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Monitoring volcanic eruptions provides key information for hazard assessment and
its time evolution. Satellite remote sensing data are nowadays essential to perform
such task, thanks to their capability to survey disastrous events also in remote and
under-monitored regions, with frequent revisit time and accurate spatial resolution. Even
though satellite imageries are presently used to analyze several phenomena related to
eruptions, automatic methods and synergic exploitation of different sensors are rarely
considered. In this work, we have analyzed satellite images coming from both synthetic
aperture radar (SAR) and optical sensors, to study the effusive eruption of Fogo volcano,
Cape Verde, which took place between November 2014 and January 2015. In particular,
we have exploited multi-sensor images from Sentinel-1, COSMO-SkyMed, Landsat-
8, and Earth-Observing-1 missions, to retrieve lava flow patterns and volcanic source
parameters related to the eruption. The main outcome of our work is the application
of a new automatic change detection technique for estimating the lava field and its
temporal evolution, combining the SAR intensity and the interferometric SAR coherence.
The innovative algorithm is able to take full advantage of the Sentinel-1 mission’s 6-
day repeat cycle. Such data are here used for the first time for lava mapping, thereby
providing an unprecedented example of using the multi-temporal interferometric SAR
(InSAR) coherence to automatically monitor lava flow evolution in emergency phase.
This new technique, jointly used with optical satellite images, is capable of resolving
with spatial and temporal detail the evolution of lava flows. We have also performed
differential SAR interferometry (DInSAR) to map the ground deformation and retrieve the
feeding dyke by inverting syn-eruptive signals. Results from source modeling show a
SW-NE oriented dyke, located inside Chã das Caldeiras, SW of the Pico do Fogo. Our
work highlights how multidisciplinary and satellite open data, along with innovative and
automatic processing techniques, may be adopted for real-time hazard estimates in an
operational environment.

Keywords: lava, volcanic source modeling, synthetic aperture radar, optical images, change detection,
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INTRODUCTION

Hazards assessment in volcanic areas requires the combination
and the coordination of many instruments, techniques, and
expertise, in different fields such as volcanology, geology,
seismology, data analysis, meteorology, human sciences, and
so on. All these fields of knowledge support decision makers
and authorities to address risk reduction and improve crises
management capabilities when volcanic eruptions occur.
Volcanic eruptions are complex natural events that involve
several phenomena: lava flows, gas emission, ash dispersal
and ash fall, and other secondary effects, e.g., earthquakes,
pyroclastic flows, landslides, and lahars, producing a wide
spectrum of impacts (e.g., Bosi and MIAVITA group, 2012). In
this heterogeneous scenario, satellite remote sensing data and
the associated techniques, with their intrinsic multidisciplinary
capability, represent very powerful tools. Especially in the
present era, many sensors, in particular optical and synthetic
aperture radar (SAR), are available on several platforms
and constellation missions [e.g., European Space Agency
(ESA)—Sentinel missions, and Agenzia Spaziale Italiana (ASI)—
COSMO-SkyMed (CSK) mission], and can provide supporting
information for monitoring ongoing eruptions. However,
even though satellite imageries are intensely used, automatic
methods and synergic exploitation of different sensors are
rarely considered. Our case study is the eruption that began on
November 2014 in Fogo Island, Cape Verde. We mapped the
lava flow and its evolution with time using satellite imagery.
In particular, we exploited the complementarity of SAR and
optical images acquired by the new SAR sensor on board of
Sentinel-1mission (S1), and by optical sensors of Landsat-8 (L8)
and Earth-Observing-1 (EO-1) missions (from NASA/USGS),
plus the high-resolution capability of CSK SAR sensor. We tested
the capability of a novel change detection algorithm, based on
multiscale tiling approach, for deriving automatic surface change
maps from SAR data. Secondarily, we complemented the lava
flow analysis, with geodetic observations by means of differential
SAR interferometry (DInSAR). DInSAR data coming from
Sentinel-1 and CSK missions, have allowed mapping the ground
deformation due to the lava ascent and, by inverting them, the
estimation of the eruption source. We show how the synergic
use of multi-sensor data gathers useful information for hazards
during volcanic crisis related to both internal (i.e., the feeding
dyke) and external (e.g., lava flow) processes.

THE FOGO ERUPTION (CAPE VERDE)

Located in the NW Atlantic Ocean, at about 500 km far from
the coast of Senegal, Cape Verde is composed of 10 main islands,
some of which are inhabited. Since the first settlements in 1460,
only Fogo Island experienced volcanic eruptions. Fogo Island has
nearly conical shape, with a diameter of about 30 km, an area
of 471 km2, and a population of about 37,000 inhabitants (Faria
and Fonseca, 2014). The island is cut at about 2000 m a.s.l. by a
lateral collapse (Day et al., 1999) that formed a plateau known as
Chã das Caldeiras. About 700 farmers live in Chã das Caldeiras,

close to cone of Pico do Fogo that with its summit, reaching
2898 m a.s.l., dominates the caldera. In the last five centuries,
the eruptions occurred in the caldera, both at the summit of Pico
do Fogo and, since 1785, from fissures near its base, and were
characterized by an average recurring period of about 20 years,
and an average duration of 2 months (Ribeiro, 1960; Day et al.,
2000). The most relevant hazard in Fogo is the lava flow, in
particular inside Chã das Caldeiras, and in the steep eastern coast
where 30% of inhabitants live (Faria and Fonseca, 2014 and the
references therein). Indeed, in 1951, the lava flow destroyed a
village on the eastern coast, and in 1995 (Amelung and Day,
2002) and lastly in 2014 the villages inside Chã das Caldeiras were
destroyed. In such hazardous context, the monitoring of lava flow
and its evolution in time can be of crucial importance to provide
useful information for planning rescue activities and save lives.

The last eruption in Fogo started on 23 November 2014 and
lasted 78 days, and was characterized by an effusive activity
originated from a fissure located at the base of Pico do Fogo,
spreading the lava in Chã das Caldeiras. The lava flow traveled to
the SW, and then was split into two main lobes toward NW and S
(González et al., 2015; Cappello et al., 2016; Calvari et al., 2018).

DATA AND METHODS

A total of 21 images were used to map the lava emplacement in
Chã das Caldeiras, nine from Sentinel-1A (S1A), six from CSK,
and the remaining six from multispectral sensors on board of
EO-1 (three images) and L8 (three images). Table 1 shows the
available dataset, divided by type and by orbit.

The optical dataset was used to perform the analysis of lava
filed that occurred in Chã das Caldeiras. SAR imagery was used
for a twofold objective: the automatic change detection by means
of hierarchical-split-based approach (HSBA, Chini et al., 2017), to
map the lava occurrence, and the retrieval of the volcanic source
by taking advantage of SAR interferometry technique.

LAVA EMPLACEMENT ANALYSIS

SAR Data Exploitation
Synthetic aperture radar data occupy a privileged place as regards
change detection algorithms thanks to the sensitivity of the
backscattering toward differences in land covers and their quasi-
all weather, day/night observation capacity. For these reasons,
SAR-based change detection (SAR-CD) was developed over many
years to provide useful and reliable information on land surface
changes that occur across different temporal and spatial scales
(Bovolo and Bruzzone, 2005). SAR-CD usually finds different
domain of application, and in particular for all concerns natural
hazard related to floods (Chini et al., 2013), volcanoes (Bignami
et al., 2013; Valade et al., 2019), earthquakes (Pierdicca et al.,
2018), and tsunamis (Chini et al., 2008). SAR-CD algorithms
typically generates the difference image and then classifies it,
which consists of a binary classification problem, aiming at
separating the change and the no change classes (hereafter CC
and NCC) (Ajadi et al., 2016). To do this, histogram thresholding
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TABLE 1 | Available satellite dataset.

Mission Sensor Date of acquisition Orbit direction

Sentinel-1 SAR 2014/11/03* Ascending

Sentinel-1 SAR 2014/11/08* Descending

Sentinel-1 SAR 2014/11/27* Ascending

Sentinel-1 SAR 2014/12/02* Descending

Sentinel-1 SAR 2014/12/09 Ascending

Sentinel-1 SAR 2014/12/14 Descending

Sentinel-1 SAR 2014/12/21 Ascending

Sentinel-1 SAR 2014/12/26 Descending

Sentinel-1 SAR 2015/01/02 Ascending

Lansat-8 OLI 2014/10/23 Descending

Lansat-8 OLI 2014/11/24 Descending

Earth-Observing-1 ALI 2014/12/16 Descending

Earth-Observing-1 ALI 2014/12/18 Descending

Earth-Observing-1 ALI 2014/12/24 Descending

Lansat-8 OLI 2015/01/11 Descending

COSMO-SkyMed SAR 2014/11/21* Ascending

COSMO-SkyMed SAR 2014/11/29* Ascending

COSMO-SkyMed SAR 2014/11/30 Ascending

COSMO-SkyMed SAR 2014/11/21* Descending

COSMO-SkyMed SAR 2014/11/29* Descending

COSMO-SkyMed SAR 2014/12/07 Descending

OLI: Operational Land Imager; ALI: Advanced Land Imager. The * identifies the
images of the interferograms used for the geodetic modeling.

is one of the most commonly used methods (Rosin, 2002),
having as a critical step the selection of an adequate threshold,
affecting directly the classification results. Parametric approaches
usually fit the probability density function (PDF) of CC and NCC
(PDFCC and PDFNCC), which are assumed Gaussian, and then set
the threshold where the two PDFs intersect (Bruzzone and Prieto,
2002). The classification accuracy heavily depends on the classes
proportions within the scene and the overlap between the two
PDFs. When CC and NCC are strongly unbalanced, it is difficult
to robustly parameterize their PDFs, while the amount of overlap
between PDFs directly affects the under- and over-detection.
Here, to overcome the two aforementioned drawbacks, we used
an adaptive threshold approach previously developed to map
floodwater (Chini et al., 2017), and also applied to map buildings
(Chini et al., 2018). The approach is composed of two main steps.
It first parameterizes the PDFCC and PDFNCC, and then based on
the two PDFs iteratively applies thresholding and region-growing
to find the best threshold for seeds (THS) and the one for stopping
the region growing (THSRG). The PDFs parameterization is
performed by HSBA (Chini et al., 2017), which identifies regions,
or tiles, of the image where the PDFCC and PDFNCC can be fitted
more reliably and accurately. The size of the tiles depends on the
possibility of parameterizing the PDFs attributed to two different
classes. HSBA starts with bigger tiles, which reduce successively,
depending on the spatial extension of changes on the surface with
respect to the entire image. HSBA starts from the entire image
and then reduce the tile size following a quad-tree decomposition
of the image. In the second step, in order to reduce class overlap
effects on the final classification, spatial information is introduced

on the selection of the best threshold (Haralick and Shapiro,
1985). The latter is done by a region-growing approach assuming
that pixels constituting CC are clustered rather than randomly
spread out over the entire image (Giustarini et al., 2013; Chini
et al., 2017). Therefore, we first classify as CC those pixels that
have high magnitude of change and then we add to CC those
pixels with a lower magnitude of change but which are spatially
contiguous to the first guesses. To do this, we use the region-
growing algorithm, where the PDFCC and PDFNCC will drive
the selection of THS and THSRG. THS selects seeds, i.e., pixels
with high change of magnitude. We can set THS to the mean
value of PDFCC, which are pixels with a high probability to
belong to CC. In order to select THSRG, different thresholds are
tested. The choice is based on the minimization of the root-mean-
squared error between the PDFCC and the histogram resulting
from the region growing. The two thresholds are automatically
selected in those areas defined by HSBA, and then they are
applied to the entire image to get the final classification. This
SAR-CD algorithm is applied to the intensity difference image
(hereafter IDI), which is the difference between the two log-
transformed images acquired on two different instants. The IDI
registers changes in the roughness and the dielectric constant of
the surface. In this particular case, the images acquired after the
event onset were subtracted to the images acquired before the
event, and the change image was mainly detecting an increase
of the backscattering on those areas where new lava was flowing
from the vent down to Chã das Caldeiras. This was probably due
to the increased of roughness of the surface.

Another import SAR-related feature frequently used as change
detector is the InSAR coherence. This quantity is mostly
influenced by the phase difference between radar returns, a
distinctive parameter measured by a coherent sensor such as
SAR, and it is particularly related to the spatial arrangement of
the scatterers within the pixel and thus to their possible random
displacements. Its high sensitivity to surface changes is well-
documented and enables the detection of damages caused by
catastrophic events such as volcano eruptions, earthquakes, and
floods (e.g., Hoffmann, 2007; Chini et al., 2012; Valade et al.,
2019). Compared to the SAR intensity, the coherence sensitivity
to surface changes is much higher, because even a target rotation
can create a temporal decorrelation, while to detect changes in
the intensity, it is necessary that the roughness and the dielectric
properties of surface change. We compared the IDI with an
InSAR coherence image (hereafter ICI) computed using the same
couple of images, and although both localize the change in the
same region, in Figure 1 is possible to appreciate that the spatial
extensions are not the same. The ICI (Figure 1B) is showing
more changes with respect to the IDI (Figure 1A), and this could
be due to the surface sliding of the lava flow without producing
a substantial change to the surface roughness detectable by the
intensity. It is worth noting that the change depicted by coherence
includes the change detected by intensity, having a bigger extent.
Moreover, the spatial transition of coherence values from low to
high is quite sharp, and this is because the incoherent surface
movement produced by the lava flow is quite important. Based on
these evidences, we integrated the InSAR coherence information
to that one provided by intensity reapplying a region growing
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FIGURE 1 | Inputs, intermediate products, and final change map. (A) False color combination of SAR intensity images: R = pre-eruption SAR image on 2014/11/03,
G = B = post-eruption SAR image on 2015/01/02. (B) ICI. (C) Detail of false color combination in A. (D) Detail of ICI. (E) IDI. (F) Intermediate HSBA output using IDI
only. (G) Final HSBA output using IDI and ICI.

on the ICI. In this case, the seeds are those pixels depicted as
change by the intensity and the rule to stop the growing is the
standard deviation of seeds plus an epsilon. The rule to use the
change maps from intensity as seed for the region growing on the
coherence is motivated by the fact the coherence drop-off occurs
also for reasons other than lava flow, e.g., vegetated areas (Valade
et al., 2019). Indeed, looking at the coherence map in Figure 1B,
the effect of the vegetation is quite evident in many areas (NNE
zones of the volcano). Therefore, it is necessary to circumscribe
the coherence loss only to those areas where a change in the
SAR intensity has also occurred. In Figure 1, the inputs, the
intermediate products, and the final change map are depicted.
The latter obtained as a combination of IDI and ICI features. The
increase in the intensity values is shown in Figure 1C (cyan areas)
and in Figure 1E (white areas), while the decrease of coherence is
in Figure 1D (dark areas), where it is highlighted that the InSAR
coherence is detecting more changes than the only intensity.
Figure 1F shows the intermediate product resulting from the IDI,
while the final map is shown in Figure 1G, where the ICI was
also integrated. The overall scheme for integrating ICI and IDI is
reported in Figure 2.

It is worth to recall the S1 enhanced observational capabilities
which reduce the drawbacks of previous moderate resolution
SAR images and potentially enable the fully exploitation
of the InSAR coherence capabilities for identifying surface
changes. The high repeat cycle (i.e., small temporal baseline)
and the relatively narrow orbit tube (i.e., small perpendicular
interferometric baseline) of S1 mission reduce the temporal and
the spatial decorrelation in vegetated areas and in the presence
of structures with geometrical complexity, respectively. These
peculiar characteristics of S1 have recently even enabled the
detection of floodwater in urban areas using InSAR coherence
(Chini et al., 2019), areas so far blind at 20 m spatial resolution.

Finally, SAR images captured by S1A spacecraft have been
used for the first time to map the lava field in the caldera
during the Pico do Fogo eruption. The dataset is composed of
images in the innovative Terrain Observation with Progressive
Scans SAR—TOPSAR—acquisition mode [aka Interferometric
Wide (IW) swath]. The Fogo eruption is the first volcanic event
captured by S1A mission in TOPSAR mode, and it was the first
case study where SAR interferometry was applied to this very
new imaging scan (González et al., 2015). Both ascending and
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FIGURE 2 | Workflow of the change detection algorithm based on HSBA. See main text for acronyms definition.

descending orbit data were processed to estimate the lava flow
coverage in the period between the eruption’s onset and the last
S1A image dated 2 January 2015. In addition to S1A data, we have
taken advantage of CSK imageries. These data are high-resolution
SAR images, at 3 m per pixel (full resolution). The TOPSAR
images allowed the generation of seven change detection maps,
four for the ascending data, and three for the descending ones.
It is worth to note that the CSK were used to obtain some
additional change maps but, unfortunately, they did not provide
more information than those already provided by the S1 dataset.

The resulting change detection maps, from SAR intensity
and phase coherence features, allowed the generation of the
time series of lava emplacement (Figure 3). To do this, we
computed the change maps using separately ascending and
descending orbits, respectively. The change intensity images were
all calculated with respect to the first available image of the time
series (SARi–SAR0), which is the one acquired before the event
started. Instead, the InSAR coherence maps were calculated using
two consecutive SAR images in order to reduce the temporal
baseline, then the temporal decorrelation in vegetated areas.

Optical Data Exploitation
Multispectral satellite data, at medium spatial resolution (30 m)
pixel, were acquired by EO-1 and L8 satellites. The EO-1 satellite
was 1-year technology validation/demonstration mission that
was extended due to its successful results. EO-1 is equipped
with an Advanced Land Imager (ALI) instrument to validate and
demonstrate technology for the Landsat Data Continuity Mission
(LDCM) and Hyperion hyperspectral sensor1. L82 is a joint
initiative between NASA and USGS, and it is equipped with two
push-broom instruments: the Operational Land Imager (OLI)
and the Thermal Infrared Sensor (TIRS). We have employed the

1https://eo1.gsfc.nasa.gov/
2http://landsat.gsfc.nasa.gov/landsat-8

bands positioned in visible (VIS), near infrared (NIR), and short
wave infrared (SWIR) of the electromagnetic spectrum, to map
the flow-field evolution.

In particular, the SWIR (2.2 µm), VNIR (1.6 µm), VNIR-
Green (0.56 µm) of both L8-OLI and EO-1-ALI data were used to
create a false color composite for Red, Green, and Blue channels,
respectively (Figure 4). These false color images (similar to
natural colors) visually enhance some features allowing to outline
lava flows which appear black and brown in the images while
vegetated areas appear green. Active lava flows (hot lava) show
a change in color from red to yellow as a result of an increase
in the temperature of the crustal component and/or an increase
in the areas of high temperature fractures (Wright et al., 2001).
In addition, clouds appear white in the images, while the plumes
colored in blue can be related to gases emitted by the volcano
(e.g., SO2) (Flynn et al., 2000; Flynn et al., 2001; Lee et al., 2015).
Figure 4B shows the active flow field on 24 November 2014, 1 day
after the beginning of the eruption. Active lava flows from the
eruptive fissure bifurcate originating two lava flows, one moving
to the North in the direction of Portela and Bangaeira villages,
and a second flow directed to South. The red haze surrounding
the flows is a combined effect of smearing, i.e., high radiant pixels
into adjacent pixels (Rothery et al., 1988), leading to an over
representation of the size of the anomaly (Wright et al., 2001).

Lava flow mapping by using multispectral sensors relies
generally on near-IR bands (1.6–2.2 µm) to map hot lava flow,
and on Thermal IR bands (10–11 µm) to map cooling lava which
tends to form lava tubes (Flynn et al., 1994). In this context,
because of ALI sensor has not thermal infrared bands and L8-
TIRS bands have a spatial resolution of 100 m per pixel, we
have used two different approaches to map active and cooling
lava flows. L8 and ALI images were synergically used to produce
the chrono-contour of active lava flow (Figure 5) by visually
inspecting the images at their best zoom (Flynn et al., 2001). The
change detection was produced to explore the possibility to derive
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FIGURE 3 | Temporal evolution of the deposited lava obtained by using HSBA algorithm applied to S1 images. The figure shows the area affected by erupted lava at
each S1 overpass, in different colors, on ascending and descending orbit. Both intensity and phase coherence data were processed.

additional information on cooling flow-fields besides hot lava
characterization obtained by the optical multi-sensors time series.

In order to implement the change detection, the images
were previously converted into reflectance, and to improve
the spatial resolution of multispectral channels, we adopted
the pan-sharpening Graham–Smidth method implemented in
ENVI© software for resampling the bands originally at 30 m
resolution into the 15 m resolution of L8-OLI panchromatic
channel (band 8).

The pan-sharpened SWIR channel of L8-OLI was used to
calculate a change detection map between the images captured

on 23 October 2014 and 11 January 2015 (Figure 6) using
the automatic co-registration option offered by ENVI©. Several
bands were tested and best result was obtained by using the
band 7. The change detection map highlights in gray scale the
subsequent lava flows. The color of lava flow from light gray pixels
to dark pixel can indicate a combined effect of lava thickness,
composition and cooling areas. The thermal L8-TIRS band, at
10 µm and with a spatial resolution of 100 m, acquired on 11
January 2015 was used to support the interpretation regarding the
cooling effect, although the TIR imagery is affected by reflectance
component being acquired at daytime (see Figure 6 inset).
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FIGURE 4 | False color representations of optical dataset (see main text for RGB assignment). (A) pre-eruptive (23 October 2014) image acquired by L8. (B) L8
acquired on 24 November 2014: it shows two active fresh lava flows. Bright yellow-orange pixels illustrate areas of very high temperature of crustal component
and/or an increase in the areas of high temperature fractures and bright green pixels within the lava flow are related to saturated signal. (C) EO-1 image acquired on
16 December 2014; shows the advancement of the lava flow on west and north. (D) EO-1 acquired on 18 December 2014. (E) EO-1 acquired on 24 December
2014. (F) L8 image acquired on 11 January 2015.
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FIGURE 5 | Active lava perimeters derived by visual delineation of L8-OLI and
EO1-ALI SWIR bands and change image from October 2014–January 2015
L8 data provide the flow fields evolution.

FIGURE 6 | The results of SWIR pan-sharp change detection between pre-
(October 2014) and post-eruption (January 2015) data. The inset (top right)
shows the L8-TIRS thermal band at 10 µm (January 2015). The variation of
the gray tones mainly results by chronology, and cooling phases. The yellow
polygon was drawn to highlight the detected whole change by visual
inspection.

Lava Field Emplacement Evolution
The results about emitted lava estimated by SAR and optical
images were compared in order to assess their capability to

monitor the temporal evolution of the event. The plot reported
in Figure 7 shows four lines indicating the lava coverage in
square km at each satellite time acquisition. The green and yellow
lines refer to SAR data results, the blue line is the analysis
performed with optical dataset, and the red one corresponds to
the evaluation done by the Emergency Mapping Service (EMS) of
Copernicus3 by exploiting satellite images acquired by very high
resolution sensors from many space missions.

Optical analysis has a very similar trend with respect to EMS
data, showing a very close effusion rate (0.10 km2/day for our data
and 0.083 km2/day for EMS) and few square km of bias (about
1 km2) at the early stage of the effusion. These small discrepancies
can be attributed to the ground resolution of the images used for
the two estimates, i.e., medium resolution sensors in our dataset
vs. very high resolution sensors in EMS study.

Synthetic aperture radar intensity only estimates the
superficial effusion rate and lava total area smaller with respect
to the one estimated from the other two datasets (green curve
in Figure 7). The lava flow is a complex surface scenario, which
cannot be explained with only change in roughness of the
surface, which is the ground parameter that strongly affects SAR
intensity signal. We think that the new emitted lava does not
completely change the roughness of the soils, because the area
of Chã das Caldeiras was already covered by lava (from previous
eruptions) that can be characterized by similar texture. This can
partially explain why the SAR intensity is underestimating it.
Considering the SAR intensity and coherence results (yellow
trend in Figure 7), two different temporal phases on the
evolution of the surface changes are highlighted. The first section
concerns the coverage estimation before the third SAR image
taken on 9 December 2014. In this phase, SAR change detection
underestimates the coverage with respect to the EMS maps.
Actually, these set of data do not take into account the InSAR
coherence information because the first two change coherence
maps are related to SAR pairs that have a high temporal baseline,
i.e., 24 days of separation (either ascending or descending pairs).
For these maps, the coherence loss is not only due to changes in
surface scattering because of lava emplacement, but also because
of the effects of temporal decorrelation due to changes in the
vegetation cover (Zebker and Villasenor, 1992). Moreover, in this
first phase, the volcanic cloud was still present, and it represents
another source of coherence loss (Jung et al., 2016). Therefore,
we omitted the first two coherence maps because the decrease
of coherence was also due to reasons other than lava within
the caldera of Fogo Island (see Supplementary Figure S1). The
second section of the trend (after 9 December 2014) concerns
the merged information coming from both SAR intensity and
coherence change maps. In this part, SAR results overestimate
EMS results, and the total area coverage is 4 km2 larger than the
one measured by SAR intensity only (green line). Maps reported
in Figure 3 show where the overestimation occurred, and
probably it is due to the InSAR coherence feature. The pictures
highlight that the algorithm identifies some changes on the Pico
do Fogo flanks (north sector) and few “false alarm” pixels in the
northwest of Chã das Caldeiras (see lava coverage for dates 9 and

3https://emergency.copernicus.eu/
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FIGURE 7 | Lava coverage trend from 24 November 2014 to 11 January 2015.

14 December 2014, in Figure 3). We calculated, by manually
delineating “false alarms” areas, that the surface extension of
these areas is about 2 km2, which basically corresponds to the
overestimation with respect to EMS maps and optical analysis.
These changes, which were detected by S1 InSAR coherence drop
off, are not mapped using other datasets. It is worth considering
that here a “real ground truth” is not available, hence, in case
we assume that S1 intensity and coherence method overestimate
the surface effusion rate, a possible reason for coherence loss is
still the presence of the volcanic cloud4 (multispectral images
in Figure 4), as discussed by Jung et al. (2016). Although SAR
coherence seems to overestimate the lava emplacement, the
information carried out by such feature is extremely useful to
compensate the systematic underestimation of SAR intensity
data only. This is clearly reported in Figure 7, where the line
related to the SAR intensity only (in green) is constantly below
the estimates from optical and EMS data. It is also important
to point out that the results from S1 data are obtained using a
completely automatic procedure and with lower resolution data,
with respect to those from other datasets. Results clearly show
the synergic role of SAR intensity and SAR InSAR coherence
for lava mapping.

VOLCANIC SOURCE MODELING

Beside the change detection approach, S1 and CSK images were
also exploited to map the ground deformation caused by the

4https://volcano.si.edu/volcano.cfm?vn=384010

eruption. The master–slave images for each sensor and orbit are
evidenced in Table 1, and they are all syn-eruptive. For this
purpose, we processed the data by means of classical DInSAR
(Zebker et al., 1994), and we calculated four interferograms.
The SRTM DEM (Farr et al., 2007) was used to remove the
topographic phase contribution, and the multi-looking technique
was applied to reduce noise and to obtain products sampled
at a square pixel size of 20 × 20 and 15 × 15 m2 for S1 and
CSK, respectively. Even though the two SAR systems operate
with different bands (C and X band) and with different incidence
angles (S1 at about 43.5◦ on ascending orbit and 35◦ on
descending orbit; CSK at about 20◦ for both ascending and
descending images), the patterns of the ground displacement
are coherent (Figure 8). Indeed, inside the caldera, two lobes
of deformation are visible on both S1 and CSK ascending
interferograms. It is also worth to note the fringe pattern that is
present on the south flank of Pico do Fogo on both S1 and CSK
descending data. Of course, the fringe rate is different because of
the different wavelengths.

These ground deformation estimates were exploited to retrieve
the volcanic source modeling and to constrain the syn-eruptive
feeding dyke. The four interferograms are subsampled with a
step of 180 m in the inner caldera of Fogo, and 540 m outside,
for a total of about 13,000 datapoints. The inversions were
performed by means of the Volcano and Seismic source Modeling
(VSM) tool (Trasatti, 2019). The code allows considering
several analytical models of volcanic source, whose parameters
are retrieved by non-linear inversion. The inversion is then
followed by an appraisal stage based on a Bayesian approach
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FIGURE 8 | Wrapped interferograms obtained from S1 ascending (A), S1 descending (B), CSK ascending (C), and CSK descending (D) images. Two lobes of
deformation are visible on both S1 and CSK ascending interferograms within the caldera. The south flank of Pico do Fogo is characterized by a very similar fringe
arrangement, on S1 and CSK descending data.

aimed at finding the most probable parameters (instead the
single best-fit model), obtaining posterior PDF (Sambridge,
1999). Several attempts were computed in order to find the
most suitable geometrical source to reproduce the observed
data. We find that pressurized sources such as a sphere or a
spheroid are not suitable since they are unable to reproduce
the wide negative line of sight (LOS) area in the eastern

sector of the volcano. Instead, an opening dyke (Okada, 1992)
reproduces the highest LOS values reaching 9–12 cm (opposite
signs in the ascending/descending orbits, being the movement
horizontal) and the corresponding opposite lobes (Figure 9 and
Supplementary Figure S2 for CSK data). The misfit obtained,
based on the chi-squared function, amounts to 14.8, while
the null solution relating data to their uncertainties is 25.5.
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FIGURE 9 | Results of the VSM inversion. Comparison between observed (a,d) and modeled (b,e) data, and residuals (c,f) in ascending and descending orbits of
S1 satellites. The black line is the surface projection of the feeding dyke. E and N are UTM projection, zone 27. The brownish transparency is the lava from SWIR
pan-sharp change detection. Similar results for CSK mission are shown in Supplementary Figure S2.

The dyke, whose trace is represented with the black line in
Figure 9, is SW-NE oriented, and it is located inside Chã das
Caldeiras, SW of the Pico do Fogo. Our results show that it
slightly dips of 86◦ toward SE, and opens about 60 cm, for a
total volume change of 2.0 ± 0.6 106 m3 in the observation
time span (i.e., one month baseline and up to 8 days after
the start of the eruption). The mean parameters’ values are
reported in Table 2, while the posterior PDFs are reported
in Supplementary Figure S3. The top depth of the dyke was
fixed at 100 m below the Fogo’s mean altitude. Figure 9 also
shows the agreement between the constrained lava flow and
the surface projection of the feeding dyke retrieved by an
independent technique.

DISCUSSION

We have presented the results of a novel automatic technique to
estimate the lava flow propagation during the effusive eruption
of Fogo, adopting a multi-sensor approach. The area coverage
obtained by visual analysis of medium resolution imagery (L8
and EO-1) is estimated equal to 4.97 km2, in line with the results

of EMS and by Cappello et al. (2016). This value is very close
to the one estimated with more sophisticated techniques that
require more computational efforts or in situ measurements,
such as differential DEM (Bagnardi et al., 2016), and Terrestrial
Laser Scanner (TLS) combined with structure from motion data
(Richter et al., 2016). Bagnardi et al. (2016) and Richter et al.
(2016) estimate a lava coverage for this eruption of 4.8 and
4.85 km2, respectively, i.e., about 0.1 km2 of difference with
respect our results. This demonstrates that optical moderate
resolution data are quite informative for this kind of application
and are able to provide a cinematic estimate of lava emplacement.
The temporal evolution information provided by the proposed
approach can be delivered during an emergency phase. On
the contrary, techniques such as DEM difference that require
stereoscopic optical images, or TLS, that is based on field
campaigns, are often prevented when an eruption is ongoing
(e.g., with volcanic clouds and active lava flows). SAR data,
on the other side, play a key role in such context, when
prompt information is important for human rescue purposes,
because of their all-weather and day-night capabilities, and their
intrinsic suitability for a full automatic generation of change
detection product. The HSBA presented in our work is more
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TABLE 2 | Mean values of the dyke parameters as retrieved by the VSM tool.

E (km) N (km) L (m) W (m) Strike (◦) Dip (◦) Opening (m)

138.85 ± 0.2 1654.45 ± 0.2 1330 ± 150 2560 ± 250 48 ± 3 86 ± 5 0.58 ± 0.05

E and N are UTM projection, zone 27. L and W are the length and width of the dyke, respectively.

than a proof of concept of an operational tool, as in the case
of flood mapping (Chini et al., 2017). The accuracy of SAR
intensity and InSAR coherence lava maps seems to be lower than
other approaches, giving under- and over-estimation of the total
lava, at the beginning and at the end of the eruption (about
2 km2), respectively. Of course, results from other methods
based on earth observation data too are affected by errors as
well. Moreover, it is worth to note that S1 mission was not
fully operational at the time of Fogo eruption. Indeed, only one
satellite was orbiting at that time, so that the temporal baseline
between two consecutive acquisitions was twelve days (with two
satellites it is reduced to 6 days). This latter is an important
parameter for reducing false alarms caused by vegetation when
InSAR coherence is used. The opportunity offered by SAR
constellation missions, as in the case of ESA’s S1, with weekly
delivered acquisitions (or even more frequent as in the case of
the CSK mission) was shown. Still some efforts have to be put in
place to improve the results, correcting false alarms, and tuning
algorithms, considering that volcanic areas during an eruption
phase are quite challenging scenarios since different phenomena
occur (e.g., ash and gas emissions). In synthesis, the comparison
between the lava mapping results obtained from optical and SAR
data suggests their possible automatic integration for supporting
a crisis phase. Indeed, more complex approaches, such as DEM
difference or TLS, even though they are expected to be more
accurate (e.g., giving volume estimates too) cannot be applied
easily or automatically when an eruption is ongoing. Despite
some discrepancies are present in the analysis shown above,
the synergic use of optical and SAR data could provide high-
rate (almost daily) temporal information about lava evolution,
thanks to the complementarity of such sensors, and automation
of data processing.

The feeding dyke constrained by the geodetic inversion is
located SW of the Pico do Fogo summit, in accordance with
the area of the lava flow mapped by SAR change detection
and optical images. The eruptive vent location follows the
favorable calculated post-collapse stress field within the local
crust (Maccaferri et al., 2017). The retrieved dyke shares position
and dimension with previous analyses (González et al., 2015;
Bagnardi et al., 2016) of the 2014–2015 eruption, and of the 1995
eruption (Amelung and Day, 2002). The volumes of the retrieved
inflating dykes are comparable within uncertainty, being 3 ± 2
106 m3 that inferred by González et al. (2015). The syn-eruptive
dyke is referred for the 3–8 days of the eruption, being the
SAR slave images taken on the 27th, 29th November, and 2nd
December (Table 1), while the eruption lasted for 78 days. Even
considering the area and volumes related to the first days of
the eruption (one to few tens of 106 m3, Bagnardi et al., 2016;
Cappello et al., 2016; Calvari et al., 2018), the magma volume
intruded is still only a small fraction of the erupted volume. This

suggests that the shallow dyke inferred from SAR data is the
lateral, sub-vertical pathway of the magma to be erupted and it
is not representative of the volume actually extruded. From one
hand, this is confirmed by the lack of pre-eruptive deformation
and deflation after the end of the eruption (González et al.,
2015), and from other hand, by the development of tubes (Calvari
et al., 2018). We can conclude that the lava flow extension and
volume, and the retrieved feeding dyke volume are not directly
connected. Instead, we demonstrate that the full exploitation
of SAR data allows quantifying multi-hazards in volcanic areas
during eruptions.

As a final remark, a deeper magmatic source feeding the
eruption was not retrieved both for the 1995 and 2014–
2015 events (Amelung and Day, 2002; González et al., 2015).
The eruptions at Fogo are fed by mantle-lithospheric source,
according to petrological and geochemical data, assumed
to be located below 16 km depth (Hildner et al., 2011;
Calvari et al., 2018).

CONCLUSION

The present work is a multidisciplinary and multi-sensor study
of the main hazards related to the 2014–2015 Fogo Island
effusive eruption. In particular, we propose an innovative and
automatic method to exploit SAR data, and their joint use
with optical imageries to map the lava field emplacement. For
these purposes, we have used the images acquired by the ESA’s
S1, ASI’s CSK, and NASA/USGS L8 and EO-1 missions. The
comparative and synergic use of this multi-sensor dataset has
allowed estimating the temporal evolution of lava coverage in
the Chã das Caldeiras by applying visual inspection of optical
imagery and by testing the capability of a novel automatic change
detection algorithm using SAR data. Our improved change
detection algorithm is based on multiscale tiling approach to
identify changes occurred on the SAR intensity and it combines
information from the InSAR coherence to detect changes which
are not directly related to changes on surface roughness. The
approach is completely automatic and adaptive, showing high
capability to detect different extent of lava flows. The lava flow
analysis was then complemented by the geodetic observations.
Indeed, thanks to DInSAR we have mapped the whole ground
deformation due to the lava ascent. By inverting them, we have
also identified the dyke feeding the eruption. The achieved
results are in agreement with previous findings, even if based
on different dataset and methods. We demonstrate how open
access multi-sensor satellite imagery can be used in synergy to
provide hazard information in an operational environment, when
volcanic activity limits the use of single sensor data and/or on
field measurements.
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