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Abstract

In this paper we propose a new method for finding similarity of effects in a

multivariate regression context. Using quantile regression, the effect of each

covariate on a response variable is represented as a function of percentiles. Col-

lecting all these curves, describing the effects of each covariate on the response,

we could assess if there are covariates with similar effects. Moreover, we provide

a flexible algorithm which could be used not only for clustering the coefficient

effects of a quantile regression framework, but also for finding clusters of generic

curves. We provide also some simulated results and applications on real data,

highlighting the flexibility of the proposed approach in several research fields.

Keywords: quantile regression coefficients modelling, multivariate analysis,

functional data, curves clustering

1. Introduction1

In this paper we focus on a new method for classifying effects in general2

dependence models. Indeed, a first interest of research could be the comparison3

among explanations of different models, that is, if the coefficients associated to4

a set of covariates with different responses are different. Another interest could5

be to check if there are covariates with similar effects with respect to the same6
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response. Simple t-tests following the ANOVA theory are usually considered to7

compare coefficients effects for pooled data, that is, accounting also for some8

grouping variable. Extended procedures used to compare regression coefficients9

across models (both linear and generalized linear models) are proposed in [5].10

The novelty of the proposed approach is related to a new perspective of11

comparison, focusing not only on single coefficient effect, but on curves effects,12

result of a quantile regression fitting.13

Looking for curve similarity could be a complex issue characterized by sub-14

jective choices related to the continuous transformation of observed discrete15

data. Here, this problem is handled with the introduction of a new, simple and16

efficient procedure, based on a similarity measure between curves. The vari-17

ability among curves can be distinguished in two components: phase variability18

(removed after the alignment of the curves) and amplitude variability [19].19

The complex problem of curves clustering is strictly related to the idea of20

curves alignment, that is studied in different fields: this is referred to as “curve21

registration” in statistics [20, 16], “time warping” in engineering [22] and “struc-22

tural averaging” in the context of computing an average curve [12]. A more23

general approach is based on the alignment of curves using a target function to24

which each one has to be registered with respect to some local features or based25

on the minimization of some measure like the average squared distance between26

each curve and the target function [20]. [16] used a Procrustes fitting procedure27

[9] to provide maximal alignment to the target function, subject to the suitable28

smoothness of the transformations. [3] introduced a simple procedure to iden-29

tify clusters of multivariate waveforms based on a simultaneous assignation and30

alignment procedure. More general methods for curves clustering have been pro-31

posed in the literature. [11] introduced a method for finding similarities among32

functions by equating the moments between all curves. This problem can be cru-33

cial in several contexts. A new approach based on the trimmed K-means Robust34

Curve Clustering proposed by [8] is introduced in [2], considering a functional35

principal component rotation of data [17]. This approach has been extended36

in [4], where the authors focused on finding clusters of multidimensional curves37
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with spatio-temporal structure.38

All the above mentioned methods have been defined in a slight different39

context with respect to the one we consider here. Indeed, the proposed approach40

looks for similarities among curves of effects in a quantile regression. These41

curves have typically variable trends and different shapes, and the main purpose42

is to find effects that are not significantly different and could be associated to43

covariates belonging to the same cluster, according to a dimensionality reduction44

perspective.45

In general, statistical techniques, aimed at the reduction of huge amounts of46

information, are relevant in statistics and synthesis (of objects and variables)47

approaches aim to detect the most relevant information for an appropriate in-48

terpretation of data.49

Various methods, combining cluster analysis and the search for a lower-50

dimension representation, have been also proposed in the finite dimensional51

setting [21]. More recently, the use of clustering is considered as a preliminary52

step for exploring data represented by curves, with a further difficulty associated53

to the infinite space dimension of data [10].54

The paper is organized as it follows: in Section 2 we report the usual notation55

of Quantile Regression, together with some recent developments referred to a56

parametric approach for coefficient functions. In Section 3 we introduce the57

new method for curves clustering starting from a quantile regression model,58

together with the algorithm details. In Section 4 simulated results are reported59

both for curves of effects in quantile regression and in general waveform context.60

Example of applications on real data are reported in Section 5. Section 6 is61

devoted to conclusive remarks.62

2. Quantile regression and recent extensions63

The non-normality of the distribution and the presence of outliers suggest the64

use of Quantile Regression (QR) approach [13, 14] to investigate the influence of65

some covariates on the response. Indeed, although the Ordinary Least Squares66
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(OLS) regression allows to model the average as a measure of synthesis, it does67

not take into account the whole shape of distribution of the outcome variable.68

This issue is overcame by the QR approach: it aims at estimating the fixed69

quantiles of the response variable, using different measures of central tendency70

(and statistical dispersion), in order to obtain a more comprehensive analysis71

of the relationship between variables. In the specific context, the QR analysis72

allows to interpret results also for the tails of the distribution, instead of focusing73

just on the “average response”. QR deals with the estimation of conditional74

quantile functions for models in which quantiles of the conditional distribution75

of the response variable are expressed as functions of observed covariates, and76

with respect to the usual OLS, QR also provides more robust estimates. Unlike77

the ordinary linear regression, the QR parameter measures the change in a78

specified quantile of the response variable produced by one unit change in the79

predictor variable. This allows to compare how some percentiles of the variable80

of interest may be more affected by certain subject characteristics than other81

percentiles.82

In [6], the authors suggest to adopt a parametric model for the coefficient83

function of a quantile regression. They refer to this estimation approach as84

quantile regression coefficients modelling (QRCM). The QRCM method has85

been also implemented in the R package qrcm [15, 7].86

Conversely to standard quantile regression which works in a quantile-by-

quantile fashion, in the QRCM framework different quantiles are estimated one

at the time. This modelling approach facilitates estimation, inference, and

interpretation of the results, and generally yields a gain in terms of efficiency.

More in the detail, given a response variable y and a set of q-covariates x, the

coefficients β(p) are defined as functions of p ∈ (0, 1) (that is the vector of

percentiles), depending on a finite-dimensional parameter θ,

β(p | θ) = θb(p),

where b(p) = [b1(p), . . . , br(p)]
T

is a set of r known functions of p [6]. With this87

approach, β(p) is treated as an infinite-dimensional parameter, while the esti-88
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mated coefficients in a standard quantile regression are generally non-smooth89

functions of p and may suffer from a high volatility that hinders their inter-90

pretability.91

In a multivariate framework, let y = [y1, . . . , yj , . . . , ym] to be a set of m92

response variables, correlated or not, and x to be a set of q covariates. Applying93

the QRCM on each response variable, we estimate the coefficients functions94

β1j(p,θ), . . . , βqj(p,θ) over the percentiles. In this paper, starting from the95

QRCM estimation of curve effects, we propose a new algorithm to identify those96

covariates with the same effect on a single response, or, similarly, to identify the97

responses that are related by similar effect of a given covariate. In a generic98

framework, we investigate the similarities among n general curves, parametrized99

by βi(p), i = 1, ..., n.100

3. The proposed clustering method101

The clustering approach proposed in this paper is based on a new dissimi-102

larity measures based both on shape and distance. More in the detail, we define103

a new dissimilarity measure, based on two measures accounting both for the104

shape and for the distance.105

Let βi(p) be the coefficient function approximated by a spline function si(p),106

for p = 1, ..., Np, i = 1, ..., n. Considering two different curves βi(p) and βi′(p)107

with i 6= i′, we define108

dii
′

shape(p) = I(sign(s′′i (p))× sign(s′′i′(p)) = 1)

dii
′

distance(p) = I(|βi(p)− βi′(p)| ≤ f(α,dist(p))),

where s′′i (·) is the second derivative of βi(·) and f(·, ·) is a cut-off function,109

that depends on α, a probability value, and dist(p), that is the vector of the110

distances between all the pairs of curves for each value of p. Therefore, computed111

the distribution of dist(p) for each value of p, the cut-off function selects the112

corresponding α−th percentile vector.113

Therefore, the proposed dissimilarity measure between two curves is defined
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as:

dii
′

= 1− 1

Np

Np∑
1=1

[
dii

′

shape(p) · dii
′

distance(p)
]

(1)

In the proposed approach, the new dissimilarity measure is used to define114

a dissimilarity matrix, useful for the application of a hierarchical clustering115

method. The proposed procedure has been implemented in the forthcoming116

R package clustEff that develops some very flexible functions, that allow the117

user to make some starting choices. For instance, the α-level has a central role118

for finding homogeneous clusters and its choice can depend on the aim of the119

analysis. Fixing an α-level too small or too big could provide inhomogeneous120

clusters. The median is strongly suggested in waveform clustering, while the121

first quantile is preferable in clustering of effects. This, of course, could influence122

results, but at the same while has the advantage of making the user free to fix123

starting conditions according to his/her analysis purpose.124

3.1. Choice of the number of clusters125

In any clustering algorithm, one of the key aspects is the choice of the number126

of clusters. In our approach, we deal with this point according to the reference127

framework, to provide a classification tool that is both very flexible and could128

be used also in different contexts.129

In a quantile regression context, where the purpose could be to find clusters130

of curve effects, we choose the optimal number of clusters (say k∗) basing on the131

confidence bands of curve. In particular, starting form each partition of curves132

in k clusters and their estimated confidence bands, we build the average band.133

Then, we compute the proportion of curves that are outside the average band134

(say πk
out, k = 1, ...,K ≤ n). The value of k∗ is identified by that partition for135

which πk
out is minimized.136

Anyway, the proposed approach, based on the dissimilarity measure defined137

in (1), could be also an useful tool for clustering of time-dependent signals,138

usually analysed in functional data analysis (FDA). The nature of these curves139

are different from the one of the effects in a QR. Indeed, in FDA clustering,140
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signals are often zero mean, and with high time-dependent variance. Therefore,141

the criterion for the choice of the optimal k∗ can not be the same. In particular,142

in waveform clustering framework, we look for the relative distances (say distkrel,143

k = 1, ...,K) between curves belonging to the same cluster and their centroid.144

Then, k∗ is identified by that partition for which the average distance distkrel is145

minimized.146

3.2. Steps of the Algorithm147

The main steps of the algorithm are summarized as following:148

Step 1. fixed the α-level and calculated all the possible distances between the pairs149

of curves for each percentile (i.e. dist(p)), the cut-off function selects the150

percentile of the distribution of dist(p) used in dii
′

distance(p);151

Step 2. according to the measure in (1), the dissimilarity matrix is calculated;152

Step 3. applying a hierarchical clustering algorithm a dendrogram is obtained;153

Step 4. if the number of clusters is not fixed, the optimal number is obtained as154

in Section 3.1;155

Step 5. after selecting the number of clusters, the mean curves are calculated156

within each cluster.157

The clustEff package provides not only the main function that performs the158

proposed algorithm, but also a summary and different graphical tools.159

On the basis of several applications and simulated results, partially here160

reported, we can conclude that the algorithm seems to be very stable and fast161

in the computation.162

4. Simulation study163

In this section, we report simulated results for proving the validity of the164

proposed approach for cluster of curves, both referring to curves of effects in a165

quantile regression and to general waveforms.166
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4.1. Clusters of effects167

Let us consider a multivariate scenario in which the quantile function is

simulated as

Q(p | x,θ) = β0(p | θ) + β1(p | θ)x1 + · · ·+ βq(p | θ)xq,

where x1, x2, . . . , xq are independent U(0, 5) variables and p ∈ U(0, 1). In the168

first simulation scenario, the intercept is modelled as a quantile normal distri-169

bution function (φ) for its flexibility. Other choices, as suggested in the original170

paper of [6], could be also considered. We use q = 2 covariates and define three171

groups of quantile functions172

Q1(p | x,θ) = (1 + φ(p)) + (.5 + .5p+ p2 + 2p3)x1 + (.5 + 2p+ p2 + .5p3)x2,

Q2(p | x,θ) = (1 + φ(p)) + (−3 + .5p+ p2 + .5p3)x1 + (−1.5− p− .5p2 + p3)x2,

Q3(p | x,θ) = (1 + φ(p)) + (.3− .5p− p2 + 2p3)x1 + (−.5 + p− .5p2 − p3)x2,

Ten response variables are generated for each quantile function (Q1, Q2, Q3).173

Applying the QRCM method to these response variables, we obtained the 30174

coefficients curves, namely curves effect, and their lower and upper bounds,175

useful to select the optimal number of clusters, for both covariates.176

The clustEff algorithm is able to select the correct number of clusters and177

to discriminate the 30 curves effect. In Fig. 1, the curves for both covariates178

are represented in the three clusters, and in Table 1 results are summarized.179

In Table 1 average cluster distances and silhouette widths within clusters are180

reported. The first measure highlights the closeness of curves with respect to the181

mean curve of each cluster, in particular the smaller is this value the closer are182

the curves. The silhouette value is a measure to assess the cohesion of each curve183

to its own cluster compared to other clusters [18]. In particular, observations184

with a large silhouette (almost 1) are very well clustered; a small silhouette185

(around 0) means that there would be some observation that lies between two186

clusters, and negative silhouette means that there are observations probably187

placed in the wrong cluster.188

Starting form the simulation here reported, results show a valid clustering189

of curves, since silhouette widths are all greater than 0, and in particular, for190
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Figure 1: Left and Right panels show the 30 curves clustered in 3 clusters for the first and

the second covariate, respectively, after applying the proposed algorithm. Red solid line is the

mean curve and dashed red lines are the mean lower and upper bands within each cluster.

Table 1: Results of clustering in correspondence of the two covariates, summarized in terms

of average cluster distance (ACD) and silhouette width (SW) within clusters.

x1 x2

ACD SW ACD SW

Cluster 1 .41 .39 .50 .27

Cluster 2 .34 .63 .33 .59

Cluster 3 .45 .77 .27 .86

clusters 2 and 3 these values are greater than 0.5. Moreover, all the average191

cluster distances are lower than or equal to 0.5.192

4.2. Curves clustering193

Fig. 2 shows 30 curves where 10 of them are obtained from the function194

f(x) = sin(3πx), 13 from g(x) = cos(3πx) and 5 from h(x) = sin(3πx) cos(πx)195

evaluated in a grid of size 1000; a N(0, σ2
t )-distributed error is added, with σ2

t a196

variance function defined by segmented relations with multiple change-points.197

Two outlying curves from l(x) = 0 are added, such that they are not pointwise198

outlier at any coordinate. The proposed clustering methods is applied to the 30199
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Figure 2: The 30 curves divided in the 4 groups.
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curves. The applied procedure finds the three clusters f(x), g(x) and h(x) and200

also identifies the two outlying curves as a fourth cluster, as reported in Fig. 3.201
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Figure 3: Dendrogram of the clustering algorithm applied in a functional data framework.

202

The average distances within the first two clusters is approximately 0.04203

and the individual silhouette width is around 0.41. These results confirm the204

good performance of the proposed method in terms of homogeneity of the found205

clusters and proximity between curves.206

5. Examples of application of the clusteEff algorithm on real data207

In this section, we apply the proposed clustering algorithm to three different208

real data, in order to show the flexibility of the proposed method and its wide209

spectrum of application.210

5.1. Dataset 1211

The first analysed dataset consists of 2372 earthquakes located in Italy by212

the INGV (Istituto Nazionale di Geofisica e Vulcanologia) seismic network from213
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2012 to 2016, with local magnitude greater than 2.5. The selected time interval,214

as well as the minimum magnitude, have been chosen in order to have a catalogue215

as homogeneous as possible. Each seismic event is uniquely identified with a216

sequential numeric (ID). For each event Latitude (lat), Longitude (lon) and217

Hypocentral Depth (depth), uniquely define the hypocenter position in space.218

The precision and accuracy of their estimates is strongly influenced by the219

quality of the data and the geometry of the stations that recorded the event. In220

this application, the following variables are further considered:221

• Magnitude (mag): measure of the magnitude of the earthquake;222

• Magnitude uncertainty (errM): uncertainty about the magnitude of the223

earthquake;224

• Hypocentral uncertainty (errZ): uncertainty about the depth hypocenter;225

• Epicentral uncertainty (errH): uncertainty about the depth epicentre;226

• Gap azimuth (gap): a synthetic parameter of the geometry of the stations227

in relation to the epicentre; it expresses the maximum angle between two228

consecutive stations placing the epicentre to the vertex of the angle. High229

values of the azimuthal gap, severely affect the quality of the hypocenter230

location. For values higher than 180◦, i.e. external seismic event from the231

monitoring network, the localization errors can be very high or the event232

can not be allocable;233

• Distance from the nearest station (mDst): is the minimum distance be-234

tween the epicentre and stations. In particular for shallow earthquakes,235

this distance should be sufficiently small. If there is not at least one station236

close enough to the epicentre, the determination of depth hypocenter can237

be extremely difficult or even impossible. In Figure 4 minimum distances238

between epicentres and stations are shown;239

• Root Mean Square (rms): the standard deviation between the arrival times240

of seismic waves estimated automatically or manually (experimental) and241
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theoretical ones determined on the basis of a velocity model of wave prop-242

agation. This variable is therefore a measure of the quality of the location;243

• Number of stations that recorded the event (nSt): it is the number of244

stations used in the localization process. This number is heavily influenced245

by the magnitude of the event and strongly influences the accuracy of the246

location.247

Starting from all these variables, we could identify a set of dependent variables248

(mag, errM, depth, lon, lat, errZ, errH) and a set of independent variables (gap,249

mDst, rms, nSt).250

Figure 4: Min. distances (in km) between epicentres and stations (black triangles)

One of the main purposes of this analysis is to find some kind of depen-251

dence among these sets of variables and, particularly, to identify some clusters252

of response variables, conditioning to covariates. Indeed, we look for clusters253

of dependent variables after estimating different multiple quantile regressions.254

Clustering of effects on different responses, for a fixed covariate, could identify255
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latent relationships among dependent variables. In table 2, we report the corre-256

lation matrix between pairs of variables. As expected, some well known positive257

correlations (errH-gap, errZ-mDst, errH-rms, errZ-rms, errM-rms) and negative258

correlations (errH-nSt, errZ-nSt, gap-nSt) are shown.259

Table 2: Correlation matrix between dependent and independent variables. The independent

variables are: mag=magnitude, errM=magnitude error, depth, lon=longitude, lat=latitude,

errZ=hypocentral uncertainty, errH=Epicentral uncertainty. The dependent variables are:

gap=Gap azimut, dst=distance of the epicentre from the nearest station, rms, nSt=number

of stations that recorded the earthquake.

mag errM depth lon lat errZ errH gap dst rms

errM 0.03

depth 0.13 -0.00

lon 0.01 -0.08 0.33

lat -0.01 0.09 -0.38 -0.79

errZ 0.03 -0.05 0.38 0.19 -0.36

errH 0.04 -0.12 0.63 0.28 -0.41 0.52

gap -0.00 -0.10 0.18 0.20 -0.33 0.32 0.59

dst 0.15 -0.10 0.31 0.21 -0.38 0.40 0.56 0.61

rms 0.03 0.01 -0.01 0.03 -0.09 0.15 0.28 0.08 0.11

nSt 0.52 0.19 0.02 -0.14 0.24 -0.13 -0.21 -0.30 -0.09 0.06

We model the intercept using φ(p), the quantile normal distribution function,260

while the coefficients associated to the covariates are described by a shifted261

Legendre polynomial up to the third degree (e.g., 1), that is, an orthogonal262

polynomial in (0, 1) used to define a flexible model. In Fig. 5 we report the263

clusters of the dependent variables conditioned to the variables Gap azimuth264

(on the top), RMS (in the middle) and Number of Stations (on the bottom).265

Conditioning on the Gap azimuth, three clusters of responses are selected:266

1. Magnitude, Magnitude error, Latitude and Hypocentral uncertainty;267

2. Depth and Longitude;268

3. Epicentral uncertainty.269

In the first cluster, the covariate Gap azimuth has a positive effect on the270
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Figure 5: Clusters of responses conditioned to the three independent variables (gap, rms and

nSt) for dataset 1. Red solid line is the mean curve; the shaded areas are identified by the

mean lower and upper bands within each cluster.
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set of responses just for the percentiles greater than .25, that is, the higher the271

Gap the higher both the Magnitude and the Magnitude error. This could be272

ascribed to different reasons, i.e. by the distribution of the occurred earthquakes273

with respect to the stations. Indeed, the maximum magnitude registered in274

the considered catalogue has been the earthquake occurred in June, 2013 with275

magnitude 5.9, in the North of Italy (Emilia). For this event, the gap was276

very high (213◦ vs the average almost 150◦), as well its minimum distance (45277

km). The Latitude is also related to the geographical distribution of events.278

Indeed, the big sequence of earthquakes occurred after the Emilia event has a279

big influence on the estimates. For these events the gaps are high, because in the280

North of Italy, and in particular, in the Emilia region, historically considered281

as a low seismic area, the network station is less dense. On the other hand the282

estimated effect of Gap on the magnitude error and Hypocentral uncertainty,283

confirms our previous knowledge.284

In the second cluster, we could observe a negative effect on the responses for285

percentiles lower than .5, and positive otherwise. This reflects the distribution286

of station again, and the occurrence features of events. For instance, the area287

of the Ionian slab (greater Longitude), where events are deep, the network is288

denser (and then the Gap was lower).289

In the last cluster, an increasing positive effect of Gap azimuth on Epicentral290

uncertainty has been estimated, confirming again our previous knowledge.291

Conditioning on the rms, the responses are clustered in two sets:292

1. Magnitude, Magnitude error, Depth and Longitude;293

2. Latitude, Hypocentral and Epicentral uncertainty.294

In the first cluster, the effect of the covariate rms on the four responses is295

constant and negative for percentiles of the distribution between .15 and .51.296

In the second cluster, rms has a positive effect on Latitude, Hypocentral and297

Epicentral uncertainty, conditioned to the percentiles greater than .13.298

Finally, conditioning on the covariate nSt, we find four clusters of responses299

as follows:300
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1. Magnitude;301

2. Magnitude error and Longitude;302

3. Depth, Hypocentral and Epicentral uncertainty;303

4. Latitude.304

In the first cluster, the number of stations has an increasing positive effect305

on Magnitude for almost all the distribution.306

In the second cluster, the number of stations has a decreasing positive effect307

on Magnitude error and Longitude.308

In the third cluster, the covariate number of stations has a low negative effect309

on Depth, Hypocentral and Epicentral uncertainty for percentiles between .2 and310

.36.311

In the last cluster, the number of stations has almost always a negative effect312

on Latitude, reflecting what we observed with respect to the covariate Gap.313

In this application, we show an interesting usage of the proposed method,314

identifying clusters of dependent variables on the basis of the estimated curves315

effect for a better characterization of these dependencies.316

5.2. Dataset 2317

The data refer to a study carried out in 1988-1991 in the North of Italy, in-318

cluding 1053 males and 992 females. The study aims at assessing determinants319

of the Inspiration Capacity (IC), a measure of lung’s function, among the fol-320

lowing nine predictors: age, height, body mass index (bmi), sex, and indicators321

for current smoking, occupational exposure, cough, wheezing, and asthma.322

We model the intercept using log (p) and log (1− p), that defines the asym-323

metric Logistic distribution used for its flexibility, while the coefficients associ-324

ated to the covariates are described by a fifth degree shifted Legendre polyno-325

mial. The estimated model is summarized in Table 3, and curves of effects are326

represented in Figure 6.327

We apply the clustEff algorithm to the curves of significant coefficients328

associated to the predictors in order to look for similar effects of covariates with329
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Figure 6: qrcm estimates of b(p) (see Table 3). Confidence bands are displayed as shades.

respect to the Inspiration Capacity response. The application of the proposed330

algorithm provides three clusters.331

The first cluster consist of age and sex with an average negative effect, sig-332

nificant for all the percentiles.333

The second cluster is identified by bmi and height, with a positive effect,334

significant for all the percentiles.335

Finally, in the third cluster we find the variables smoker, occupational ex-336

posure, cough, wheezing, and asthma with not significant average effect.337

These results are summarized in Figure 7.338

In this application, we focus on a new perspective of reduction of dimen-339

sionality, applied in a quantile regression context. Indeed, we propose the use340

of the clustEff method for finding the main determinants of a quantitative341

response, assuming that we are interested in looking for dependence structures.342

Of course, these results could be more relevant in presence of several regressors,343
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Figure 7: The three clusters obtained applying the clustEff algorithm on the estimated

quantile regression coefficients of dataset 2. Red line is the mean curve; the shaded areas

are identified by the mean lower and upper bands within each cluster. Black lines are the

covariates; in the first cluster there are the variables age and sex, in the second cluster bmi and

height and in the third cluster smoker, occupational exposure, cough, wheezing and asthma.

but we showed this example just for its simplicity of interpretation. Indeed,344

we could observe that covariates are classified in three main groups: the first345

relative to the subject characteristics, the second relative to body features and346

the third that associates the clinical aspects. Therefore, in describing the effect347

of covariates to the response, we interpret the average effect of each cluster, as348

a proxy of a latent characteristic effect that is associated to the covariates of349

that cluster. As drawback, this procedure could have some limitations in terms350

of loss of interpretation, as usual in dimensionality reduction problems.351

5.3. Dataset 3352

Also this application is reported to show the flexibility of the proposed algo-353

rithm. Indeed, we used the clustEff method for waveform clustering, that may354

be considered as an issue of clustering of functional data.355
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Figure 8: The identified 8 clusters of dataset 3 (on the top): red lines are the mean curves.

Boxplot of the average mean distance within each cluster (on the left-bottom). Dendrogram

of the clustering algorithm and height level used to cut the tree (on the right-bottom).
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6. Conclusion356

The proposed approach is not just a method for clustering of curves, that357

is an important problem in many areas of science, but it can be seen as a358

new tool for reduction of dimensionality in dependence model, in particular359

in a quantile regression context. Indeed, the proposed approach, based on a360

new dissimilarity measure, that accounts both for shape of curves and distance361

among them, allows to find similarities among curves that represent the effect362

of covariates on (also multivariate) response. The clustering of these curves,363

extends the idea of looking for similar effects and, therefore, of covariates in364

general dependence models, aimed to a selection perspective.365

This approach, developed also in a forthcoming R Package, is a very flex-366

ible method, that is also very fast in te of computation and user-friendly for367

general applications. We applied the proposed algorithm to three different real368

data, included an application for generic waveforms in order to provide a wider369

spectrum of applications for curves clustering.370
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