The grey line is
the observed time series and the black curve is the fitted linear regression model with respect to harmonic
terms to describe the 1-year periodicity.
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Figure 3. The residuals time series for the estimated Models (a), (b), (c), and (d) as labelled in Table 1.
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Figure 4. Autocorrelation coefficients of the residuals of the estimated Models (a), (b), (c), and (d)
as labelled in Table 1. The horizontal lines indicate the confidence interval at 95% for not significant
correlation coefficient.
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Figure 5. Partial autocorrelation coefficients of the estimated Models (a), (b), (c) and (d) as labelled in
Table 1. The horizontal lines indicate the 95% confidence bounds for strict white noise.
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Figure 6. Prediction at 1-lag and observed radon measurements for the estimated Models (a), (b), (c) and
(d) as labelled in Table 1.
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Figure 7. Prediction at 5-lag and observed radon measurements for the estimated Models (a), (b), (c) and
(d) as labelled in Table 1.
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Figure 8. Q-Q norm of the residuals time series for the estimated Models (a), (b), (c) and (d) as labelled in
Table 1 to check the normality assumption.
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